
The Statistics of Dynamic Networks

Richard G. Clegg

A Thesis Submitted for the Degree of Ph.D.

University of York

Department of Mathematics

June 2004



Abstract

This thesis describes describes a small number of problems arising from

the applied study of networks in various contexts. The work can be split into

two main areas: telecommunications networks (particularly the Internet) and

road networks.

In the area of telecom networks, this research focuses on current math-

ematical developments concerning long-range dependence (LRD). LRD is a

statistical phenomenon describing correlations in time series. A large body

of research has found LRD is present in measurements of data traffic on the

Internet. A novel model for generating LRD is developed based upon Markov

Modulated Processes. This technique has considerable advantages over a num-

ber of other methods currently used in the area.

In the area of road traffic, this work concerns the phenomenon known

as driver route choice (how drivers pick their routes through a road network

as day-follows-day). A survey is made of the current research in this area

focussing on on-street studies and how theory (mainly equilibrium modelling)

translates into practice. In analysing data related to driver route choice it

became necessary to develop a technique for matching data across multiple

survey sites. This novel mathematical technique uses set theory to investigate

the “false match” problem in survey data. Finally, a large on-street survey is

analysed statistically for insights into driver behaviour in response to a change

in a network.
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Introduction

This thesis describes mathematical investigations of the statistical prop-

erties of dynamic networks. Two different types of networks are discussed:

telecommunications networks (in this case, the Internet) and road networks.

In the case of telecoms networks, the problem area studied is the statisti-

cal phenomenon known as long-range dependence (LRD). In the case of road

networks a large data set is investigated for its effects on driver behaviour.

Chapter 1 discusses the theoretical background to LRD in Internet traffic.

The topic is introduced with a brief summary of the various definitions of

LRD which are in use. The Hurst parameter (a common measure of LRD) is

introduced and related to these definitions. Recent research on LRD in the

Internet is reviewed and techniques for measuring the Hurst parameter are

discussed.

Chapter 2 introduces a new Markov model to generate LRD. This model is

attractive in that it is extremely simple and can generate a binary time series

with a known mean and Hurst parameter. In addition, some useful results are

proved about the autocorrelation function of time series which take only two

values. The Markov model is used as part of a simple simulation of Internet

traffic. This model shows the effects of LRD on the performance of a simulated

network.

Chapter 3 provides an introduction to route choice in road traffic networks.

The chapter begins with a review of on-street evidence for driver route choice

and departure time choice. This is placed in context with a description of the

theoretical basis of route choice modelling. The review focusses on Wardrop

equilibrium and the notion of traffic equilibria. The chapter concludes with

19



INTRODUCTION 20

a discussion of how theoretical models are used in practice for scheme assess-

ment. An important conclusion of this chapter is that there is a genuine lack

of on-street evidence regarding the problem of driver route choice.

Chapter 4 describes a set-theoretic model which can be used to investi-

gate matching data in multiple site surveys. This method was motivated by

the need to investigate data from real-life traffic surveys. A mathematical

framework is developed using set theory to describe types of match and this

framework is used to create an algorithm to estimate the number of matches

in survey data given certain assumptions.

Chapter 5 presents a rigorous statistical investigation of a large collection

of survey data. This data set was collected in on-street surveys in the city of

York. The aim of this data collection was to investigate hypotheses related to

driver behaviour as described in Chapter 3. A number of standard statistical

techniques are used in addition to the set theoretic method developed in Chap-

ter 4. This data set provides an extremely useful insight into the behaviour of

drivers on-street.



CHAPTER 1

Long-Range Dependence in Telecommunication

Networks

This chapter provides an introduction to the topic of long-range depen-

dence (LRD) in telecommunications (telecoms) networks. This is a large and

expanding research area and this literature survey cannot be complete simply

due to the huge number of papers published in the area. However, this chapter

should serve as a useful summary of research on this subject.

1.1. Introduction to LRD

A good introduction to the topic of LRD is provided by [15]. LRD is

a statistical phenomenon observed in some time series. A time series which

has LRD appears stationary overall, remains at higher or lower values than

its mean for relatively long periods of time and appears to exhibit cycles or

trends but with no clear overall cycle emerging. LRD is also known as long

memory or strong dependence and will be formally defined later. Mandelbrot

also used the term the Joseph effect to describe the phenomenon (a reference

to the biblical character who dreamed of seven fat years and seven lean years

when making a prophecy for the Egyptian pharoah — and also to the fact

that LRD was first observed by Hurst in analysis of flood levels of the Nile

river [85].)

It should be noted that, throughout this chapter the asymptotic notation

given in A.2 is used. Sometimes this is at odds with the literature in the area

which is not always consistent and sometimes uses ∼ to mean asymptotically

proportional to (which is written as � throughout this thesis).

21



1.1. INTRODUCTION TO LRD 22

1.1.1. Introductory Statistics and Time Series Analysis. This sec-

tion provides a quick introduction to some basic concepts in statistics and time

series analysis. For a slower paced introduction see [80] from which many of

the definitions in this section are taken.

Definition 1.1. A sample space is the set of all possible outcomes of an

experiment. For example, consider tossing two coins. The possible outcomes

are HH, HT, TH and TT. The sample space may be discrete (as in the previous

example) or continuous (for example a measurement of a randomly chosen

person’s height in metres). Formally, a discrete sample space is one with a

finite or countably infinite number of possible values. A continuous sample

space is one which takes values in one or more intervals.

Definition 1.2. An event is a subset of a sample space. For example, if

the event is getting exactly one head in two coin tosses then it would be HT

and TT. An example of an event on a continuous sample space is measuring

a height which is between 1.5 and 2.0 metres.

Definition 1.3. A probability measure P is a real-valued set function de-

fined on a sample space S which satisfies:

(1) 0 ≤ P [A] ≤ 1 for every event A ⊆ S

(2) P [S] = 1

(3) P [A1 ∪ A2 ∪ . . . ] = P [A1] + P [A2] + . . . for every finite or infinite

sequence of disjoint events A1, A2, . . . where Ai ⊆ S.

Definition 1.4. A random variable is a real-valued function defined on

a sample space. For example, define X as the number of heads in two coin

tosses or the height of a given measurement in metres. The domain of X

is the sample space and its range is within the real numbers R. A discrete

random variable is a random variable defined on a discrete sample space and

a continuous random variable is a random variable defined on a continuous

sample space for which the probability is zero that it will assume any given

value in an interval.
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It should also be noted that it follows from these definitions that a real-

valued function of a random variable (or a set of random variables) is itself a

random variable.

