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Abstract

This paper describes a rigorous set-theoretic framework for analysing the result of surveys which take place over

multiple sites and where the surveyor needs to match surveyed items between more than two of those sites. In the

analysis of roadside survey data, it is often desirable to analyse matches between several data sets simultaneously.

For example, we might wish to answer questions of the general type “How many drivers are seen at point A, point

B and point C?” or “How many vehicles are seen on all five survey days?” This paper attempts to create a general

framework for the analysis of matching between data from more than two surveys. The framework is then applied

to the specific case of false matching in partial licence plate surveys (that is non-matches which are mistaken for

matches because only part of the licence plate is observed). It should be stressed throughout that the framework

outlined is applicable to any data series where matches are sought between two or more distinct data sets.
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1 Introduction

This paper describes a general framework for analysing problems in matching data across multiple data sets.

The method developed is useful for situations where analysis is to be performed on seveal data sets containing

information about unique individuals. The method answers questions of the type “How many unique individuals

appear in three or more of the five data sets?” and is particularly useful for addressing situations where false

matches are possible (that is, where two distinct individuals appear to be the same as a result of observational

error).

The problem originally arose during roadside traffic surveys when attempting to locate vehicles using their licence

plates at multiple survey sites across a city. It should be emphasised. however, that the framework is sufficiently

general that it could prove of use in any situation where it is important to track matches in data items across a

small number of different data sets. In the real life situation reported, the number of false matches could often be

a significant fraction of the number of matches recorded.

Using set theory, the problem has been placed in the context of lattices of the integer partition and a solution

algorithm has been developed. The algorithm answers problems of the type “How many individuals are genuinely

seen once each in every data set when the false matches have been excluded?” The algorithm has been implemented

in the C++ programming language and tested on simulated data sets. The test results strongly suggest that the

method does indeed provide an unbiased estimator for the true number of matches in the data although the variance

in the estimate can, unfortunately, be extremely high in some cases. The method has been tested and found useful

in removing false matches from real data although the variance on the estimate can be high.

In section 2 background to the problem is laid out within the context of transport engineering. In section 4 an

initial framework for discussing the problem is laid out. In section 4 the concept of a type of match is formalised

using set theory and the concept of equivalence class. In section 5 the set of all types of match across n sites, Mn

is introduced. In section 6 a partial ordering is induced on Mn and this is related to the problem of false matches.

In section 7 some functions for counting matches are introduced which, in section 8, to an algorithm for estimating

the number of false matches in data. Finally, in section 9 computational results are given for the performance of

the matching algorithm on simulated data.

1.1 A note about tuples

Throughout this paper the term n-tuple is used to describe an ordered set of n elements — somewhat akin to

an n-vector but not usually an element within a vector space. The tuples are ordered sets of general elements,

sometimes sets of other sets are used. The notation of making an n-tuple bold will be used and its individual

elements will be subscripted: x = (x1, . . . , xn).

2 Background And Context Of The Problem

The problem of tracking individual vehicles on a road network is a well-known and common problem in transport

surveys. Several approaches are used, for example GPS location (Jan et al. (2000); Quiroga et al. (2000)) or cell-
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phones and vehicle tags (Dixon and Rilett (2002)). However, a common method is the licence plate survey which

may be done either manually (using a roadside observer with a note pad or a dictaphone or specialist recording

equipment for the purpose) or automatically with roadside cameras (Williams et al. (1988)). In both manual and

automatic surveys the problem of errors in the recordings must be considered. Slavik (1985) and Schaefer (1988)

describe some of the difficulties with such surveys. Manual surveys are commonly partial plate surveys (for reasons

of time and convenience) and, in addition to the recording errors, the problem of accidental false matches between

different vehicles which have the same partial plate is an important one.

A number of researchers have approached the false matching problem for licence plates. Hauer (1979) provides

the earliest approach for removing false matches between observations at two sites. Maher (1985) describes several

methods for approaching the problem including a method for making two point matches between pairs selected from

a number of survey sites. Watling and Maher (1988) gives a graphical method which provides a good visualisation

of the problem. Watling and Maher (1992) describes a further refinement adding journey time information into

the mix. Watling (1994) provides a maximum likelihood estimator for the true matches based upon assumptions

about the statistical nature of the inbound traffic and Liu (2002) extends this method to three sites. However,

none of the authors tackles the general problem of removing false matches from matches across n sites.

More generally, a considerable amount of work has been done on “matching problems” in combinatorics — the

usual approach being graph theoretic with an edge between two nodes indicating a match. However, in the case

of matches across n data sets then the graph theoretic approach is inappropriate since the matches are not just

pairwise.

The framework developed in the next section considers problems of the type “How many individuals occur in three

of the five data sets?” or “How many individuals are genuinely seen in all five data sets being investigated once all

false matches are removed?”. The framework places the problem in the context of basic set theory Halmos (1970)

and shows how the problem maps onto the well-known mathematical topic, partitions of the natural numbers.

The motivating problem for this paper is a genuine one which arose in the course of road traffic research. The

problem arose when partial licence plate data was collected across a number of survey sites (the survey itself is

described in Clegg (2003)). In the survey undertaken, the researchers wished to know how many vehicles were seen

on all of six survey days. Because only partial plate surveys were conducted, false matches occurred. In extreme

cases, the number of matches attributed to false matching in data actually exceeded the number of genuine matches.

The problem is a surprisingly tricky one since false matches can occur in a huge number of ways. For example,

the same partial plate observed on all five weekdays could represent: a single vehicle identified on all five days;

five vehicles which by coincidence have the same partial plate, one observed on each day; one vehicle observed

on monday and a second vehicle observed on tuesday through until friday; one vehicle observed on monday and

tuesday, a second vehicle observed on wednesday and friday and a third vehicle observed only on thursday, and all

three having the same partial place; or any of a multiplicity of other ways false matches could occur. Indeed, it is

quickly clear that merely enumerating the ways in which a false match can occur is a tricky problem.
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2.1 Notes On Licence Plate Observation

Throughout this paper, examples will be given using licence plates with a specific format. An example plate would

be: A134SDR. This type of plate was used in the UK from 1983 up until mid 2001 Automobile Association (2003).

The specific details of the type of plate used are completely irrelevant to the methods developed within this paper,

however, chosing parts of a plate to survey for partial plate surveys and estimating the probability of two unique

plates matching is not straightforward due to correlations related to year and location identifiers on licence plates.

This topic is, however, not of general interest and is not covered here.

3 Setting For The Problem

Assume that there are n data sets (survey sites) and at each site i there exist a set of observations Si. Each

observation is a sighting of one from a set of identifiable, unique individuals Ω = {ω1, . . . , ωN} where N is the

number of individuals. The n-tuple of all n sites is denoted by S where S = (S1,S2, . . . ,Sn). It is assumed, initially,

that enough information will be recorded in an observation to distinguish between any two members of Ω — this

assumption will be relaxed later.

Definition 1. The observation function, f(ω) is a function acting on the members of Ω such that:

(i = j) ⇔ (f(ωi) = f(ωj)) .

In other words, the observation function is a function which uniquely identifies the objects observed. If the objects

are different then the result of the observation function is different.

