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Abstract

Many researchers consider changes in route and departure time to be the two most important driver responses to changes in network conditions.  Indeed, Cairns et al. (1998) reviewed evidence from ninety case studies of road capacity reduction, concluding that there was much evidence that ‘...overall, the two responses - changing route and changing journey time - seem to be the most universal’ (p28).  This paper reviews the available evidence on the effect of network changes on route and departure time choices, reviews the development of methods to model these processes, and considers whether the models are able to take account of the observed behaviours.

The review of evidence distinguishes between two sources of behavioural variability: ambient variability and variability that occurs in response to network changes.  Duffell and Kalombaris (1988) noted that even in situations where no changes to the network are made, many drivers choose routes that are not efficient.  The review also notes that the time-scale of adjustment is an important consideration.  Cairns et al. (1998) reported that, in the ‘short term’, ‘It is the common experience that, after an adjustment period, traffic alters to take account of the new conditions.  Reference to a ‘settling down’ period has been made…  Following the Kinnaird Bridge closure (Stephenson and Tepley, 1984), flows were estimated to stabilise in about three weeks’ (p36).

The review of modelling distinguishes between deterministic and stochastic approaches to assignment, and discusses recent advances in ‘flexible’ stochastic loading models.  The paper considers the shift from steady-state to dynamic departure time choice models, and the attempt to integrate such models within the route choice decision.  The review considers the assumption of rational behaviour that is inherent in many modelling approaches, and assesses the modelling implications of driver information systems.  It is observed that advancements in route choice and departure time choice models have rarely been implemented at the estimation stage of practical scheme assessments.  Reasons for this are suggested.  

The paper concludes that, in the context of drivers’ route and departure time choices, there is a lack of consistency between the behavioural mechanisms implicitly assumed by the models used in practical scheme assessments, and those observed on-street.  The research ongoing at York and Leeds is attempting to address this issue by collecting a large volume of route choice data and applying this to appropriate models.

1.0 INTRODUCTION

This paper reports on-going work from an EPSRC project held jointly by the Department of Mathematics at the University of York and the Institute for Transport Studies at the University of Leeds.  The project involves analysing the route choice behaviour of real drivers as they respond to changing network conditions. The objective of the project is to achieve a better understanding of drivers’ route choices, and thereby improve the computational modelling of traffic congestion.  A web site describing the initial phase of this research is available at http://gridlock.york.ac.uk/route.  This web site will also provide data of use to researchers interested in the phenomenon of driver route choice. 

Changes in route and departure time are perhaps the two most important driver responses to changes in network conditions.  This paper reviews the available evidence on the effect of network changes on route and departure time choices, reviews the development of methods to model these processes, and considers whether the models are able to take account of the observed behaviours.

The layout of the paper is as follows.  Section 2.0 reports the on-street evidence on route choice, distinguishing between ambient variability in route choice and changes in route due to network changes.  Section 3.0 reports the on-street evidence on departure time choice.  Section 4.0 considers the time-scales of importance for choice effects.  Section 5.0 summarises the modelling challenge.  Section 6.0 considers the modelling of route choice, distinguishing between user equilibrium models and stochastic user equilibrium models.  Recent developments in stochastic loading models are given particular attention.  Section 7.0 considers the modelling of departure time choice.  Section 8.0 investigates issues of rationality, information and compliance, and section 9.0 considers some of the fundamental problems that characterise practical modelling.  Section 10.0 provides conclusions. 

2.0 ON-STREET EVIDENCE ON ROUTE CHOICE

In this section we shall consider two types of evidence about driver route choice behaviour: the daily route choice behaviour on a ‘normal’ road network with no interruptions and route choice behaviour resulting from some change to a network.

2.1 Ambient variability in route choice

Huff and Hanson (1986) studied repetition and variability in urban travel-activity patterns.  Their work is based upon the Uppsala Household Travel Survey which looked at all out-of-home travel activity for a 35 day period – for the paper being considered, data from 149 individuals who participated in this survey was examined.  One important conclusion of their work is that ‘observations taken for a single day in the travel history of an individual are not likely to be representative of the range of daily travel patterns exhibited by that person over a more extended time period, and we are led to reject the view that travel is highly routinized in the restricted sense that every weekday is assumed to look much like every other weekday’ (p108).
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Figure 1: Survey locations made for a study of route choice in the city of York

Figure 1 shows the survey locations for a large study of York being undertaken as part of an EPSRC project to study route choice.  One event being studied is associated with the temporary closure of York’s Lendal Bridge.  Survey locations K, L and M do not fit on the map shown but are the three other bridge crossings available in the city.  For a one-hour survey at rush hour which was taken on 27/6/00 and repeated on 28/06/00 (a Tuesday and a Wednesday) the following matches between partial plates were recorded (after statistical adjustment for false matches).