Definition 1.5. The discrete density function f(x) for a discrete random

variable X is given by the equation

f(x) = P [X = x] .

The sum of the density function up to x is known as the distribution function

of a discrete variable. It is given by F (x) in the equation

F (x) = P [X ≤ x] .

Definition 1.6. The continuous density function f(x) for a continuous

random variable X is uniquely determined by the following properties:

(1) f(x) ≥ 0 for all x ∈ R

(2)
∫∞

−∞
f(x)dx = 1

(3)
∫ b

a
f(x)dx = P [a < x < b] for all a, b ∈ R where a ≤ b.

The integral of f(x) from −∞ to x is known as the distribution function of a

continuous variable. It is given by F (x) in the equation

F (x) =

∫ x

−∞

f(x).

Often it is useful to deal with more than one random variable at once. If

two variables X and Y are considered then the system described above can

easily be extended.

Definition 1.7. The joint density function of two random variables X

and Y is defined by f(x, y). In the discrete case this is defined by the equation

f(x, y) = P [X = x, Y = y] .

In the continuous case it must possess the following properties:
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(1) f(x, y) ≥ 0

(2)
∫∞

−∞

∫∞

−∞
f(x, y)dxdy = 1

(3)
∫ d

c

∫ b

a
f(x, y)dxdy = P [a < X < b, c < Y < d], for all a ≤ b ∈ R and

c ≤ d ∈ R.

Definition 1.8. The random variables X and Y with density functions

g(x) and h(x) and the joint density function f(x, y) are said to be independent

if and only if

f(x, y) = g(x)h(y),

for all x and y.

Definitions 1.7 and 1.8 can be extended in the obvious way to more than

two variables.

Definition 1.9. The expected value or expectation of the function g(X)

on a discrete random variable X is given by

E [g(X)] =
∞∑

i=1

g(xi)f(xi),

where xi are all the possible values of X (that is all the members of its sample

space) and f(x) is the density function for X.

For a continuous variable the sum in the above changes to an integral.

Definition 1.10. The expected value or expectation of the function g(X)

on a continuous random variable X is given by

E [g(X)] =

∫ ∞

−∞

g(x)f(x)dx,

where f(x) is the density function for X.

It should be noted that in Definitions 1.9 and 1.10 there is no guarantee that

either the sum or the integral converge. If they diverge then the expectation

is undefined.

The definition of expectation can easily be extended to a set of random

variables X1, . . . , Xn.
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Definition 1.11. For random variables X1, . . . , Xn with density function

f(x1, . . . , xn) then the expectation value of a function h(X1, . . . , Xn) is given

by

E [h] =

∫ ∞

−∞

. . .

∫ ∞

−∞

h(x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn.

Expectation E is a linear operator. If g, g1 and g2 are three functions of a

set of random variables then the following properties follow from the previous

definitions:

• E [cg] = cE [g] for any constant c.

• E [g1 + g2] = E [g1] + E [g2].

• E [g1g2] = E [g1] E [g2], if g1 and g2 are independent.

The first two properties follow trivially from substituting h = cg and h =

g1 + g2 into Definition 1.11. The third property is derived as follows.

E [g1g2] =

∫ ∞

−∞

∫ ∞

−∞

g1g2f(g1, g2)dg1dg2,

where f(g1, g2) is the joint density function of g1 and g2. Since g1 and g2 are

independent then from Definition 1.8:
∫ ∞

−∞

∫ ∞

−∞

g1g2f(g1, g2)dg1dg2 =

∫ ∞

−∞

∫ ∞

−∞

g1g2f1(g1)f2(g2)dg1dg2

=

∫ ∞

−∞

g1f1(g1)dg1

∫ ∞

−∞

g2f2(g2)dg2

= E [g1] E [g2] ,

where f1(g1) and f2(g2) are the density functions of g1 and g2 respectively.

Using the Definitions 1.9 and 1.10 for expectation then mean µ and variance

σ2 of a random variable X can be defined.

Definition 1.12. The mean µ of a random variable X (either discrete or

continuous) is given by

µ = E [X] .
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Definition 1.13. The variance σ2 of a random variable X (either discrete

or continuous) will be denoted by var (X) and is given by

σ2 = var (X) = E
[
(X − µ)2

]
.

The standard deviation σ is the square root of the variance.

As previously noted, the expectation is not guaranteed to converge and,

for some random variables, µ and σ2 do not exist.

Consider a time series or process {Xt : t ∈ N}.

Definition 1.14. The autocovariance is given by

γ(i, j) = E [(Xi − µ)(Xj − µ)] .

Definition 1.15. The autocorrelation function (ACF) is given by

ρ(i, j) =
γ(i, j)

σ2
=

E [(Xi − µ)(Xj − µ)]

σ2
.

It should be noted at this point that µ may be ∞ and σ2 may be zero or

∞ and therefore the ACF is not defined for all processes.

Definition 1.16. A process Xt is weakly stationary (also known as second-

order stationary, wide-sense stationary or covariance stationary) if and only

if:

(1) The mean exists and is finite. That is E[Xi] = µ.

(2) The covariance γ(i, j) depends only on the absolute value of the lag

k = i− j. That is, for the lag k = i− j then there is a γ(k) such that

γ(k) = γ(i, j) = γ(j, i).
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Throughout this thesis, unless explicitly stated, it is assumed that all pro-

cesses are weakly stationary and when the term stationary is used without

qualification it will refer to Definition 1.16. It should be noted in passing that

by assuming that γ(i, j) is defined and depends only on the lag this, in turn

implies that σ2 exists since σ2 = γ(i, i). (A strongly stationary process, by

contrast, has all higher order moments constant.) If only weakly stationary

processes are considered then the Definitions 1.14 and 1.15 simplify to the ones

shown below.

Definition 1.17. For a weakly stationary time series, the autocovariance

as a function of lag k is given by

γ(k) = E [(Xi − µ)(Xi+k − µ)] .

Definition 1.18. For a weakly stationary time series, the autocorrelation

as a function of lag k is given by

ρ(k) =
γ(k)

σ2
=

E [(Xi − µ)(Xi+k − µ)]

σ2
.

1.1.2. Definitions of LRD in Stationary Processes. A number of

definitions of LRD are common in the literature — some of these are equiva-

lent but, unfortunately, some are not. This section will list the commonly used

ones and discuss which are (and which are not) equivalent. A list of selected

references which cite each definition is given in order to provide some perspec-

tive as to how common each definition is. The definitions here are all given

for stationary processes. The most common measure of LRD is the Hurst pa-

rameter, H which, for a process exhibiting LRD, is in the range (1/2, 1). The

asymptotic notation which is used throughout the remainder of this chapter

is defined in appendix A.2.
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Definition 1.19. A stationary process Xt is said to be long-range depen-

dent if its ACF ρ(k) sums to infinity.