In other words, the observation represented by the function is enough to uniquely determine the object observed

and distinguish it from all other such objects. It should be noted that the function f(ω) need not be real valued.

For example, if Ω represents the UK vehicle fleet then f(ω) could have as its range the set of all possible UK licence

plates. The members of the sets Si will be observations f(ω) with ω ∈ Ω. Therefore, for each site i:

Si = {f(ωj(1)), f(ωj(2)), . . . , f(ωj(N))}, (1)

where N is the number of observations at site i and ωj(k) ∈ Ω for all j(k). The j(k) are indices representing the

place of the observation in the set Ω.

A technicality which should be noted in passing is the possibility that some ωj is observed more than once in a set

of observations Si (in other words, an individual is observed twice at the same site). This would cause a problem

since, formally, a set cannot contain distinct members which are identical as would be the case if, j(k) = j(l) for

any k 6= l in equation (1). This problem will be made worse when the requirement that observations uniquely

determine individuals is dropped. To prevent this problem, the observations could be, for example, tagged with

a time of day or a suffix to denote the order in which the observation was made. This requirement is a pure

technicality and will not affect anything which follows nor will it be mentioned again.

Definition 2. An n-tuple of observations can be formed by taking one observation from each of the n sites in

order. That is:

x = (x1, . . . , xn),
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where xi ∈ Si.

To make this more concrete, consider the following three sets of observations:

S1 = {A123XYZ, B256ABC}

S2 = {A123XYZ, C232SAD, B256ABC}

S3 = {C789ABC, A123XYZ, A543OPQ}.

Three possible n-tuples of observations are:

x = (A123XYZ, A123XYZ, C789ABC) (2)

y = (A123XYZ, A123XYZ, A123XYZ) (3)

z = (B256ABC, B256ABC, A123XYZ). (4)

Definition 3. The set S is the set of all possible such n-tuples across the observations in the set of sites S. This

is given by the Cartesian product:

S = S1 × S2 × . . . × Sn =

n∏

i=1

Si.

It follows immediately that the number of possible n-tuples #S is given by
∏n

i=1 #Si.

4 Types Of Match

Consider the tuples, x, y and z as given by equations (2), (3) and (4). It is clear that in some sense that x and

z are in some sense the same type of tuple (they are observations of the same vehicle at sites one and two and a

different vehicle at site three). It is equally clear that x and y are in some sense a different type of tuple. This

concept of type of match is formalised by an equivalence relation.

Definition 4. Two n-tuples of observations x = (x1, . . . , xn) and y = (y1, . . . , yn) are the same type of match if

and only if x ∼ y where ∼ is the equivalence relation defined by:

(x ∼ y) if and only if (xi = xj) ⇔ (yi = yj) for all i, j ∈ 1, 2, . . . , n.

In other words, two n-tuples of observations are the same type of match if they match in the same places as each

other and differ in the same places. For example:

(1, 2, 2, 4) ∼ (5, 1, 1, 4),

and

(pear,pear, apple) ∼ (α, α, η),
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but

(◦, ◦, �, �) 6∼ (1, 2, 1, 2).

Note that, for simplicity, for the remainder of this paper, the limits i, j ∈ 1, 2, . . . , n on indices will usually be

omitted where, as in this case, they are obvious.

It must now be shown that Definition 4 is, in fact, an equivalence relation (reflexive, symmetric and transitive).

Reflexive: [x ∼ x] follows immediately since clearly (xi = xj) ⇔ (xi = xj).

Symmetric: [(x ∼ y) ⇒ (y ∼ x)] follows by assuming the converse. If x ∼ y and y 6∼ x then there exists some i

and j where yi = yj but xi 6= xj , a contradiction if x ∼ y.

Transitive: [x ∼ y and y ∼ z together imply x ∼ z] follows because if x ∼ y and y ∼ z for all i and j then xi = xj

implies yi = yj which in turn implies zi = zj . The same chain of reasoning means that zi = zj implies xi = xj and

therefore the relationship is transitive.

5 The Set Of All Types Of Match, Mn

An obvious next question to ask is “For n sites, how many types of match exist?” To answer this question, consider

the equivalence relation given by Definition 4 as a partition of the set of all possible n-tuples. A transversal is a

set containing one and only one representative for each partition. This transversal will be referred to as Mn and

by definition has the properties that no distinct members of Mn are equivalent under Definition 4 but any n-tuple

is equivalent to some member of Mn. The notation xM
n will be used to designate n-tuples which are members of

Mn.

Definition 5. An n-tuple xM
n = (x1, . . . , xn) ∈ Mn if and only if xi ∈ N and:

xi ∈





1 i = 1

xj for some j < i i > 1 or

1 + maxj<i(xj) i > 1

Theorem 1. The set Mn of all possible xM
n meeting the conditions of Definition 5 is a transversal of the set of

all possible n-tuples partitioned by the equivalence relation in Definition 4.

Proof. It is necessary to establish two things:

1. For any n-tuple x there exists some yM
n ∈ Mn such that x ∼ yM

n .

2. No two distinct elements of Mn are equivalent.

To prove the first part define a procedure to calculate yM
n from x = (x1, . . . ,xn) such that yM

n ∼ x. Such a

procedure is defined in Table 1.

This procedure will create some n-tuple yM
n given an n-tuple x. It remains to prove that yM

n ∈ Mn and yM
n ∼ x.

Since y1 = 1 and either yi = yj for some (j < i) or yi = maxj<i(yj) + 1 then, clearly yM
n ∈ Mn. It is also clear
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1. Set y1 = 1.

2. Set r to 2.

3. If xr = xi where (i < r) then yr = yi

4. Otherwise yr = maxi<r(yi) + 1

5. If r < n then increment r and go back to step 3.

Table 1: Procedure for forming yM
n ∈ Mn such that x ∼ yM

n .

that if the above procedure is followed x ∼ yM
n . From step three in the procedure it must always be true that

(xi = xj) ⇒ (yi = yj) and from step four then (xi 6= xj) ⇒ (yi 6= yj). Therefore (xi = xj) ⇔ (yi = yj) and so,

from Definition 4, x ∼ yM
n .

For the second part of the proof, it must be shown that no two distinct elements of Mn are equivalent. Or

alternatively, that if two elements of Mn are equivalent then they must also be equal. That is, for all xM
n ,yM

n ∈ Mn

then (xM
n ∼ yM

n ) ⇒ (xM
n = yM

n ).

If xM
n 6= yM

n then there must be some earliest element r of the n-tuples at which they differ. Therefore, define r

as the earliest element of xM
n such that xr 6= yr. Assume without loss of generality that xr < yr. By Definition 5,

either yr = yi for some i < r or yr = maxi<r(yi) + 1.

In the first case, yr = yi, however, xr 6= yr (by the definition of r) and therefore, since yi = xi and xr 6= xi by

Definition 4, xM
n 6∼ yM

n .

In the second case, yr = max(yi)+1. Since xr 6= yr, it is clear that there is some element xi with (i < r) such that

xr = xi but yr 6= yi and therefore xM
n 6∼ yM

n .