	Survey Location
	Percentage matches

	A
	33.9%

	C
	39.2%

	D
	26.5%

	E (1 lane only)
	34.9%

	F
	34.4%

	G
	32.6%

	H
	36.8%

	I
	43.4%

	J
	38.9%

	K
	42.4%

	L
	40.5%


Table 1: Percentage of vehicles seen on the first day of survey also seen on the second day of survey (Locations B and M did not have data on both days to compare).

If these figures are to be believed then for a typical street in York only between 30 and 40 percent of vehicles that used a road during one rush hour used it during the rush hour on the next day.
Duffell and Kalombaris (1988) studied a variety of cases in Hertfordshire looking at how drivers choose either a ‘rat run’ or a main route on a network (where the ‘rat run’ is defined as the usage of a minor road route as an alternative to a major road route - in some of the cases studied the ‘rat run’ was both shorter and quicker than the main route).  In summary, they state that ‘travel time is the single most important criterion affecting driver route choice in networks where there is a viable alternative to the main route’ (p408).  Their observations also indicate that drivers are willing to travel an increased distance if it will reduce their travel time provided ‘the distance is not doubled or the alternative is tortuous’ (p408).  The work was complimented by questionnaire data about how drivers perceived factors affecting route choice.  The authors give the following equation for the percentage of drivers using a particular rat-run route:

TRS= 9.14 – 22.27 (TTR) + 30.98(DIR) + 26.65(SPR) – 0.089(TID)

where TRS is the percentage of drivers using the rat-run route, TTR is the travel time ratio (rat-run / main road), DIR is the distance ratio (rat-run / main road), SPR is speed ratio (rat-run / main road) and TID is the travel time difference in seconds (main road – rat-run).  Further details of their work are reported in Duffel and Carden (1983).

Bonsall et al. (1984) report on the collection of a large number of licence plates from road-side surveys undertaken in Leeds.  An interesting outcome of their report was the unreliability of number plates collected in this way.  They report that, when looking at the number of matches they ‘assume a 15% increase in the number of matches’ (p387) due to missed matches from incorrectly recorded data.  They give the following table of matches (corrected for spurious matches):

	Day 1 Time period (beginning time)
	% match in same period day 2
	% match in same or adjacent period day 2
	% match in any time period on day 2

	7:15
	23
	36
	35

	7:30
	24
	26
	30

	7:45
	15
	23
	28

	8:00
	19
	28
	32

	8:15
	24
	38
	45

	8:30
	19
	27
	38

	8:45
	11
	21
	23

	9:00
	9
	15
	22

	9:15
	6
	10
	8

	9:30
	5
	8
	0


Table 2: From Bonsall et al. (1984): Match rates at different times within the peak.  All figures should be increased by 10-20% to allow for misreading

When the allowance for misreading is made, the figures for ‘% match at any time period on day 2’ are consistent with the data recorded in the York study described earlier, with average match rates of 30-50 percent, compared with the York study which used a different matching procedure but found matching rates of 30-40 percent.  (Unfortunately, space does not permit a detailed description of matching procedures within this paper).

Jan et al. (1999) report on the use of GPS data to understand route choice.  Their data set was GPS data from a single vehicle from 100 households (216 drivers) over a one-week period.  The paper combined the raw GPS data with a model of the network in order to understand driver route choice.  They reported that ‘the path chosen on a trip most often differs considerably from the shortest time path across the network’ (p1) and also that ‘travelers habitually follow the same path for the same trip’ (p12).  (The shortest path time accounted for errors associated with random delays at traffic signals and delays due to congestion).

To sum up this evidence, it would seem that a typical recurrance rate for traffic during the rush hour on weekdays is something between 30 and 50 percent.  While time is widely acknowledged to be the most important element in the route chosen, other elements such as distance and perceived ‘directness’ of route are important.  In general, it would seem that the variability in the typical morning peak, which is traditionally seen by modellers as the most stable part of the travelling day, is much greater than has been imagined.