∞∑

k=−∞

ρ(k) = ∞.

This definition is sometimes used in the literature, for example in [123].

(Note that the summation is usually given in the literature as being be-

tween −∞ and ∞ although the assumption of weak stationarity means that

ρ(k) = ρ(−k).) Often a slightly less restrictive condition is used by including

a modulus sign around the ACF.

Definition 1.20. A stationary process Xt is said to be long-range depen-

dent if the absolute value of its ACF ρ(k) sums to infinity.

∞∑

k=−∞

|ρ(k)| = ∞.

This definition (or the equivalent definition with autocovariance instead of

ACF) is used by [74] [106] [141]. A more restrictive definition often used is

given by putting conditions on how ρ(k) decays as k → ∞.

Definition 1.21. A stationary process Xt is said to be long-range depen-

dent if its ACF ρ(k) has the asymptotic form

ρ(k) ∼ cρk
−α,

for some positive constant cρ and some real α ∈ (0, 1).

In this case, the parameter α is related to the Hurst parameter by H =

1 − α/2. This definition is used in [2] [15] [17] [41] [60] [77] [164].

LRD can also be defined in terms of the spectral density of a process. This

defines LRD in terms of a spectral density which has a pole at zero.
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Definition 1.22. The spectral density f(λ) of a function with ACF ρ(k)

and variance σ2 can be defined as

f(λ) =
σ2

2π

∞∑

k=−∞

ρ(k)eikλ.

Note that the spectral density is sometimes defined simply in terms of the

square of the Fourier transform of the series. This equivalent definition is

arrived at via the Wiener-Khinchine theorem [160].

Definition 1.23. A stationary process Xt is said to be long-range depen-

dent if its spectral density obeys

f(λ) ∼ cf |λ|−β,

as λ → 0, for some positive constant cf and some real β ∈ (0, 1).

The parameter β is related to the Hurst parameter by H = (1+β)/2. This

definition is found in [2] [15] [41] [60] [77]. A more general frequency domain

definition is also occasionally used which allows the existence of LRD when

the spectral density has a pole at a frequency λ0 ∈ [0, π]. This definition was

first used in [64] (cited in [15]) and when λ0 6= 0 this is sometimes known as

seasonal long memory.

Definition 1.24. A stationary process Xt is said to be long-range depen-

dent with a pole at λ0 if its spectral density follows

f(λ) ∼ cf (cos λ − cos λ0)
−β,

as λ → λ0, for some positive constant cf , some frequency λ0 ∈ [0, π] and some

real β ∈ (0, 1).

This definition is referred to as seasonal long memory and will not be

discussed further in this thesis. Details can be found in [64] and [74].
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Sometimes Definitions 1.21 and 1.23 are slightly generalised by using a

slowly varying function L(x) (as defined in Appendix A.2) in place of cρ and

cf . With this replacement, the two definitions become

ρ(k) ∼ L(k)k−α,

and

f(λ) ∼ L(λ)|λ|−β,

as λ → 0, respectively. These definitions are used in [17] [93].

Of the definitions listed in this section, Definition 1.20 (the non summabil-

ity of the modulus of the ACF) encompasses the widest class of processes and is

implied by all the other definitions. It is obvious that Definition 1.19 (the non

summability of the ACF) implies Definition 1.20. Further, since
∑∞

k=n ck−α

is infinite for all n > 0, all c > 0 and α ∈ (0, 1) then Definition 1.21 implies

Definition 1.19 and, in turn, Definition 1.20.

The definitions in terms of ACF fall off and in terms of spectral density

(Definitions 1.21 and 1.23) are equivalent. If Definition 1.21 holds then it can

be shown (see [167, Chapter 5.2]) that

f(λ) ∼ cf (H)|λ|1−2H ,

as λ → 0, where

cf = σ2π−1cρΓ(2H − 1) sin(π − πH),

and Γ is Euler’s Gamma function (see Section A.3). It can be seen, therefore,

that Definition 1.23 holds.

Conversely, if Definition 1.23 holds then it can be shown that

ρ(k) ∼ cρ(H),

where

cρ =
2

σ2
cfΓ(2 − 2H) sin(πH − π/2). (1.1)

As before, it can be seen that Definition 1.21 holds from this.



1.1. INTRODUCTION TO LRD 31

In [64] it is shown that seasonal long-range dependence (Definition 1.24

with λ0 6= 0) implies Definition 1.20 but not Definition 1.19 (that is |ρ(k)|
sums to infinity but ρ(k) does not necessarily).

For the purposes of this thesis, Definition 1.21 will be used as the definition

of LRD — although this is the strictest of the definitions encountered, almost

all the processes which will be discussed will meet this definition (where this

is not the case, it will be explicitly stated).

1.1.3. Some Basic Properties of LRD Series. This section attempts

to list some basic properties of LRD. This section follows closely the discussion

in [15, Chapter One].

1.1.3.1. The Variance of the Sample Mean. An often cited result in basic

statistics is that the variance of the sample mean is the variance of the time

series divided by the sample size. That is, for the n samples, the sample mean

is

X =

∑n
i=1 Xi

n
, (1.2)

and the variance of the sample mean is

var
(
X
)

=
σ2

n
. (1.3)

It is often forgotten that this is only true under certain conditions. For exam-

ple, [80, page 130] states “The property of X of possessing the mean µ and

the variance σ2/n is true not only for a normal variable but for any variable

X that possesses a second moment.”

The following conditions are required for equation (1.3) to hold:

(1) The population mean µ = E [Xi] exists and is finite.

(2) The population variance σ2 = var (Xi) exists and is finite.

(3) The observations X1, X2, . . . , Xn are uncorrelated. That is to say,

ρ(i, j) = 0 for i 6= j.

By assuming that the process is stationary, the first two conditions are guar-

anteed. Therefore, in the following discussion the existence of µ and σ2 are
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assumed. Expanding var
(
X
)

gives:

var
(
X
)

= E



(

(n−1

n∑

i=1

Xi) − µ

)2



= E


n−2

(
n∑

i=1

Xi

)2

− µ2

=

(
n−2

n∑

i,j=1

E [XiXj]

)
− µ2

= n−2

n∑

i,j=1

E [(Xi − µ)(Xj − µ)]

= n−2

n∑

i,j=1

γ(i, j),

and therefore,

var
(
X
)

= n−2σ2

n∑

i,j=1

ρ(i, j). (1.4)

By its definition ρ(i, i) = 1. If
∑

i6=j ρ(i, j) = 0, then clearly equation (1.3)

holds. Otherwise, it is necessary to introduce a correction term δn(ρ) such

that

var
(
X
)

= σ2[1 + δn(ρ)]n−1, (1.5)

where,

δn(ρ) = n−1
∑

i6=j

ρ(i, j).