Therefore it has been proved that, if element r exists, the two classes are not equivalent. If there is no such element

r then obviously xi = yi for all i and xM
n = yM

n .

The procedure defined by Table 1 can be thought of as a map from the set of all possible n-tuples to the set Mn.

An example of this map in use is:

(◦,�, ◦, �, �) 7→ (1, 2, 1, 3, 3).

Thus it has been shown that Mn in Definition 5 is a transversal of the equivalence classes in definition 4 for all

n-tuples. Table 1 defines a procedure which will convert any n-tuple of observations x into yM
n ∈ Mn : x ∼ yM

n .

Definition 6. The matching class of an n-tuple x is the member of Mn to which it is equivalent. That is, the

matching class of an n-tuple x is yM
n ∈ Mn : x ∼ yM

n .

Definition 7. The height H(xM
n ) of an n-tuple xM

n ∈ Mn is the value of its maximal element:

H(xM
n ) = max(xi).
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Definition 8. A true match Mn(T ) is the member of Mn with height 1. That is, Mn(T ) = (1, 1, . . . , 1). This

represents an observation of the same individual at every one of n sites. A false match Mn(F) is the member of

Mn with height n. That is, Mn(F) = (1, 2, . . . , n). This represents an observation of n different individuals, one

each at every one of n sites.

5.1 Mapping Mn to the set of partitions of the first n integers

A partition of the first n integers is a set P of non-empty sets Yi (that is P = {Y1, . . . , Ym}) where each of the first

n integers is a member of one and only one of the sets Yi. Call the set of all possible such partitions of the first n

integers Pn.

Theorem 2. The set Mn has the same number of elements as the set Pn, the set of all possible partitions of the

first n integers.

This is proved in Appendix sec:mnproof.

It is well-known (see (van Lint and Wilson, 2001, pages 119–128)) that the number of members of Pn can be

counted using Bell Numbers and Stirling numbers of the second kind.

5.2 Bell Numbers and Stirling Numbers of the Second Kind (enumerating Mn)

Definition 9. Stirling numbers of the second kind are defined by the recursive relationship:

S(n, k) =





kS(n − 1, k) + S(n − 1, k − 1) n > 0 and 0 < k ≤ n

1 n = k = 0

0 otherwise.

Definition 10. The Bell numbers B(n) are given by:

B(n) =

n∑

k=1

S(n, k) for all n > 0.

Theorem 3. Given the definitions of S(n, k) and B(n) above:

1. The total number of members of Pn which are partitions into k sets is given by S(n, k).

2. The total number of members of Mn with height k is also given by S(n, k).

3. The total number of members of Pn (and therefore Mn) is given by the Bell number B(n).

Proof. The first part is proved in (van Lint and Wilson, 2001, page 125). The second part follows immediately

from the fact that a partition of the integers into k sets is mapped bijectively to a member of Mn with height k

using the map defined in Table 5. The third part follows from the fact that the Bell numbers are the sum over all

possible Stirling numbers for a given n and the already established fact that #Mn = #Pn.
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5.3 Constructing Mn computationally

Clearly M1 = {(1)}. To construct Mn+1 from Mn use the procedure in Table 2.

1. Define M = ∅ and X to be the set Mn

2. Set xM
n to be some element from X and remove that element from X.

3. From the n-tuple xM
n construct an (n + 1)-tuple by adding the integers from 1 to H(xM

n ) + 1 as

the n + 1th element of the (n + 1)-tuple. Add these tuples to the set M .

4. If any elements remain in X the go to step 2.

Mn+1 is the set M after this procedure completes.

Table 2: Constructing Mn+1 from Mn.

This is process is illustrated in Figure 1.

(1)

(1,1) (1,2)

(1,1,1) (1,1,2) (1,2,1) (1,2,2) (1,2,3)

(1,2,1,1) (1,2,1,2) (1,2,1,3)

M1

M2

M3

M4(partial)

Figure 1: Construction of Mn+1 from Mn.

6 Inducing a Partial Ordering on the Set Mn

A useful partial ordering can be induced on the set Mn as follows:

Definition 11. For two n-tuples xM
n ,yM

n ∈ Mn a partial ordering relation % can be defined by:

xM
n % yM

n if and only if (xi = xj) ⇒ (yi = yj).

To be a partial ordering, the relation must be reflexive, anti-symmetric and transitive and, again, these properties

are easily proved.

Refexive [xM
n % xM

n for all xM
n ∈ Mn]: This is trivially true since xi = xj ⇒ xi = xj .
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Anti-Symmetric [xM
n % yM

n and yM
n % xM

n together imply xM
n = yM

n for all xM
n ,yM

n ∈ Mn]: This trivially follows

since if both conditions together apply then (xi = xj) ⇔ (yi = yj) and hence xM
n ∼ yM

n from Definition 4. It has

already been shown that this implies xM
n = yM

n .

Transitive [xM
n % yM

n and yM
n % zMn together imply xM

n % zMn for all xM
n ,yM

n , zMn ∈ Mn]: This follows since, if

xi = xj implies yi = yj and yi = yj implies zi = zj then clearly xi = xj implies zi = zj .

Note that this definition is identical to the original equivalence relation in Definition 4 except that the implication

is only in one direction. Note also that this partial ordering applies only to members of the set Mn not to a general

n-tuple of observations. This is because the property of anti-symmetry would not hold for general n-tuples for

example (1, 2) % (α, β) and (α, β) % (1, 2) but (1, 2) 6= (α, β).

The symbol � will be used to mean strictly succeeds. That is x � y means x % y and x 6∼ y. The symbol �� will

be used to mean immediate successor that is, if x �� z then x � z but there is no y such that x � y � z. The

symbols ≺, - and ≺≺ will have their obvious meanings.

Lemma 1. If xM
n = (x1, . . . , xn) ∈ Mn then xM

m = (x1, . . . , xm) is a member of Mm for all 1 ≤ m ≤ n.

Proof. If Definition 5 holds for xi with 1 ≤ i ≤ n then clearly it holds for xi with 1 ≤ i ≤ n if m ≤ n. Therefore,

yM
m ∈ Mm.

This theorem can be thought of as stating that the n-tuple obtained by choosing only the first m members of a

matching class is itself a matching class. (Note that this is not the case if the last m members are chosen. For

example the last member of (1, 2) ∈ M2 is (2) which is not a member of M1).

Lemma 2. For all xM
n ,yM

n ∈ Mn, if xM
n % yM

n then xM
r % yM

r for all r ≤ n .

Proof. By Definition 11 then since (xi = xj) ⇒ (yi = yj) for all i, j < n this is also true for all i, j < r if r ≤ n by

the same reasoning as for the previous lemma.

6.1 A Consistent Enumeration For the Partial Ordering

Definition 12. A consistent enumeration of a partially ordered set S is a real valued function f(x) where x ∈ S

with the property that, for all x,y ∈ S then x � y implies f(x) > f(y).

Theorem 4. The function H(xM
n ) provides a consistent enumeration of Mn.

Corollary 1. If H(xM
n ) = H(yM

n ) then either xM
n = yM

n or xM
n ||yM

n , where the symbol || means non-comparable,

that is neither xM
n % yM

n nor yM
n % xM

n .