2.2 Changes in route choice due to network changes
Stephenson and Tepley (1984) examined data obtained in Edmonton after the closure of the Kinnaird Bridge.  Since the Bridge was wholly closed to traffic, rerouting is an obvious (in fact inevitable) driver response.  What is clear from the Kinnaird Bridge study is that drivers who were using the closed bridge were not the only ones to change their routes.  A secondary effect was that drivers not using the bridge changed their routes to avoid the congestion that resulted from the closure.  
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Figure 2: From Stephenson and Tepley (1984) rerouting as a result of the closure of the Kinnaird Bridge showing the network (left), before flows (centre) and after flows (right).

This secondary route changing effect can be clearly seen in Figure 2.  The black arrow showing traffic moving down Stadium Road is not using the closed bridge, but in the after-situation at least 25% of this traffic has rerouted to 95 Street.

Daugherty et al. (1999) report on a number of bus priority schemes implemented in Great Britain.  They conclude that ‘A feature of many schemes is that traffic tends to divert from the priority route if drivers perceive that their journey may be delayed along certain sections of the route.  This is not a problem if traffic diverts to routes suitable and capable of absorbing the extra demand... however the diversion of traffic through residential areas or along other routes unsuitable for additional car traffic... should be discouraged on both environmental and safety grounds’.  One of the main conclusions of the report was that driver route choice should be assessed when designing a bus priority scheme, particularly if rat-running was a likely consequence of the scheme design.

The MUSIC (Managment of traffic USIng flow Control) project studied the effects of introducing new signal control policies in three European cities.  The signal control policies chosen were designed specifically with route choice in mind.  Computer simulation was performed with the aim of assessing the on-street results of the signal timing changes designed as part of the project.  The project final report of the EU MUSIC CONSORTIUM (forthcoming) reports that at all of the three demonstration sites ‘models tended to overestimate the amount to which drivers would reroute’.  Models based on the assumption that no driver rerouting would take place as a result of the signal timing changes were found to be less accurate than models based on the assumption that drivers would reroute completely to an equilibrium.  Before and after studies measured the changes in vehicle flows arising from changes to signal timings.  While other causes for the flow changes cannot be ruled out, changes in flow levels of up to 16% were found between the before and after cases.  This would seem to indicate that some degree of driver rerouting is taking place.  More information on the MUSIC project can be found in Clegg et al. (2000a) and Clegg et al. (2000b). 

It was extremely difficult to find evidence in the literature on changes in route choice due to network changes.  Most studies mentioned route choice only to the extent that shifts in route had occurred.  While it is widely acknowledged that route choice is a major response to network changes, it would seem that it is rarely explicitly studied for its own sake.  This may be (in part) due to the extreme difficulty of getting route information (as opposed to flow information which is much more easily obtainable).

3.0 ON-STREET EVIDENCE ON DEPARTURE TIME CHOICE

It is perhaps useful to distinguish between two different types of departure time choice before discussing the subject in detail.  Evidence on the subject often makes the distinction between small departure time shifts of the order of five minutes to an hour and larger departure time shifts that move the journey into an uncongested part of the day.  These two effects, which are inevitably blurred (it is not clear what counts as a ‘small’ departure time shift), can be the product of fundamentally different constraints upon the journey.  For most commuters a decision to set off ten minutes earlier to avoid the traffic is very different to a decision to make their journey at mid-day instead of during the morning peak.  Naturally, we would expect the former decision type to be the more common.  In the literature this is often referred to as ‘micro time-shifting’ to distinguish it from more radical changes in journey time.

Another important issue when discussing departure time choice is distinguishing a departure time shift from an involuntary change in time caused by delays elsewhere on the route.  If a licence plate survey at a particular point records that the same drivers are, on average, arriving at that point 5 minutes later, then this could be indicative of a departure time shift on the part of the drivers or it could indicate a 5 minute delay on an earlier part of the route.  When it is considered that driver departure time shifts are often made in response to delays then the problem becomes a difficult one to resolve.