As previously discussed, for a stationary process ρ(i, j) = ρ(i − j) = ρ(k)

and therefore the above equation can be simplified to

δn(ρ) = 2n−1

n−1∑

k=1

(n − k)ρ(k). (1.6)

For a process where samples are not strictly independent, equation (1.3) is

adjusted by some correction factor δn(ρ) which depends on both the size of

the sample and also on the correlation structure. It is instructive to ask how
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the correlations affect the sample mean and whether equation (1.3) remains

true asymptotically. Equivalently, does

var
(
X
)
∼ Cσ2n−1, (1.7)

where C is a finite positive constant, hold and if so under what conditions?

Define

δ(ρ) = lim
n→∞

δn(ρ).

Equation (1.7) holds if the limit δ(ρ) exists. It can be readily seen from

equation (1.6) that this is true if the condition of Definition 1.19 does not hold

(the ACF does not sum to infinity).

To give a specific example, consider an AR(1) model as defined by equation

(B.1). It is clear that for k > 0,

Xi+k = ak
1Xi + ak−1

1 εi+1 + ak−2
1 εi+2 + · · · + εi+k,

where the εi are independent and identically distributed error terms.

Assuming that j > i, k = j − i and ai ∈ (−1, 1) then µ = 0. Therefore,

ρ(k) =
E
[
Xi(a

k
1Xi + ak−1

1 εi+1 + · · · + εi+k)
]

E [X2
i ]

.

Since all the εj are i.i.d. with a mean of 0 then E [Xjεi] = 0 for i > j .

Hence,

ρ(k) =
ak

1E [X2
i ]

E [X2
i ]

= ak
1.

Repeating the same calculation for j < i will get ρ(k) = a−k
1 for k = j − i.

In general, therefore,

ρ(k) = a
|k|
1 .

It is clear that this process is not LRD since,

∞∑

k=−∞

ρ(k) = 2
∞∑

k=0

ρ(k) − 1 = 2/(1 − a1) − 1,

which must be finite for a1 ∈ (−1, 1). (In fact, a simple extension of this

will show that any stationary AR(p) process is not LRD for finite p). Now,
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substituting this into equation (1.4) gives

var
(
X
)

= n−2σ2

[
n∑

i=1

1 +
∑

i6=j

a
|i−j|
1

]
= n−2σ2

[
n + 2

n−1∑

k=1

(n − k)ak
1

]
.

Substituting from equation (1.6) gives

var
(
X
)

= n−1σ2[1 + δn(a1)],

where δn(a1) = 2n−1
∑n−1

k=1(n − k)ak
1. This can be rewritten as

δn(a1) =
2a1

1 − a1

[
1 − 1

n − na1

+
an

1

n − na1

]
.

Therefore, as n → ∞ then

δ(a1) = lim
n→∞

δn(a1) = 2a1/(1 − a1).

The constant 1 + δ(a1) shows how far from the ideal (independent) be-

haviour given by equation (1.3) the sample mean will be. It is easy to see that

if a1 is close to zero then equation (1.3) is nearly true and the sample mean

will behave as expected. However, if a1 is close to one then the sample mean

could converge much more slowly than expected. However, if a1 is near one

then adjacent observations will be very similar and this will be noticed in the

time series. For a typical time series which does not exhibit LRD either the

sample mean will closely follow equation (1.3) or the short-range dependence

will be obvious from observation. For a long-range dependent series, however,

this is not the case. The correlations in the data are such that the asymptotic

behaviour in equation (1.7) does not hold. More specifically, if LRD is present

as specified in Definition 1.21 then as the sample size n → ∞,

var
(
X
)
∼ cρn

2H−2

σ2H(2H − 1)
.

where H is the Hurst parameter and cρ is given by equation (1.1). This is

proved in [14]. Note that, as expected, for short-range or independent data

(H = 1/2) this will imply equation (1.7) as expected. The fact that the

sample mean only converges slowly to the mean is a property which makes

LRD extremely difficult to work with in real data.
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1.1.3.2. Variance and Confidence Interval Estimation for LRD. In addi-

tion to the slower than expected convergence of the sample mean, LRD data

sets have a number of other properties which make them difficult to work with.

Definition 1.25. The sample variance, S2 is given by

S2 =

∑n
i=1

(
Xi − X

)2

n − 1
,

It is well known that S2 is an unbiased estimator for the variance σ2. (See,

for example, [80, page 221]). Again this assumes that the correlations are

summable. So, to take the standard derivation:

E

[
1

n

n∑

i=1

(
Xi − X

2
)]

= E

[
1

n

n∑

i=1

(
(Xi − µ) − (X − µ)

)2
]

=
1

n

n∑

i=1

E [Xi − µ]2 − E
[
X − µ

]2

=
1

n

n∑

i=1

σ2 − var
(
X
)

= σ2 − σ2

n

=
σ2(n − 1)

n
.

The conclusion that S2 is an unbiased estimator of σ2 follows immediately

by inspection. However, note the implicit assumption that var
(
X
)

= n−1σ2

which has already been shown not to hold for time series where correlations

are important (or to put it another way, the implicit assumption was that the

Xi were independent). Substituting the corrected expression from equation

(1.5) then:

E

[
1

n

n∑

i=1

(Xi − X)2

]
= σ2 − σ2[1 + δn(ρ)]

n

=
σ2[n − 1 − δn(ρ)]

n
.
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The corrected sample variance estimate is

S2
c =

∑n
i=1(Xi − X)2

n − 1 − δn(ρ)
, (1.8)

where δn(ρ) is given by equation (1.6). From the above, for the usual measure

of sample variance S2 then

E
[
S2
]

= σ2

[
1 − δn(ρ)

n − 1

]
.

If H is near one then this the bias term δn(ρ)(n − 1)−1 can converge very

slowly to zero as n increases.

A final topic worth considering in a new light in its relation to LRD is that

of confidence intervals. Student’s t-statistic is given by

t(n) =
X − µ

S

√
n, (1.9)

where S is the square root of the sample variance S2 [80, page 148]. More

information about the t-statistic is given in section 5.2.1. The distribution of

the t variable is near normal under a wide range of conditions. If this is the

case then the t variable can be used to give confidence intervals. A (1 − a)

confidence interval is given by

X ± za/2
S√
n

, (1.10)

where za/2 is the upper 1 − a/2 quantile of the standard normal distribution.