This theorem and its corollary are proved in Appendix B.
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6.2 The Hasse Diagram

A Hasse diagram is a way of visualising a partially ordered set. A Hasse diagram is constructed by plotting a

partially ordered set S graphically in such a way that for all x,y ∈ S if x ≺ y then x is further to the top of the

diagram than y. Further, if x �� y then an arrow is drawn from x to y.

Every Hasse diagram for Mn will have discrete levels defined by H(xM
n ) (since this has been shown to provide

a consistent enumeration) and will have singular upper and lower levels defined respectively by Mn(F) (the only

possible n-tuple in Mn with height n) and Mn(T ) (the only possible n-tuple in Mn with height 1). As an example,

the Hasse diagram for M4 is shown in Figure 2.

(1,2,3,4)

(1,1,2,3) (1,2,1,3) (1,2,3,1) (1,2,2,3) (1,2,3,2) (1,2,3,3)

(1,1,1,2) (1,1,2,2) (1,1,2,1) (1,2,1,2) (1,2,1,1) (1,2,2,1) (1,2,2,2)

(1,1,1,1)

H(xM
n ) = 4

H(xM
n ) = 3

H(xM
n ) = 2

H(xM
n ) = 1

Figure 2: Hasse diagram for M4.

6.3 Partial (or Censored) Observations Related To Partial Ordering

Definition 13. The censored observation function, C(x) is a function which acts on an n-tuple x = (x1, . . . , xn)

(this may be an n-tuple of observations or an n-tuple ∈ Mn) to produce an n-tuple y = (y1, . . . , yn) in such a way

that if y = C(x) then:

(xi = xj) ⇒ (yi = yj),

for all i and j.

The censored observation function is equivalent to the common sense notion of two or more observations of separate

individuals which may be confused and appear to be the same individual. An example of a censored observation

function would be correctly recording only part of a licence plate. By observing only part of the licence plate the

same vehicle can never be recorded differently but different vehicles may be recorded as being the same.

Theorem 5. The matching class of an n-tuple of censored observations - the n-tuple of the original observations.

That is, for an n-tuple of observations z:

(xM
n ∼ z and yM

n ∼ C(z)) ⇒ (yM
n - xM

n ).

Proof. This follows immediately from the fact that by Definition 4 then (zi = zj) ⇔ (xi = xj). By Definitions 4

and 13 (zi = zj) ⇒ (yi = yj). Therefore (xi = xj) ⇒ (yi = yj) which is exactly the condition for the relationship

xM
n % yM

n from Definition 11.
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7 The Exact and Relaxed Matching Functions

In this section the exact and relaxed matching functions are introduced and this is used to create an algebra of

matching.

Definition 14. The exact matching function X(yM
n ,x), where x is an n-tuple of observations and yM

n ∈ Mn, is

defined as:

X(yM
n ,x) =





1 if and only if x ∼ yM
n

0 otherwise.

This definition can be thought of as an indicator as to whether an observation is a equivalent to a particular

matching class. The definition naturally extends from a single n-tuple of observations to a set of n-tuples as shown.

Definition 15. The exact matching function X(yM
n ,Z), (where Z = {z1, . . . , zm}, all zi are n-tuples of observations

and yM
n ∈ Mn) is defined as:

X(yM
n ,Z) =

∑

z∈Z

X(yM
n , z).

In other words, the function counts the number of matches of type yM
n in the set of n-tuples Z.

When used on a set of n-tuples, the exact matching functions simply counts the number of matches in a set of

observations which belong to the given matching class. The relaxed matching function allows the observations to

belong to a matching class or any predecessor of that class.

Definition 16. The relaxed matching function R(yM
n ,x), where x is an n-tuple of observations and yM

n ∈ Mn is

defined as:

R(yM
n ,xM

n ) =





1 if and only if yM
n � xM

n

0 otherwise,

where xM
n ∈ Mn such that xM

n ∼ x.

As previously this definition can be extended to a set of n-tuples as shown below.

Definition 17. The relaxed matching function R(yM
n ,Z), (where Z = {z1, . . . , zm}, all zi are n-tuples of observa-

tions and yM
n ∈ Mn) is defined as:

R(yM
n ,Z) =

∑

z∈Z

R(yM
n , z).

In other words, the relaxed matching function counts the number of n-tuples equivalent to a class yM
n or any

successor class.

7.1 Some Proofs Relating To Exact and Relaxed Matches

It should be clear that the aim of the original problem (to find the number of genuine matches in a data set) is the

problem of evaluating X(Mn(T ),S) where S is the set of all possible n-tuples of observations from Defintion 3.

The problem is complicated by the fact that the observations S are not available and only the censored observations

C(S) are available to work with.
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Lemma 3. Given an n-tuple of observations x = (x1, . . . , xn) and a matching class yM
n = (y1, . . . , yn) ∈ Mn these

can be reordered without changing the values of the exact and relaxed matching functions. Swapping the elements i

and j in both, giving the n-tuple x′ = (x′
1, . . . , x

′
n) and the matching class y′M

n ∈ Mn such that y′M
n ∼ (y′

1, . . . , y
′
n)

(where x′
i = xj , x′

j = xi and x′
k = xk for all k 6= i, j and, in addition, y′

i = yj , y′
j = yi and y′

k = yk for all k 6= i, j)

does not change the value of the exact or relaxed matching functions. (Note that the n-tuple (y ′
1, . . . , y

′
n) is not

necessarily a member of Mn hence the ∼ sign not the = sign). That is:

X(yM
n ,x) = X(y′M

n ,x′),

and

R(yM
n ,x) = R(y′M

n ,x′).

Proof. Consider first the exact matching function. It is equal to 1 if and only if yM
n ∼ x which implies in turn

(yk = yl) ⇔ (xk = xl). It can be easily seen that if yi and yj are swapped and simultaneously xi and xj are

swapped then the truth (or otherwise) of this condition remains unchanged. Thus the lemma is proved for the

exact matching function. The argument for the relaxed matching function is exactly the same but the imlication

is in one direction only since the relaxed matching function is 1 if and only if (yk = yl) ⇒ (xk = xl).

It should be noted that this lemma also applies to the relaxed and exact matching functions operating on sets of

n-tuples when each n-tuple in the set is reordered in the manner described in the lemma.

Lemma 4. Given a set of n-tuples of observations Z = {z1, . . . zm} and a matching class xM
n ∈ Mn then:

X(xM
n ,Z) = R(xM

n ,Z) −
∑

yM
n

X(yM
n ,Z),

where the sum is over those elements yM
n ∈ Mn such that yM

n ≺ xM
n .

Proof. Rewrite the equation as:
∑

z∈Z

∑

yM
n

X(xM
n , z) =

∑

z∈Z

R(xM
n , z),

where, again, the inner sum on the left-hand side is over all elements yM
n ∈ Mn such that yM

n - xM
n .

Therefore it is sufficient to prove that for all possible n-tuples z:

R(xM
n , z) =

∑

yM
n

X(yM
n , z), (5)

where yM
n ∈ Mn such that yM

n - xM
n .

Two cases are possible — either R(xM
n , z) equals zero or it equals one.

Case 1: R(xM
n , z) = 0.