From the previously mentioned Kinnaird Bridge closure study, Stephenson & Tepley (1984) conclude that when comparing two days from the before-period: ‘60% of drivers travelled at the same time (+/- 5 minutes) every day during uncongested conditions’
.  However, when comparing one day from the before-period with one day from the after-period, only 20% of drivers kept the same travel time during the congested peak period.  It is, however, unclear whether these results are caused by drivers making a decision to change their departure time or by drivers keeping the same departure time and their journey being delayed by the increased congestion.

Lock and Gelling (1976) report on the after-effects of the collapse of the Tasman Bridge in Hobart, Tasmania.  The bridge was destroyed as a result of an accident involving a bulk ore carrier in earlier 1975.  While this had many effects on mode choice and trip suppression, a departure time choice was certainly evident: ‘the morning peak in 1974 was 7-9am, but in 1975 and 1976, this had extended to 6:30-9am’. 

Dawson (1979) reports on the closure of Lendal Bridge in York in 1978 when the bridge was closed for six months to all traffic apart from buses, cyclists and pedestrians.  In surveys, 15% of drivers said that they had changed the time at which they made their journey by more than ten minutes.  This is, perhaps, curious since elsewhere in the paper it is suggested that the average change in journey time was low except for in the a.m. peak and even then it was only 2.8 minutes.  It is unclear if the high percentage of drivers changing their journey time had averted the worst effects of congestion or if the drivers were simply over-reacting to perceived congestion.

Many authors report peak-spreading as a response to increased congestion, but offer little in the way of evidence.  Such studies are not included here since, particularly in the evening peak, spreading may be merely a result of a change in the time taken to travel with the departure time remaining constant.

4.0 Time-Scales of Importance for Choice Effects

An important question about route and departure time choice arising from a change to a network is how long the effects of the change take to stabilise.  Cairns et al. (1998) reported that in the short term (defined as ‘say the second week, for the rest of the year’): ‘It is the common experience that, after an adjustment period, traffic alters to take account of the new conditions.  Reference to a ‘settling down’ period has been made…  Following the Kinnaird Bridge closure, flows were estimated to stabilise in about three weeks’.
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Figure 3: From Stephenson  and Tepley (1984) Development of volume equilibrium at the critical location near the Kinnaird Bridge closure

Figure 3 is of flows on the eastern approach to the intersection of 112 Avenue and 82 Street (see Figure 2).  It appears to show that the most significant changes in flow occur in the first week after the closure although it appears that there is a small but steady downward trend in the graph for the following two weeks (after which time a second alteration to the network takes place).  As Stephenson and Tepley state ‘Following the closure of Kinnaird Bridge, severe congestion developed in the immediate vicinity of the detour…  Subsequent to the initial congestion in the network, however, drivers responded, over a period of two weeks, by altering their travel behaviour through the area’ (p378).  

It should be noted that it is unclear from the original reference whether the days in Figure 3 include weekend days (since it would be expected that flows would differ significantly on weekends).  Also, while the authors claim that the response took place over a period of two weeks, close examination of Figure 3 above (reproduced from their paper) seems to show that the flow is still reducing slightly on day 21 and the introduction of improved control sets up another change which continues to the end of the survey period.  The flows never seem to quite stabilise (though it should be noted that the flows shown are unusually similar from day to day).  

The MUSIC project mentioned earlier draws a slightly different conclusion.  In the city of Thessaloniki 128 traffic signal timings were changed in an attempt to reduce congestion and public transport queues in the city, at least partly by accounting for driver rerouting.  The after-studies took place six weeks after the final scheme was implemented.  The project final report (MUSIC CONSORTIUM, forthcoming), notes that ‘A long time period after the implementation of the new traffic signal timing plans is necessary in order to allow rerouting and attainment of a new traffic equilibrium.... it was considered that drivers had not fully settled into their new routes by the end of the study period’.  The study period mentioned was six weeks, compared to the three weeks estimated for flows to stabilise following the Kinnaird Bridge closure.  Similar results were reported for a change of signal timings in the city of Porto.  Perhaps the reason for this difference is that, in the case of the Kinnaird Bridge, the change was physical, easy to assess and located at a single point in the network whereas, in the case of Porto and Thessaloniki, the changes were harder for drivers to assess and located at a number of points in the transport network.  

From the limited evidence available (very few reports could be found which gave evidence on the length of time taken to establish a new equilibrium) it would seem that the agreement is that, as common sense would suggest, the most extreme effects of a network change are on the first day afterwards.  The first week shows the major changes and then a more gradual ‘settling down’ occurs over the next few weeks but the duration of this phase is uncertain and is probably dependent on the exact nature of the change to the network.