However, It has already been established that, in the presence of LRD, the

sample mean X converges slower than 1/
√

n and therefore the t-statistic di-

verges.

lim
n→∞

P [|t(n)| > c] = 1,

for any constant c. The probability that the sample mean will lie within the

bounds given by equation (1.10) will tend to zero even for a arbitrarily close

to zero.

LRD data series are notoriously difficult to work with in practical sit-

uations. The sample mean converges slowly. The estimator S2 is not an
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unbiased estimator for the variance. Standard methods for estimating confi-

dence intervals fail. These three problems make statistical tests on LRD series

problematic.

1.1.4. LRD and Self-Similarity. A topic often associated with LRD is

that of statistical self-similarity.

Definition 1.26. Let Yt be a stochastic process with continuous time

parameter t. If the process is self-similar with self-similarity parameter H then

for any positive constant c, the rescaled process c−HYct is equal in distribution

to the original process Yt.

It should be noted that this H is the same as the Hurst parameter already

encountered. A way of visualising this definition is that a process is self-

similar if, when the x-axis (time axis) is stretched by a factor c and the y-axis

is stretched by a factor c−H , then the process looks the same statistically.

Consider a self-similar process Yt with stationary increments and a self-

similarity parameter H ∈ (0, 1). The increment process Xt is defined by:

Xi = Yi − Yi−1 for i ∈ N. It can be shown (see [15, page 51]) that this implies

that for the process Xt the ACF is given by

ρ(k) ∼ H(2H − 1)k2H−2,

which implies that for H ∈ (1/2, 1) then ρ(k) � |k|α with α ∈ (0, 1). In

other words, the increment process of a self-similar process with stationary

increments and H ∈ (1/2, 1) is, itself, an LRD process.

1.1.5. LRD and Heavy Tails. Heavy-tailed distributions (see [3]) are

strongly related to LRD. The heavy-tailed distribution was called by Man-

delbrot the Noah Effect (by analogy with the Joseph effect). A heavy-tailed

distribution is one where the tail of the distribution function decreases to zero

more slowly than exponentially. That is, for all ε > 0, a random variable X is

heavy-tailed if it satisfies

P [X > x] eεx → ∞, x → ∞.
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It has been observed that many processes associated with computer net-

works follow a heavy tailed distribution — the lengths of files stored on com-

puters and the amount of data which is transferred by a given connection to the

Internet. It has been shown [144] that a superposition of ON/OFF sources (in

Internet traffic this could be visualised as packet trains and inter-train pauses)

will give rise to a time series exhibiting LRD if the lengths of the ON/OFF

periods are heavy-tailed.

1.2. Modelling Techniques for LRD

There are a number of different methods which are standardly used in

the modelling of long-range dependence. This section is a brief tour of these

modelling techniques. In Chapter 2 a new process for generating LRD is

discussed.

1.2.1. Fractional Brownian Motion and Fractional Gaussian Noise.

Brownian motion is a stochastic process B(t) with the following properties:

• B(t) is Gaussian,

• B(0) = 0 almost surely,

• B(t) has independent increments,

• E[B(t) − B(s)] = 0,

• var (B(t) − B(s)) = σ2|t − s|.

Brownian motion is the increment process of independent normal variables

with zero mean and variance σ2 (Gaussian Noise). Assuming that σ2 above

was normalised to one then this process can be defined as follows:

• B(0) = 0 almost surely,

• B(t) is a continuous function of t,

• The distribution of B(t) obeys

P [B(t + k) − B(t) ≤ x] = (2πk)−
1

2

x∫

−∞

exp

(−u2

2k

)
du.
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The process defined by B(t + k) − B(t) is normally distributed with zero

mean and variance k and is known as Gaussian White Noise. An obvious

generalisation of this is to change the final condition to

P [BH(t + k) − BH(t) ≤ x] = (2π)−
1

2 k−H

x∫

−∞

exp

( −u2

2k2H

)
du. (1.11)

where H ∈ (1/2, 1) is the Hurst parameter.

The process BH is known as fractional Brownian motion (FBM). It is the

increment process of fractional Gaussian noise (FGN). FBM is a self-similar

process with self-similarity parameter H. FGN is a stationary process which

exhibits LRD with Hurst parameter H.

A number of authors have described computationally efficient methods for

generating FGN and FBM — [39] (described in [15, page 216]) [102] and

[114].

1.2.2. The Fractional Auto-Regressive Integrated Moving Av-

erage Model. The Fractional Auto-Regressive Integrated Moving Average

(FARIMA) model is an obvious extension of the ARIMA model described in

Appendix B. Equation (B.3) begs the obvious question, “what happens if the

requirement d ∈ Z+ is relaxed to d ∈ R?”

To make this generalisation the idea of fractionally differencing a time series

is necessary. Consider the expression (1−B)d as found in equation (B.3). This

can be expanded formally using the standard binomial series as

(1 − B)d =
d∑

k=0

(
d

k

)
(−1)kBk. (1.12)

where B is the backshift operator described in Section A.1.

Now, it is well known that,
(

d

k

)
=

d!

k!(d − k)!
=

Γ(d + 1)

Γ(k + 1)Γ(d − k + 1)
,

where Γ is Euler’s Gamma function defined in Appendix A.3. The replacement

of the factorial with the Γ function means non-integer values for d can be used
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by slightly altering equation (1.12) to

(1 − B)d =
∞∑

k=0

Γ(d + 1)

Γ(k + 1)Γ(d − k + 1)
(−1)kBk.

Note that, in fact, this only produces interesting processes for d ∈ (−1/2, 1/2).

So the FARIMA model is the ARIMA model with d ∈ (−1/2, 1/2) instead of

d ∈ Z+ and can be written as equation (B.3). It can also be written as

(
1 −

p∑

j=1

ajB
j

)(
∞∑

k=0

Γ(d + 1)

Γ(k + 1)Γ(d − k + 1)
(−1)kBk

)
Xi = (1 −

q∑

j=1

θjB
j)εi,

(1.13)

where d ∈ (−1/2, 1/2). As might be expected the d parameter relates to the

Hurst parameter. The relation is simply H = d + 1/2 — note that this only

produces expected values for H when d ∈ (0, 1/2). It can be seen from this

definition that a value Xi depends on every previous Xj where (j < i) — an

obvious reason why the model has long memory.

FARIMA processes were proposed by [63] and a description in the context

of LRD can be found in [15, pages 59–66].