In this case by Definitions 16 and 14 X(yM
n , z) = 0 for all yM

n - xM
n . Thus

∑
yM

n

X(yM
n , z) must equal zero and

equation (5) is true.

Case 2: R(xM
n , z) = 1.

By Definition 16 there exists yM
n ∼ z such that yM

n ∈ Mn and yM
n - xM

n (note that by the definition of Mn

there can be only one such yM
n ∼ z). Thus

∑
yM

n

X(yM
n , z) = 1 where the sum is over all yM

n ∈ Mn such that

yM
n - xM

n and therefore equation (5) holds and the lemma is proved.
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It is worth noting a trivial corollory of this:

Corollary 2. For all n-tuples x,

R(Mn(T ),x) = X(Mn(T ),x)

Proof. This follows since there are no yM
n ∈ Mn such that yM

n ≺ Mn(T ). This follows since H(Mn(T )) = 1 from

Theorem 4 and Corollary 1. Therefore, in the previous lemma, the term
∑

yM
n

X(yM
n ,X) = 0.

To procede with the theory two definitions are necessary which will be used in the next lemma.

Definition 18. Define X(xM
n , i) as the tuple of indices within xM

n which have the value i ordered in increasing

value. That is:

X(xM
n , i) = (s(1), s(2), . . . , s(m))

where the s(j) are those elements of xM
n such that xs(j) = i ordered such that s(j) < s(k) if j < k and, obviously,

m is the number of such elements.

An example of this definition in use may help. If xM
n = (1, 2, 1, 1, 3, 2) then X(xM

n , 1) = (1, 3, 4) (since the first,

third and fourth elements of xM
n are equal to one). X(xM

n , 2) = (2, 6) and X(xM
n , 3) = (5).

Definition 19. Define S(xM
n , i) as a set of tuples of observations, derived from S (the set of all possible n-tuples

of observations made over the n sites in S = (S1, . . .Sn) as given in Definition 3) which is given by the Cartesian

product;

S(xM
n , i) =

∏

X(xM
n

,i)

Si,

where X(xM
n , i) = (s(1), s(2), . . . ) is as given in Definition 18.

In other words, S(xM
n , i) is the set of all possible tuples of observations in those sites picked out by X(xM

n , i). The

tuple X(xM
n , i) picks out a selection of sites which have a given index for a given matching class xM

n and the set

of observations S(xM
n , i) is the set of all possible tuples of observations made at those sites.

Lemma 5. Given a set S of all possible n-tuples from a set of observations made over n sites (as defined in

Definition 3), the number of relaxed matches of class xM
n ∈ Mn in S is given by:

R(xM
n ,S) =

h∏

i=1

X(Mm(i)(T ),S(xM
n , i)),

where h = H(xM
n ), m(i) = #S(xM

n , i) and S(xM
n , i) is given by Definition 19.

Proof. Firstly, from Lemma 7.1, the value of R(xM
n ,S) is unchanged if xM

n and S are reordered in the same way.

Therefore, assume, without loss of generality that xM
n is ordered such that xi ≤ xj for all i < j and S has been

reordered in the same way. By this property, the tuples in S(xM
n , i) must be made from elements which were

adjacent in the original n-tuples in S. Define S(i) such that S(i) ⊆ S(xM
n , i) and S(i) consists of those elements of

x ∈ S(xM
n , i) such that x ∼ Mm(i)(T ). Clearly, because of the way these tuples were chosen then:

X(Mm(i)(T ),S(xM
n , i)) = #S(i).
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Consider the set of n-tuples Y formed by the Cartesian product of S(i):

Y =

h∏

i=1

S(i).

An n-tuple y ∈ Y must have the property that (xi = xj) ⇒ (yi = yj). This follows since, xi = xj is only the case

for those elements of y which were taken from some S(k) as defined above and the elements of S(k) were chosen to

be ∼ Mm(k)(T ) and therefore must be equal. Therefore every n-tuple y ∈ Y is an n-tuple where R(xM
n ,y) = 1.

Since Y is formed from the Cartesian product then it must contain all such n-tuples. Therefore:

R(xM
n ,S) = #Y = #

h∏

i=1

S(i) =
h∏

i=1

#S(i) =
h∏

i=1

X(Mm(i)(T ),S(xM
n , i)),

and thus the lemma is proved.

It is worth noting a trivial corollary of this.

Corollary 3.

R(Mn(F),S) =
n∏

i=1

#Si,

or, in other words, the number of relaxed matches against the false matching class in a set of observations is simply

the number of observations.

Proof. This follows from the fact that, for Mn(F) then Y(Mn(F), i) are all the single elements Y(Mn(F), 1) = (1),

Y(Mn(F), 2) = (2) and so on. Obviously, for just a single site, then M1 = 1 and all observations much be a

member of this set. So X(Mm(i)(T ),S(xM
n , i)) = #Si and the corollary then follows from the lemma.

Definition 20. For a given censoring function C(x) the probability p(n) is defined for n ≥ 1 as:

p(n) = P (C(x) ∼ Mn(T )|x ∼ Mn(F)),

for an n-tuple of observations x = (x1, . . . , xn) where x is chosen in such a way that xi = f(ωj(i)) and the j(i) are

chosen from the same distribution as the genuine observations in the real data S.

Note that it is implicit in this is the assumption that the distribution of the individuals is not dependent on the

site chosen. (Or at least that the probability p(n) does not depend on the particular sites chosen from a subset of

sites). This is a reasonable assumption for the particular problem chosen (that of vehicle licence plates). Note also

that by this definition then p(1) = 1 — this follows from the fact that M1(T ) = M1(F).

Lemma 6. For a given censoring function C(x) and some n-tuple of observations x then:

P (C(x) ∼ Mn(T )) = p(h),

where h = H(yM
n ) and yM

n ∈ Mn such that yM
n ∼ x and x is randomly chosen in the same manner as in Definition

20. That is, the probability, that after censoring, a set of observations appears to be a true match is p(h).

Proof. Since x has h distinct elements then some h-tuple z can be formed by choosing elements from x such that

z ∼ Mh(F). From Definition 20 then P (C(z) ∼ Mh(T )) = p(h). If C(z) ∼ Mh(T ) then C(x) ∼ Mn(T ) and

therefore P (C(x) ∼ Mn(T )) = P (C(z) ∼ Mh(T )) and thus the lemma is proved.
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Lemma 7. For a set of n-tuples of observations Z with a censoring function C(Z) then an unbiased estimator for

the number of true matches in the set of observations can be given by:

̂X(Mn(T ),Z) = X(Mn(T ), C(Z)) −
∑

xM
n

X(xM
n ,Z)p(h),

where h = H(xM
n ) and the sum is over xM

n ∈ Mn such that xM
n 6= Mn(T ).

Proof. Firstly define Y(xM
n ) as the set of all those z ∈ Z such that C(z) ∼ Mn(T ) and z ∼ xM

n . For a given

z ∼ xM
n then P (z ∈ Y(xM

n )) = p(h) by Lemma 6. The number of elements z ∼ xM
n is given by X(xM

n ,Z). It

therefore follows that:

̂#(Y(xM
n )) = X(xM

n ,Z)p(h). (6)

is an unbiased estimator.