5.0 THE MODELLING CHALLENGE

The decision context can be summarised as follows.  In order to commute from home to work, drivers choose a path between the origin (home) and destination (work), and choose a departure time for the journey.  Ben-Akiva and Bierlaire (1999) identified a series of methodological challenges that are faced in modelling each of these choices.  In the route choice problem, the universal choice set is typically large, not all physically-feasible alternatives are considered by the decision-maker, and alternatives are usually correlated due to overlapping paths.  In the departure time choice problem, time must be converted from a continuous variable into a discrete one, but there is a high correlation between adjacent departure time periods.  Moreover, the problem involves identifying an acceptable range of departure time intervals for an individual.   The modelling of each of the choice contexts presents non-trivial problems.  When it is recognised that the two contexts are also inter-related, the modelling challenges facing the analyst are further compounded.

6.0 MODELLING ROUTE CHOICE

6.1 User equilibrium models

User equilibrium (UE) models are deterministic.  It is assumed that all drivers are rational, have complete and perfect information regarding network conditions, and behave identically.  In these models, congestion is represented by means of a capacity restraint, and the user equilibrium is found in accordance with Wardrop’s first principle (Wardrop, 1952).  Here, all drivers choose the route with the shortest travel time or, equivalently, the lowest travel cost, and equilibrium is reached where no driver can unilaterally achieve a reduction in time or cost by changing route.    

Although UE models are perhaps the most widely used models in practical assignment, it is recognised that they are characterised by limitations.    

‘Empirical studies of route choice demonstrate that the capacity restraint mechanism in such models is insufficient to explain the variety of routes chosen, especially in more lightly-loaded inter-urban networks’ (Maher and Hughes, 1998 p174).  

More fundamentally, it is argued that the assumptions of UE are unrealistic.  

‘Deterministic assignment…is unrealistic since route choice decisions are based on perceived travel times or costs, which may vary across individuals.  Further, some drivers do not know or judge incorrectly the shortest-travel-time or least-cost path, or choose a path for reasons not captured by the time and cost functions’ (Gliebe et al., 1999).

‘…a deterministic (Wardrop) equilibrium is an unrealistic representation of the state of most urban networks.  This is caused by variations in network conditions (e.g. the effect of weather and unexpected incidents on capacity) and variations in demand…’ (van Vuren, 1994 p42).

6.2 Stochastic user equilibrium models

Stochastic models, which were developed originally by Burrel (1968) and Dial (1971), seek to take account of variations in drivers’ perceptions of travel times or costs.  This is done by means of a probability distribution for perceived link costs.  The original stochastic models omitted consideration of capacity restraint, thus limiting their application to congested urban networks. 

In order to overcome this problem, more recent research has seen substantial interest in the development of stochastic user equilibrium models (e.g. Daganzo and Sheffi, 1977; Fisk, 1980; Sheffi, 1985).  These models combine user equilibrium and stochastic methods.  Drivers’ route choices are modelled as stochastic processes, and capacity is represented in link-based cost-flow relationships.

It is now recognised that the stochastic content of route choice may not be attributable solely to perception error.  More formally, van Vuren (1994) has noted that the error term may represent three effects:

‘influences on route choice which have been excluded from the generalised cost function;

variations in route choice preferences between drivers, which are not explained by the route choice parameters used in assignment models;

daily variation in network traffic conditions’ (p41). 

SUE models have traditionally employed multinomial logit (MNL) or multinomial probit (MNP) in stochastic loading.  As Bhat (1997) noted, MNL is characterised by the following assumptions.  First, the utilities are independent and identically distributed (IID) with a Gumbel distribution.  Second, there is response homogeneity across individuals.  Third, there is error variance-covariance homogeneity across individuals.  An implication of the first assumption is that MNL is characterised by the restrictive property of independence from irrelevant alternatives (IIA), which renders it incapable of taking account of route correlation.  MNP does not assume IID and, therefore, does not suffer from IIA.  However, MNP encounters serious problems of tractability, which have restricted its application in practical work.

6.3 Stochastic loading models

Recent research has seen the development of a range of stochastic loading models that seek to achieve greater flexibility in the representation of alternatives and individuals, whilst ensuring tractability.  The paper by Batley et al. (2001) presented at this conference provides a theoretical and empirical analysis of several such models.