1.2.3. Iterated Chaotic Maps. It has been known for some time that

LRD can be generated using a family of chaotic maps. Take a map from the

family given by

xn+1 = F (xn; d,m1,m2) =





F1(xn) = xn + 1−d
dm1

xm1

n 0 < xn < d,

F2(xn) = xn − d
(1−d)m2

(1 − xn)m2 d < xn < 1,

(1.14)

where d ∈ (0, 1) and m1,m2 ∈ (3/2, 2). The map is shown in Figure 1.1. If

m2 = 1 this is the well known Manneville-Pomeau map. A problem with work-

ing with this map analytically is that there is no closed form for its invariant

density. For this reason piecewise linear approximations to the map are often

used.

Pioneering work in this area is [154] with early applications to telecoms

being given by [49].
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Figure 1.1. A one dimensional chaotic map for generating LRD.

The map is used to generate LRD by generating a binary series from the

regions labelled ON and OFF in the diagram. The procedure used is described

in Table 1.1.

(1) Pick a starting value for x0 ∈ (0, 1). Set i = 0.

(2) If xi ≥ d then yi = 1 otherwise yi = 0.

(3) Calculate xi+1 using equation (1.14).

(4) Increment i and go to step two.

Table 1.1. A procedure for generating LRD using a one di-

mensional chaotic map.

The time series yi generated by this procedure will have LRD. The mean

will depend on the parameters d, m1 and m2. The Hurst parameter in this

case is given by the largest value of m1 and m2. If m = max(m1,m2) then

H = (3m− 4)/(2m− 2). An explanation for the presence of LRD in this map

is provided by examining the behaviour of the orbits at xi near zero or one.
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The escape from points near zero or one is extremely slow and this causes long

sequences of zeros or ones in the generated yi series.

1.2.4. Other Modelling Techniques. A technique gaining favour in

modelling (and also in measuring) LRD is wavelet analysis. This allows the

LRD hypothesis to be generalised to multifractals. While multifractal analysis

is beyond the scope of this thesis, a passing mention is given here since wavelet

based multifractal analysis is becoming important in the analysis of teletraffic.

LRD (at least as described by Definition 1.21) defines a single scaling behaviour

for the system (which applies in the tail of the ACF) — if this scaling behaviour

was the same at any scale then the process defined would be a monofractal.

However, if the scaling behaviour differs across scales then the process is a

multifractal. There is some evidence (which will be discussed in Section 1.4)

that Internet traffic exhibits different scaling behaviour at different timescales.

A general description of multifractal processes and wavelets is found in [123]

and a description of how wavelets can be used to create models with the same

multifractal spectrum as a given data set can be found in [124].

Self-similar processes can be simulated (and, indeed, measured) using Em-

bedded Branching Processes. Details can be found in [90] and [91]. An

aggregation of ON-OFF sources with heavy-tails can be shown to generate a

series with LRD. A modelling process based upon this is described in [142].

1.3. Measuring Techniques for LRD

A large number of techniques exist for measuring the presence of LRD

in data series. There is no single perfect technique for measuring LRD and

a variety are listed here. A good summary of a number of techniques and

code for making estimations is to be found on Taqqu’s website [140]. The

descriptions in this section are essentially summaries of those found on this

website.
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All the techniques listed are estimators for the parameter H. The proofs

of these techniques are beyond the scope of this thesis but, where practical,

justifications for their usage are given.

1.3.1. The R/S Statistic. The R/S statistic (also known as rescaled

adjusted range) is one of the oldest and best known techniques for estimating

H. The R/S plot relies on the idea that in the presence of LRD more extreme

events are more common. It is discussed in detail in [103] and also [15, pages

83–87].

For a time series {Xt : t = 1, 2, . . . , N} with partial sums given by Y (n) =
∑n

i=1 Xi and the sample variance given by

S2(n) =
1

n − 1

n∑

i=1

X2
i − 1

n(n − 1)
Y (n)2,

then the R/S statistic is given by

R

S
(n) =

1

S(n)

[
max
1≤t≤n

(
Y (t) − t

n
Y (n)

)
− min

1≤t≤n

(
Y (t) − t

n
Y (n)

)]
. (1.15)

For FGN or FARIMA then:

E [R/S(n)] ∼ CHnH ,

where CH is a positive, finite constant independent of n.

The procedure to estimate H is therefore as follows: For a time series of

length N subdivide the series into K blocks each of size N/K. For each lag

n compute R/S(n) for all the series which start at points ki = iN/K + 1 for

i = 0, 1, . . . , K − 1. (K should be chosen so that the blocks do not overlap).

In this way, a number of estimates of R/S(n) are obtained for each value of n.

By choosing logarithmically spaced values of n and plotting log[R/S(n)]

versus log n then a straight line should be obtained. This plot is sometimes

called the pox plot for the R/S statistic. The gradient of the line should be H.

There are several problems with this technique — most notably, there are

more estimates of the statistic for low values of n where the statistic is affected

most heavily by short range correlation behaviour. On the other hand, for
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high values of n there are too few points for a reliable estimate. The values

between these high and low cut off points should be used to estimate H but,

in practice, often it is the case that widely differing values of H can be found

by this method depending on the high and low cut off points chosen. Also it

is worth noting that the convergence to a straight line is proven for FARIMA

and FGN and not for LRD time series in general.

Lo modified the R/S statistic to use a weighted sum of autocovariances for

normalisation instead of the sample variance. Details are found in [95].

1.3.2. Aggregated Variance. This method measures H by considering

the scaling of the variance as the time series is aggregated. Given a time series

{Xt : t = 1, 2, . . . , N} then divide this into blocks of length m and aggregate:

X(m)(k) =
1

m

km∑

i=(k−1)m+1

Xi, k = 1, 2, . . . , N/m.

The sample variance is given by

̂var (X(m)) =
1

(N/m) − 1

N/m∑

k=1

(
X(m)(k) − X

)2
. (1.16)

The sample variance should be asymptotically proportional to m2H−2 for

large N/m and m. To use this method plot successive values of the aggregated

variance as given by equation (1.16) against m on a log-log plot. The slope of

the line of best fit should be 2H − 2. As with the R/S statistic the low and

high ends of the plot cannot be used (for the same reasons). A description of

this method in slightly different terms can be found in [15, page 92].