X(Mn(T ), C(Z)) =
∑

xM
n

#Y(xM
n ),

where the sum is over all xM
n ∈ Mn.

X(Mn(T ), C(Z)) = #Y(Mn(T )) +
∑

xM
n

#Y(xM
n )

= X(Mn(T ),Z) +
∑

xM
n

#Y(xM
n )

X(Mn(T ),Z) = X(Mn(T ), C(Z)) −
∑

xM
n

#Y(xM
n )

where the sum is over xM
n ∈ Mn such that xM

n 6= Mn(T ). The estimator (6) substituted into this equation

completes the lemma. Because the estimator is a sum of unbiased estimators then ̂X(Mn(T ),Z) is itself unbiased.

7.2 Estimating p(n) in real data

It may be thought that estimating p(n) (Definition 20) is a major problem. It seems to require knowledge of the

distribution of the uncensored observations. A number of strategies for estimating p(n) are possible. The best

strategy will depend on the particular nature of the problem under study. For the case of partial licence plate

observations two sensible strategies are available.

The first strategy is to estimate the value of p(n) from knowledge of the distribution of the licence plates themselves.

Studies of UK plates in the form ABC123X where X is a year letter show that the digits have an approximately

flat distribution, the year letter exhibits a complex distribution which depends on vehicle sales in that year and

the rate at which old vehicles retire from service and the initial letters exhibit a distribution which depends upon

where the car was purchased. The probability that two randomly chosen different vehicles have the same digits in

their plate is approximately 1
1000 . The probability of two randomly chosen vehicles having the same year letter can

be estimated as
∑

x∈A f(x)2 where A is the set of all year letters and f(x) is the fraction of surveyed vehicles with

the given year letter. Therefore the probability of two partial plates matching can be estimated as:

p̂(2) =
1

1000

∑

x∈A

f(x)2.
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Values of p(n) for n > 2 can be estimated with similar assumptions.

The second strategy is based upon analysing the data recorded. Often there are two survey sites where it is known

that all the vehicles must be different — for example, two sites that are fifty minutes drive apart in a half hour

survey. Any matches between these two sites must be false matches. From this then an estimator for p(2) is given

by:

p̂(2) =
T

N1N2
.

where T is the total number of matches and N1, N2 are the number of observations at the first and second survey

sites. Values of p(n) for n > 2 can be estimated with similar assumptions if there are n widely separated survey

sites. Alternatively, the values of p(2) and p(3) could be used to estimate the higher order probabilities.

It is important to note that a good estimate for p(n) particularly for n = 2 and n = 3 is extremely important to

the estimates made by this method.

8 An Algorithm For Estimating False Matches

It is not immediately obvious, but from the above Lemmas 4, 5 and 7 a procedure can be created to estimate

X(Mn(T ),S) — the number of true matches in a set of observations over the set of sites S. This was the original

aim of the false match problem in licence plate data.

Lemma 5 allows estimation of X(Mn(T ),S) from X(Mn(T ), C(S)) (which can be measured directly since it is

measured on the censored data) and X(xM
n ,S) if it is known for all xM

n ∈ Mn : xM
n ≺ Mn(T ). Thus the number

of true matches can be estimated from the number of exact matches in all other matching classes.

From Lemma 4 these matches can be calculated exactly if the number of relaxed matches R(xM
n ,S) is known and

also the number of exact matches in all successor matching classes is known.

From Lemma 5 the number of relaxed matches of a particular type can be calculated if the number of exact true

matches in a subset of sites is known. The value of R(Mn(F),S) is given by corollary 3. From corollary 2, then

R(Mn(T ),S) = X(Mn(T ),S), which is the quantity desired. For all other values of xM
n , Lemma 5 allows the

calculation of R(xM
n ,S) in terms of X(Mm(T ),S(xM

n , i)) where m < n and S(xM
n , i) is, from Defintion 19, a set

of tuples defined over some subset of the original sites. Thus the problem has been reduced to a sub problem of

calculating the number of true matches in a subset of sites. This procedure can be followed recursively until the

number of sites is 1 when the problem becomes trivial — with one site, X(M1(T ),S) = X(M1(F),S) = #S.

Therefore, if p(n) can be estimated, the problem of estimating X(Mn(T ),S) is solved by the procedure defined in

Table 3.

9 Simulation Results

The procedure developed in the previous section has been implemented in C++ and tried both on real data (from

roadside surveys) and on simulated data. The simulated data is also presented as if it were a roadside survey.

Results on the real data are not presented here since it is impossible to know the correct answer for this data.
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1. Calculate from the data, X(Mn(T ), C(S))) for all n sites — this is simply a matter of totalling

the true matches in the censored data.

2. Use a computer to expand Lemmas 4, 5 and 7 to give an expression which estimates

X(Mn(T ),S) as shown above.

3. Again using a computer, gather all the terms which are X(Mn(T ),S) on the left hand side —

these terms will all be functions of p(k) where 1 < k ≤ n.

4. Steps 1 to 3 produce an equation for X(Mn(T ),S) in terms of p(k), R(Mn(F),S) (given by

Corollary 3) and X(Mm(T ),S(xM
n , i)) where m < n and S(xM

n , i) is the set of tuples of

observations over some subset of sites.

5. For each of the terms X(Mm(T ),S(xM
n , i)) then if m = 1 the answer is trivial. If m > 1 then

use this whole procedure from step 1 with n = m and S = S(xM
n , i).

Table 3: Algorithm for correcting false matches.

Table 9 shows simulation results for between two and six observation sites. The table is to be interpreted as follows.

Num. Veh. refers to the total number of observations at each of the sites (in these simulations, there are the same

number of vehicles in each data set). The five columns of the form 1 – n refer to the number of vehicles which

genuinely went from site one to site n visiting all sites in between. If this column is blank it means that there was

no site n. For example, if 1 – 2 = 100, 1 – 3 = 200 and 1 – 4 is blank. This means that 100 vehicles travelled

between site one and site two, 200 vehicles travelled between sites one, two and three and there were only three

sites. Note that these are cumulative so that if 1 – 2 = 20 and 1 – 3 = 10 this means that 30 vehicles in total went

from site one to site two and 10 of them continued to site three. Thus the first experiment is two sites, 1000 vehicles

at each for which there were ten vehicles which were genuinely seen at both sites. Note that in every experiment,

the number of different vehicle types was set at 10, 000 with a flat distribution (equal numbers of vehicles seen at

each site). It should be clear that the desired answer from the correction process is the rightmost figure in these

columns.

Each experiment is repeated twenty times with simulated data being generated anew each time. The correction

process has no random element and will always give the same result for the same data. The mean raw number of

matches is given — this is the total number of n-vector which were seen to have the same value for each observation

at every site (averaged over the twenty simulation runs). Note that, because of the combinatorial nature of the

procedure, this could, in principle, be much larger than the number of vehicles in any of the data sets (since it

counts any n-vector). The sample standard deviation (σ) is given for the raw matches. The mean estimated correct

number of matches is then given (again averaged over the twenty simulations). The sample standard deviation σ

is then given for the ten corrected matches. It is clear that the most important test is that the mean corrected

number of matches is as near to correct as possible. However, it should also be kept in mind that in reality, a

researcher could only run the matching procedure once on any given set of data — so it is also important that
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No. 1 – 2 1 – 3 1 – 4 1 – 5 1 – 6 Av. Raw σ Raw Av. Cor. σ Cor.