These models can be dichotomised into two main groups.  In the first group, the assumption of identical, non-independent random components is relaxed.  The models within this group are derived from the generalised extreme value (GEV) theory of McFadden (1978), and include nested logit (Ben-Akiva, 1973; McFadden, 1978), cross-nested logit (Vovsha, 1997), C-logit (Cascetta et al., 1996), paired combinatorial logit (Chu, 1981) and generalised nested logit (Wen and Koppelman, 2000).

In the second group, the assumption of non-identical, non-independent random components is relaxed.  The models within this group are derived from the error components model (Cardell and Dunbar, 1980).  The principal model of interest within this group has been error components logit (ECL), also known as the logit kernel or mixed logit model.  ECL decomposes the error term into two components, one that is IID and a second that is non-independent and non-identical.  Recent work has also conceptualised ECL from a random parameters specification (e.g. Train, 1998), thus relaxing the second assumption of MNL, that of response homogeneity across individuals. 

ECL offers an exciting potential for modelling route choice.  This is because, in theory, it is able to take account of complex patterns of correlation between alternatives, as well as behavioural phenomena, such as daily variability in network conditions and variability in preferences across individuals, which are evident in the empirical evidence.  Despite its promise, several issues need to addressed before the suitability of ECL for modelling route choice can be properly assessed.  For example, it is unclear whether the model requires explicit route enumeration.  Furthermore, there is a need for further work to develop efficient and robust estimation methods.

7.0 MODELLING DEPARTURE TIME CHOICE

The second principal response to a change in the traffic network is a change in departure time.  Pioneering works in the modelling of departure time choice include those by Hendrickson and Kocur (1981) and Small (1982, 1987).  

Hendrickson and Kocur (1981) developed an approach for the modelling of schedule delay based on user equilibrium concepts and deterministic queuing theory, considering several examples of peak period commuting and travel to scheduled events.  Hendrickson and Kocur noted limitations of the approach.  In particular, variability in travel times, work start times and user cost coefficients may influence departure times, leading to greater peak spread and queue lengths lower than those predicted by the deterministic model.

Small (1982, 1987) applied stochastic approaches to the modelling of departure time choice.  Small (1982) applied MNL to an analysis of commuter trip scheduling, but noted the inherent correlations between alternatives that violate the assumption of IIA.  Small (1987) sought to address this problem by employing a generalisation of MNL, in which alternatives are ordered so as to induce stochastic correlation between alternatives in close proximity.

Recent research has seen a shift in emphasis from steady-state modelling towards dynamic modelling, that is the application of models to time-varying networks, and the incorporation of departure time choice within a route choice framework.  Such research considers the correlation between route and departure time choices, and offers an explicit account of choice adjustments.

Mahmassani and Chang (1985) presented a theoretical framework describing the processes by which commuters’ daily departure-time decisions respond to experienced congestion patterns.  The analysis conceptualises commuter behaviour as a boundedly-rational search for an acceptable departure time.  The acceptability of a given decision on a given day is represented by an indifference band of tolerable schedule delay, which varies across individuals and shifts in response to individual experience.  Mahmassani and Chang reported an experiment involving real commuters interacting daily within a simulated traffic corridor, with particular emphasis on the dynamics of user behaviour.  

Ben-Akiva et al. (1986) developed a dynamic model of peak-period traffic congestion that considers a limited number of bottlenecks.  The model considers the effect of traffic conditions on mode, route and departure time choices.  The temporal distribution of traffic volumes is predicted using an elastic demand model.  The delays at bottlenecks are modelled using a deterministic queuing model, which determines waiting time as a function of queue length on arrival at the bottleneck.  Day-to-day adjustments in the distribution of traffic are based on a Markovian model.

Van der Zijpp and Lindveld (2000) noted that an increase in congestion leads not only to an increased dispersion of O-D demand over multiple routes but to shifts in departure time, and that at an aggregate level this leads to the ‘peak-spreading’ effect.  The paper notes that route and departure time choices may be modelled simultaneously using a Dynamic User Optimum Departure time and Route choice (DUO-D&R) assignment.  Whereas DUO requires a dynamic O-D matrix with fixed departure times, DUO-D&R assignment requires a dynamic O-D matrix with preferred departure times under uncongested conditions, the so-called uO-D matrix.  Van der Zijpp and Lindveld proposed a method for estimation of the uO-D matrix.  The paper demonstrates empirically the possible advantages of DUO-D&R assignment over DUO assignment in scenarios where infrastructure is expanded but travel demand growth is uniform.