Jumps in the mean and slowly decaying trends can severely affect this

statistic. One technique to combat this is to difference the aggregated variance

and work instead with

̂var (X(m+1)) − ̂var (X(m))).
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1.3.3. Variance of Residuals. This method is described in more detail

in [117]. Take the series {Xt : t = 1, 2, . . . , N} and divide it into blocks of

length m. Within each block calculate partial sums: Y (t) =
∑t

i=1 Xi. For

each block make a least squares fit to a line a+ bt. Subtract this line from the

samples in the block to obtain the residuals and then calculate their variance

V (m) =
1

m

m∑

t=1

(Y (t) − a − bt)2 .

The variance of residuals is proportional to m2H and therefore a log-log

plot of log(V (m)) versus log(m) should be a line with a slope of 2H. As with

the previous time domain measures of H this method is strongly affected by

the cut off points used for the sizes of m.

1.3.4. Periodogram. The periodogram is a frequency domain technique

described in [59]. For a time series {Xt : t = 1, 2, . . . , N} it is defined by

I(λ) =
1

2πN

∣∣∣∣∣
N∑

j=1

Xje
ijλ

∣∣∣∣∣

2

,

where λ is the frequency. If the variance of the series is finite then I(λ) is an

estimator of the spectral density of Xt. A series with long-range dependence

will, by Definition 1.23, have a spectral density proportional to |λ|1−2H for

frequencies close to λ = 0. (Note that this specifically rules out LRD of the

type in Definition 1.24 where the frequency pole is not at zero.) Therefore,

a log-log plot of the periodogram should have a slope of 1 − 2H close to the

origin.

1.3.5. Whittle’s Maximum Likelihood Estimator. The subject of

Maximum Likelihood Estimators for LRD is a complex one and is covered

in some detail in [15, pages 100–123]. While an exact MLE is available, its

calculation is computationally demanding and an approximation is used for

practical calculations. In brief, Whittle’s MLE works by first calcuating I(λj)

for Fourier frequencies λj = 2πj/N where N is the length of the time series.



1.3. MEASURING TECHNIQUES FOR LRD 46

The algorithm seeks to find a function f ∗(λj, η) which minimises, Q∗(η) defined

as

Q∗(η) =

(N−1)/2∑

j=1

I(λj)

f ∗(λj, η)
,

where f ∗(λj, η) is chosen as a functional form related to the assumed functional

form of the LRD series and η represents the parameters of this function. For

example, if the functional form assumed is FARIMA(0, d, 0) then η represents

the d parameter. If the series is assumed to be FARIMA(p, d, q) then η also

includes the coefficients in the AR and MA parts of the function. The estimate

Ĥ converges to the true value H at a rate of
√

N if the assumptions of the

model are met. Further details can be found in [56]. The method known as

Aggregated Whittle provides additional robustness by aggregating the data.

The Whittle estimator specifies the functional form of the power spectrum

at all frequencies. A semi-parametric version known as Local Whittle is also

available which assumes only the functional form chosen where λ is near zero.

Details of the method are given in [125].

1.3.6. Other Estimation Methods and Comparison of Methods.

Wavelet analysis has been used for the estimation of the Hurst parameter.

In addition this has the benefit of providing an estimate of the multifractal

spectrum of the data [123] [124]. Crossing trees (analysis of where a process

crosses certain preset levels) can be used to estimate H in self-similar data

sets [90] [91]. Higuchi’s method estimates H by estimating fractal dimension

of path lengths [79]. In addition, the techniques known as Absolute Moments

and Ratio of Variance of Residuals are described on Taqqu’s website [140]. A

method known as the global log-periodogram estimator is described in [108]

and is a frequency domain technique which uses the entire frequency spectrum

to estimate H.

A number of authors have compared the different estimation techniques

for H. Several techniques are compared empirically in [145] by testing meth-

ods against time series which are FARIMA (0, d, 0) or FGN with known H.
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The methods tested included R/S, Whittle, Aggregated Variance, Higuchi’s

Method and the Periodogram. Of these methods Whittle’s was found to be

clearly the best method with the lowest variance in its predictions and the least

bias of those methods tested (each method was tested on fifty realisations of

data sets for each value of H tried and for FARIMA and FGN data).

Whittle type techniques (Whittle, Aggregated Whittle and Local Whittle)

are compared in [142]. Since the Whittle technique requires specification of

the functional form of the data set, the paper takes also investigates what hap-

pens when the functional form is misspecified (for example, a FARIMA(0, d, 0)

model is fitted to data which is FARIMA(1, d, 0)). The conclusion is that if

the series is known to be FGN or FARIMA of a given order then a correctly

specified Whittle estimator gives the smallest biases and standard errors. On

the other hand, an incorrectly fitted model can give poor performance, and

if the form of the model is not known then, provided the time series is long

enough (they cite N = 10, 000), Aggregated Whittle or Local Whittle are to

be preferred with Local Whittle performing slightly better in the tests quoted.

Semi-parametric techniques are investigated in [6] which compares a num-

ber of techniques for their ability to estimate FGN, FARIMA(0, d, 0) and

FARIMA(1, d, 1) data sets. Wavelets, global log periodogram, Whittle and Lo-

cal Whittle are amongst the techniques compared. The global log periodogram

and Local Whittle techniques are considered to be the most effective.

1.4. LRD in the Internet

In 1993, Leland, Taqqu, Willinger and Wilson published their classic paper

[93] which identified the presence of LRD in data sets captured on Ethernet

Local Area Network (LAN) traffic. Since its publication, this paper has been

cited more than five hundred times. The paper mainly discusses the subject

in terms of self-similarity and concludes: “In the case of Ethernet LAN traffic,

self-similarity is manifested in the absence of a natural length of a ‘burst’; at

every time scale ranging from a few milliseconds to minutes and hours, bursts
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consist of bursty sub-periods separated by less burst sub-periods. We also show

that the degree of self-similarity (defined via the Hurst parameter) typically

depends on the utilisation level of the Ethernet and can be used to measure

‘burstiness’ of LAN traffic.” The data sets measured in the paper are from

1989–1992. A bibliography of research in the area up to 1996 is found in [165]

which references more than four hundred papers related to the subject area.

A non-technical introduction and review of research up to 1999 is provided by

[128]. An introduction to the difficulties of modelling and measuring Internet

behaviour in general is provided by [55]. A more recent summary of work

in the area is found in [164]. While this thesis does not actually make any

measurements using telecoms data, a brief survey of the most relevant work

in the area will provide context for the research undertaken.

1.4.1. Traffic Measurements. The paper [93] used R/S analysis, ag-

gregated variance and Whittle’s estimator to investigate a large number of

Ethernet measurements made between 1989 and 1992. The paper examined

busy times, “normal” traffic times and low traffic times and considered time

series of packets per unit time. The conclusion was that LAN traffic is sta-

tistically self similar. The Hurst parameter H was shown to be a function of

the usage of the Ethernet (higher usage meaning a higher Hurst parameter).