Veh. Matches Matches Matches Matches

1000 10 111.4 8.5 11.4 8.5

2000 10 411.8 19.5 11.8 19.5

1000 100 199.2 12.0 99.2 12.0

1000 200 302.3 7.7 202.3 7.7

1000 500 596.6 12.3 496.7 12.3

1000 0 10 21.9 4.6 9.3 3.3

1000 500 10 73.8 7.5 10.2 6.2

1000 100 100 152.1 8.5 101.9 7.5

1000 500 250 388.3 22.7 253.2 20.1

1000 0 500 667.2 24.9 506.0 22.3

1000 0 0 100 154.6 26.6 104.0 22.6

1000 100 100 100 164.4 11.4 97.7 9.3

500 100 100 100 140.7 19.3 105.8 17.4

1000 500 250 100 207.8 29.7 106.1 23.7

500 10 10 10 10 14.2 2.2 10.5 1.8

1000 10 10 10 10 17.4 4.1 9.4 2.8

500 50 50 50 50 71.3 14.3 47.8 12.3

500 100 100 100 100 151.9 26.9 92.0 22.3

1000 0 0 0 100 177.6 29.9 103.4 22.6

1000 100 100 100 100 222.2 61.5 111.0 46.7

1000 0 0 0 0 10 21.2 13.4 12.3 9.9

500 0 0 0 0 100 152.6 45.5 92.2 37.3

1000 0 0 0 0 100 214.6 58.0 103.5 40.2

1000 100 100 100 100 100 289.8 88.4 101.3 55.0

Table 4: Simulation results — all performed over twenty runs with 10,000 distinct vehicle types.

σ is as low as possible. A significant improvement to the method would be to estimate the variance as well as

producing an estimate then the researcher could have some idea as to the likely accuracy of the corrected results.

It should also be noted that in every experiment, the chances of any given two vehicles being a false match is 1 in

10, 000 with a flat distribution (so the chance of three distinct vehicles having the same partial plate is the square

of this). In fact this is an extremely pessimistic assumption since four digits of a licence plate would be the least

that a partial plate survey was likely to capture (in the UK, one letter and three digits is the most common). A

significant weakness of the method is that it requires a good estimate for p(n). (In fact, it is mainly significant for

lower values of n with p(2) being the most important).

The first five rows are all results on just two test sites. This procedure is not the ideal one to use for estimates on

matches between just two sites and the work of other authors in the field should be used in such a circumstance.

However, these results are included here for completeness. In the two site case, the average corrected matches is
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simple obtained by subtracting n2/10000 from the raw matches (where n is the number of vehicles at each site)

— to take an example, in the first experiment, the average number of raw matches over the ten runs is 111.4. The

average number of corrected matches is 100 less than this (11.4). This is close to the correct answer of 10. However,

it should be noticed that the σ is high in comparison to the actual answer. In this case, the σ is 8.5 which is of the

same order of magnitude as the answer. This is to be expected since we are looking for only 10 true matches in

over 110 observed matches. If we increase the number of vehicles to 2000 then, as would be expected, the number

of false matches goes up (to approximately 400) and the σ also rises (to almost 20).

The next five rows of results are all over three sites. In the first of these, 10 vehicles travel between all three and

all other matches are coincidence. 1000 vehicles are observed at all sites. The mean corrected match across all

sites 9.3 is close to the actual answer of 10 and the σ is lower than in the two site case. However, when the same

experiment is run with 500 vehicles travelling from sites one to two in addition to 10 vehicles travelling from sites

two to three, the σ increases markedly (it almost doubles). In all cases with three sites, the mean is a good estimate

and the σ is generally low enough that a good estimate can be expected.

The next four rows of results are for experiments made over four sites. The first experiment has 100 vehicles which

visit all four. The mean corrected match is 104 (very close) and the σ is only 22. It is hard to explain why this

σ actually falls in the next experiment when more vehicles are genuinely seen in common between the other sites.

This fall in σ is puzzling. In all cases the mean of the predictions is approximately correct (the worst performance

being in the case of the fourth experiment when the mean was 106 not 100).

The next six rows of results are experiments made over five sites. Again, the mean corrected results are ap-

proximately correct. However, in the worst case, the mean is 11 too high and the σ in the result is 46.7 which

is comparable to the level of the effect being observed. In this case approximately 120 false matches are being

removed each time. However, previous experiments have been able to correct for a greater proportion of false

matches with less σ in the result.

The final four rows of results are experiments over six sites. This was the largest number of sites for which it was

practical to do runs of twenty or more simulations with the computer power available. Again, the mean corrected

estimate of matches was nearly correct in all cases. The worst performance was an estimate of 92.2 (correct result

100). The σ was, however, relatively high. This was a surprise in some cases — particularly the first row of results

where the mean number of false matches was only 21.2. In many senses, the worst results was the final one where

a σ of 55.0 was given on an corrected prediction of only 101.3.

The time taken to do one run over six sites with one thousand pieces of data on each site was thirty seconds on a

Celeron 366 computer running Debian Linux. It is practical (if time consuming) to do experiments on seven sites,

even using such comparatively obsolete equipment. However, eight sites or more is probably too computationally

expensive for the moment and this is a limitation of the method outlined.

9.1 Summary of Results

The results given here are certainly consistent with the idea that the method gives an unbiased estimator for the

true number of matches. In some experiments, there were problems with the standard deviation being higher than
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would be desirable in real cases. It is important to bear in mind that these were relatively extreme tests of the

method since p(2) and p(3) were relatively low and the number of samples given were quite high. Often the method

was attempting to predict only ten true matches in a number of observed matches which might be several hundred.

A Proving that Mn has the same number of members as Pn

To complete this proof some subsidiary propositions must first be proved.

Definition 21. An injection from a set A to a set B is a function such that:

1. f(a) ∈ B for all a ∈ A.

2. (f(a) = f(a′)) ⇒ (a = a′) for all a, a′ ∈ A.

Definition 22. A bijection is an injection where, for every b ∈ B, there exists a ∈ A such that f(a) = b. A

bijection is also sometimes referred to as two sets being in one-to-one correspondance.

If a function can be found which is a bijection from A to B then the two sets must have the same number of

members (#A = #B).

Take an n-tuple xM
n = (x1, . . . , xn) ∈ Mn.

1. Set j = 1.

2. Define Yj = {y1, . . . , ym} where the yi are all the integers from 1 to n such that xyi
= j. (That

is, Yj is the set of indices of elements in xM
n for which the elements with those indices have the

value j.)

3. Increment j and, if j ≤ H(xM
n ), then go to step 2.

The set P, given by:

P = {Y1, Y2, . . . , YH(xM
n

)},

is a partition of the first n integers.

Table 5: Procedure for mapping from xM
n ∈ Mn to P ∈ Pn.