Following from studies into the phenomenon of ‘peak-spreading’ (e.g. Porter et al., 1995), and the representation of demand responses in scheme appraisal (e.g. Hall et al., 1992; SACTRA, 1994), the problem of modelling departure time adjustments has become a major practical issue in the UK.  Furthermore, the joint modelling of route and departure time choice has become an active DETR-sponsored research stream (e.g. Bates, 1996; Hyman, 1998; van Vuren et al., 1998; Polak, 1998).

8.0 RATIONALITY, INFORMATION AND COMPLIANCE

The assumption of rational behaviour, which is inherent in both UE and SUE models, has attracted some criticism in the literature.  Nakayama et al. (2000) noted that most studies of transport networks assume equilibrium, implying that the agent can perceive the traffic states without systematic bias and select a route rationally.  Citing Simon (1990), Nakayama et al. argued that a more realistic assumption is that rationality is bounded because of cognitive limits.  A simulation model system is proposed in which drivers make repeated route choices on the same road network.  The model consists of two sub-models: a route choice model and a travel time model.  In the former model, an agent’s choice of route is determined by heuristics, which are updated on the basis of the agent’s experience.  The study finds that the system does not necessarily converge to Wardrop’s user equilibrium, and that agents do not become homogenous and rational as network equilibrium suggests.

More specifically, it is recognised that access to information may have a significant influence on route and departure time choices (Ben-Akiva and Bierlaire, 1999).  Hato et al. (1999) argued that ‘…the notion of a simple optimised decision-making rule is unrealistic for understanding fully the impact of ATIS [Advanced Traveller Information Systems] on travel behavior’ (p110).  Citing the work of Ben-Akiva et al. (1991), Polak and Jones (1993) and Mahmassani and Jayakrishman (1991), Hato et al. asserted that conceptual frameworks for analysing the effects of traffic information on driver behaviour should take explicit account of the process of information acquisition and use, and that the linkage between this process and observed driver behaviour should be considered.  Hato et al. proposed a route choice model that takes account of drivers’ behaviour in the acquisition and use of traffic information from multiple sources.  The model is verified using observed data on driver behaviour.

Jha et al. (1998) developed a Bayesian updating model to analyse the mechanism by which drivers update their travel time perceptions from one day to the next, on the basis of information from ATIS and previous experience.  This perception-updating model is incorporated in a model of route and departure time choice.  The framework takes explicit account of both the availability and perceived quality of information.  The uncertainty inherent in drivers’ travel time estimates is represented stochastically.

Mahmassani and Liu (1999) analysed the effects of ATIS on commuter route and departure time switching.  Data were taken from an experiment that used a dynamic interactive travel simulator to elicit user responses under real-time information.  In this experiment, commuters were able to determine their departure time and route at the origin and their path en-route at various decision nodes along their trip.  Mahmassani and Liu applied the data to a behavioural model, concluding that commuters’ route switching decisions are based on the expectation of a travel time improvement exceeding a given threshold, which varies systematically with the remaining travel time to the destination, subject to a minimum absolute improvement.

Ironically, the availability of information may increase the rationality of decision-making, implying that rational behaviour is a realistic decision-making paradigm.  That said, it is recognised that individuals may not necessarily comply with the information supplied by traveller information systems (e.g. van Berkum and van der Mede, 1999).  Srinivasan and Mahmassani (2000) examined route choice behaviour under real-time information as a consequence of two behavioural mechanisms: compliance and inertia.  The influence of each of these mechanisms on route choice is modelled by exploiting the user’s path choice structure (relating to the current choice prior to the decision of interest) and the information supplied by ATIS.  In each state, the behavioural mechanisms are incorporated through association of their utilities with path-specific utilities.  The nested choice structure that results is implemented by means of a MNP model.

Srinivasan and Mahmassani illustrated the framework using route choice data from dynamic interactive simulator experiments.  It is reported that the empirical results strongly support the simultaneous presence of both compliance and inertia mechanisms in route choice behaviour.  It is also reported that, in the context of these mechanisms, information quality, network loading and day-to-day evolution, level of service measures, and the prior experience of trip-makers are significant factors. 

9.0 MODELLING IN PRACTICE

The forecasting stage of SUE models has received considerable attention in the literature.  Unfortunately, the same cannot be said of the estimation stage.  Forecasting approaches typically assume that an appropriate behavioural model has already been estimated.  However, as the above discussion has indicated, the literature is yet to identify a stochastic loading model that is both based on theoretically-reasonable assumptions and can be estimated efficiently and robustly.  Consequently, in practical scheme assessments, DUE models are usually employed.  These models assume, perhaps unrealistically, that the population of drivers is homogenous in terms of choice preferences and constraints.  The differences between DUE and SUE may be particularly apparent when congestion is not the sole factor influencing route choice.  In such cases, DUE may forecast that all drivers on the same movement use the same single route, when a much greater dispersion over routes is actually observed.

The modelling of departure time choice has also attracted substantial interest in the literature.  However, as with route choice, the focus of the work has been on forecasting.  Again, the development of estimation methods has received little attention.  Typically, estimation is by-passed altogether.  Parameter values are simply extracted from historical studies, particularly those of Small (1982) or Hendrickson and Planck (1984), and models are applied to forecasting.

Although substantial research effort has been devoted to the development of new methods for modelling route and departure time choices, it might be argued that more fundamental gaps in knowledge exist.  One such gap is knowledge of the attribute-set relevant to route and departure time choices, and the appropriate representation of these attributes in choice utilities.  Ben-Akiva and Bierlaire (1999) suggested that travel time is perhaps the most important attribute influencing route choice, but recognised that difficulties exist in taking account of how individuals perceive travel time.  Others variables to include might be path length, travel cost, traffic conditions, obstacles, road types and road condition.  As regards departure time choice, Ben-Akiva and Bierlaire suggested that travel time is an important attribute.  Other relevant attributes might be early and late schedule delays and inertia effects.  Further research in this area is perhaps required.

10.0 CONCLUSIONS

This paper aims to highlight several important weaknesses in current modelling ‘best practice’.

1) Evidence shows that even during rush hour, traffic is not primarily composed of the same drivers making the same trips day after day.  By contrast, most modelling schemes seem to assume a uniform collection of the same drivers making the same trips every day, although it is far from clear if this assumption is merely a ‘best guess’ modelling approximation to the actuality.

2) While SUE attempts to account for the fact that not all drivers have the same perception of a network, it still works within the framework of a fixed pool of rational drivers minimising their perceived costs within a network where the costs are generally assumed to be some linear combination of time and distance.  On-street evidence seems to show that the costs perceived by users are more complex than this.

3) While small shifts in departure time choice are a major driver response to congestion, these are often overlooked in practical modelling, despite the fact that they can ‘absorb’ a lot of the worst impacts of congestion.  Given the interest in the phenomenon of peak spreading, there is a need for further work investigating and modelling the dynamics of drivers’ choices of route and departure time.

4) Route choices may be influenced by perceptions, inter-personal taste variations, imperfect knowledge, variations in network conditions, and influences on choice that are not explicitly represented in the generalised cost function.  As such, SUE models rather than UE models appear more appropriate for the modelling of these choices.  However, there is still much work to be done in developing stochastic loading models that achieve greater flexibility in the representation of alternatives and individuals whilst ensuring tractability.  ECL in particular offers an exciting potential for modelling route choices.

5) Further research is required to investigate the linkage between drivers’ choices of route and departure time, and implementing this relationship within the modelling framework.

6) The influence of traveller information systems on route and departure time choices has become an intensive research stream.  There is a need for further work investigating whether, and how, drivers respond to such information.  Again, the modelling implications need to be examined.  In particular, improvements in the availability and quality of information may imply that rational behaviour is a reasonable modelling assumption.

7) A fundamental criticism of the practical modelling of drivers’ choices of route and departure time is the lack of attention given to model estimation.  There is a need for the development of models that are based on theoretically-reasonable assumptions and can be estimated efficiently and robustly.
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� This paper is produced and circulated privately and does not constitute publication.  It may be subject to revision before publication.  


� Note that 60% is higher than the recurrence rates reported in York and Leeds but it is unclear whether this figure applies to all drivers or only to drivers who were observed on successive days.  The latter seems the most likely.
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