Proposition 1. If it can be shown that Table 5 defines a injective map Mn 7→ Pn.

Proof. It must be shown that if xM
n = (x1, . . . , xn) ∈ Mn and xM

n 7→ P using the above procedure then P ∈ Pn.

This follows immediately from the fact that during step 2, every integer from 1 to n must be placed in one and only

one of Yj above since every xi must take a value in the range 1 to H(xM
n ) and j takes values from 1 to H(xM

n ).

Thus Table 5 is a map from Mn 7→ Pn.

21



Secondly it must be shown that if xM
n 7→ P and yM

n 7→ P (where xM
n ,yM

n ∈ Mn) then xM
n = yM

n . Assume to the

contrary, that xM
n 6= yM

n and define r as the smallest integer such that xr 6= yr. Clearly r > 1 since by Definition

5, then x1 = y1 = 1. Now, assume without loss of generality that xr > yr. Therefore, there must be some previous

element yi of yM
n such that yi = yr where (i < r). If this were not the case then yr = maxj<r(yj) + 1 and xr can

be no bigger than this since the largest value xr can have is xr = maxj<r(xj) + 1 which is equal to maxj<r(yj) + 1

since, by the definition of r, xj = yj for all j < r. Since yi = yr and yr 6= xr then xi 6= xr. However, by step 2, if

yi = yr then they must be in the same set Y ∈ P but if xi 6= xr then they cannot be in the same set Y ∈ P . This

is a contradiction and thus the assumption must be false and xM
n = yM

n . Therefore, the map is an injection.

An example of the map from Table 5 in use is:

(x, x, y, x) 7→ {{1, 2, 4}, {3}}.

Begin with a set P ∈ Pn.

1. Create the set P ′ = {Y1, . . . , Ym} which is a copy of P. Create an n-tuple x.

2. Define k = 1.

3. Let X be the set Yi in P ′ which contains the smallest integer. Remove the set Yi from P ′.

4. For all xi : i ∈ X set xi = k.

5. Add one to k and if P ′ 6= ∅ then go to step 3.

When this procedure is finished, x = (x1, . . . , xn) ∈ Mn.

Table 6: Procedure for mapping from P ∈ Pn to xM
n ∈ Mn.

Proposition 2. The procedure shown in Table 6 defines an injection from Pn to Mn.

Proof. Begin with the assumption that some set P = {Y1, . . . , Ym} ∈ Pn (where m is the number of sets into which

the integers have been partitioned) is mapped via this function to some n-tuple x.

First it is necessary to show that for all P ∈ Pn then the resultant x is a member of Mn. Since all integers from

1 to n are part of some Yl ∈ P then each element xi must be set at step 4 on some iteration of the procedure.

By the same token, no element xi will be set twice in step 4 since each number can only be in one of the sets Yl.

Consider the definition of the members of Mn given in Definition 5. It is clear that x1 = 1 since, at step 4, when

k = 1 then 1 is the lowest number from 1 to n in any of the Yl and so x1 = 1. It must be proved that for i > 1

either xi = xj for some j < i or xi = maxj<i(xj) + 1. Assume the contrary for some xi and further assume that i

is the smallest such i for which this is the case.

It is clear that xi ≥ 1 since in the procedure k begins at 1 and counts upwards and it has already been shown

that all the xi were set equal to some positive integer k at stage 4 on some iteration of the procedure. Therefore
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xi > maxj<i(xj)+1. This implies that there exists no xj < xi such that xj = xi−1. When stage 4 of the procedure

was reached with k = xi − 1 then there must have been some non-empty set Yl remaining in P ′n. Furthermore, Yl

was chosen to be the set which has the smallest integer in it. It follows that in step 4 some xj (where j < i) must

have been set to xi − 1 which is a contradiction. Therefore it has been shown that P 7→ xM
n ∈ Mn.

It remains to be shown that for PA ∈ Pn and PB ∈ Pn, if PA 7→ xM
n and PB 7→ xM

n then PA = PB . This follows

almost immediately from noting that if two numbers are part of the same set Yi in PA then they are the indices

of equal elements in xM
n and must therefore be in the same set in PB . If two sets are part of different sets Yi and

Yj in PA then they are the indices of unequal elements in xM
n and therefore must be part of different sets in PB .

It therefore follows that PA = PB .

Since there is an injective map Pn 7→ Mn then #Pn ≤ #Mn. Similarly, since there is an injective map Mn 7→ Pn

then #Mn ≤ #Pn.

Therefore there are as many members in Mn as there are in Pn (#Mn = #Pn) the maps defined in Tables 5 and

6 are both bijections and theorem 2 is proved.

B Proofs related to the height function

This appendix proves Theorem thm:consistenum.

Proof. The theorem is proved if, for all xM
n ,yM

n ∈ Mn, then xM
n % yM

n implies either H(xM
n ) > H(yM

n ) or

xM
n = yM

n .

Consider constructing xM
n and yM

n by stages — that is, starting with a 1-tuple and adding an element onto the

end to construct a 2-tuple and so on until an n-tuple is completed. Call the rth stage of construction xM
r and yM

r

respectively. At the first stage of construction: xM
1 = yM

1 = (1) and the heights of both are one by definition. The

proof proceeds by induction considering the construction of stage r of xM
r by adding xr to the end of xM

r−1. There

are three possibilities.

Case 1: xr = xi for some i < r. By Definition 11 xr = xi ⇒ yr = yi and, if xM
r−1 = yM

r−1 then xM
r = yM

r . If

H(xM
r−1) ≥ H(yM

r−1) then H(xM
r ) ≥ H(yM

r ) (since the height of neither change) and if H(xM
r−1) > H(yM

r−1) then

H(xM
r ) > H(yM

r ).

Case 2: xr = maxi<r xi + 1 and yr = maxi<r yi + 1. In this case, trivially, if xM
r−1 = yM

r−1 then xM
r = yM

r . If

H(xM
r−1) ≥ H(yM

r−1) then H(xM
r ) ≥ H(yM

r ) (since the heights of both increase by one) and if H(xM
r−1) > H(yM

r−1)

then H(xM
r ) > H(yM

r ).

Case 3: xr = maxi<r xi+1 and yr = yj for some j < r. In this case, if H(xM
r−1) ≥ H(yM

r−1) then H(xM
r ) > H(yM

r ).

Consider constucting xM
n and yM

n by stages. If only cases 1 and 2 occur then xM
n = yM

n . If case 3 occurs at any

stage of construction then H(xM
n ) > H(yM

n ).

An obvious corollary to this (as stated earlier in the paper) is:
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Corollary 4. If H(xM
n ) = H(yM

n ) then either xM
n = yM

n or xM
n ||yM

n , where the symbol || means non-comparable,

that is neither xM
n % yM

n nor yM
n % xM

n .

Proof. The proof follows immediately from the construction in the proof of the previous theorem showing that if

H(xM
n ) = H(yM

n ) and xM
n % yM

n then xM
n = yM

n . By the same reasoning, if H(xM
n ) = H(yM

n ) and yM
n % xM

n

then xM
n = yM

n . Therefore, if H(xM
n ) = H(yM

n ) then either xM
n ||yM

n or xM
n = yM

n .
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