Resolving the traffic into separate components (breaking it up by destination

or protocol used) showed that the traffic shared a characteristic H value for all

major components. In [166] some of these same traces are analysed to show

that heavy tails are present in the data sources. That is, if the distribution

of the lengths of data sent is plotted then its distribution is heavy tailed. As

has been mentioned previously, aggregation of heavy-tailed sources leads to

long-range dependent time series. The same paper uses measurements on a

wide area network (WAN) collected in 1994 at Bellcore and demonstrates that

these measurements show not only heavy tails but also long-range dependence.

Some studies show that it is not even necessary for there to be a network

for traffic to exhibit LRD. For example, [16] makes measurements on video
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traffic. The traffic is shown to be long-range dependent at source due to the

encoding of the video stream.

In [115] a number of WAN traces collected from 1989 to 1994 are analysed.

The general hypothesis of long-range dependence is confirmed. In addition to

this, statistical models are given for how users connections to the network

using various protocols. The protocol used is critical with some connections

being Poisson and others presenting distributions of connection times which

are completely at odds with Poisson modelling.

In [107] two hour traffic traces collected for the paper, each lasting twenty

four hours and made on 100Mb links at Harvard University, were analysed.

Using variance time plots of the bytes per unit time, the authors concluded

that the traffic was long-range dependent.

In addition to the above studies, in a 1996 review of research in the area,

[165] listed [46] [50] [57] [82] [163] as having “provided convincing evidence

that actual traffic data from working packet networks are consistent with sta-

tistical self-similarity or fractal characteristics... measured packet traffic data

are consistent with long-range dependence...”

A different view is put in [24] which reports measurements made on some

high speed networks. The paper does not clearly describe when the measure-

ments examined were taken but claims that in high speed networks then the

merging of large numbers of data streams mean that the traffic tends to Pois-

son as the load increases and that in larger networks, the assumption that

traffic is LRD is erroneous. Since the paper is both new and controversial, it

is hard to say at this time whether the authors’ claims will stand up to further

analysis.

There is some controversy as to whether LRD is the best model for tele-

coms traffic with [143] claiming using analysis of a number of traces collected

between from 1989 and 1994 that LRD (monofractal) modelling is sufficient

and it is unnecessary to introduce the extra parameters required by multi-

fractal modelling. However, other authors disagree. For example, the scaling
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properties of teletraffic are discussed by [81] which suggests that LRD in tele-

traffic happens in two separate regimes: a scaling behaviour at time scales

above one second and a less clear scaling behaviour at time scales below one

second. (The data observed was recorded between 1998 and 2002. Each of

these regimes is characterised by a different Hurst parameter.) One possible

suggestion is that the nature of telecoms traffic has changed over time and the

nature of the modelling required has also changed.

1.4.2. Engineering Implications. The reason for the considerable in-

terest in the subject is the fact that the engineering implications of long-range

dependence on queuing performance can be considerable. If Internet traffic

is not modelled well by independent or short-range dependent models then

much traditional queuing theory work based upon the assumption of Pois-

son processes is no longer appropriate. Traffic which is long-range dependent

in nature can have a queuing performance which is significantly worse than

Poisson traffic.

In general it has been found that a higher Hurst parameter often increases

delays in a network, the probability of packet loss and affects a number of

measures of engineering importance. In fact [48] claims that the Hurst param-

eter is “...a dominant characteristic for a number of packet traffic engineering

problems...”. Some of the effects on queuing performance are given by [112]

[128]. However, [111] shows that while the Hurst parameter is important to

queueing, the relationship is not a simple one — in some cases a high Hurst

parameter may improve performance or have no effect. (A commonly given

example is when the LRD arises from aggregation of heavy-tails in the OFF

periods of the traffic sources this does not impact queuing performance.)

1.4.3. The Origins of LRD in Networks. In the literature, four pos-

sible origins for LRD in networks are commonly cited. These are as follows:

(1) LRD is inherent directly in the source of data.

(2) LRD is a result of the aggregation of heavy-tailed data streams.
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(3) LRD is a result of feedback mechanisms in the TCP protocol.

(4) LRD arises from network topology.

These causes are explained in detail below. It is important to emphasise

that these explanations are not contradictory. Each might make a contribution

to the packet traffic behaviour of the network.

(1) The evidence that LRD arises directly in the source of data comes

mainly from studies of video traffic (see [16], [57] and [126]). The

claim in these papers is that variable-bit-rate (VBR) video traffic by

its nature exhibits LRD at source. The LRD, in this case, arises

from an encoding mechanism whereby video is encoded as a series

of differences between frames with occasional full updates. In con-

trast to most literature in the field, [126] claims that this LRD has

no “significant effect on Cell Loss Ratio”. However, it should be em-

phasised that measurements of Internet traffic show that real time

video traffic, indeed any Universal Datagram Protocol (UDP) traffic,

is likely to be only a very small percentage of Internet traffic. It seems

unlikely, therefore, that VBR video traffic could be the main compo-

nent of LRD observed in aggregate traces (some from as far back as

1989). Of course, if VBR video traffic contains LRD at source then it

is likely that other applications might have traffic distributions with

unexpected statistical effects. For example, [115] shows that telnet

packets are not well modelled by a Poisson distribution.

(2) The proposal that LRD in Internet traffic arises from the aggregation

of heavy-tailed data streams is similar to the previously mentioned

mechanism but has a slightly less direct causal mechanism. A causal

connection between heavy-tailed sources and LRD was long suspected

and is proved in [142]. There are good reasons to believe that source

traffic on the Internet is heavy-tailed — file sizes and sizes of accessed

web documents have been shown to have heavy tails (see [35]).
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(3) Another potential cause of LRD is the feedback mechanisms in the

Transmission Control Protocol (TCP). Markov chains were used in

[53] to model TCP timeout and congestion window behaviour and

the authors prove that these can cause what the authors refer to as

“local long-range dependence” (that is, LRD up to a certain time

scale).

(4) Finally, there remains the distinct possibility that LRD is an emergent

property of the networks themselves. Measurements made in [20]

show that, even when “packet inter-departure times are independent,

arrival times at the destination show LRD”. This, obviously indicates

that round trip times in networks are LRD processes. This work is

extended to multifractal measures by [89]. Recent work [4] shows that

LRD can arise in a relatively simple simulation where Poisson sources

randomly situated in a grid network are aggregated as they route via

shortest paths to randomly situated sinks. Moreover, it shown that

when the Poisson sources are changed to LRD, increased LRD occurs

at both host and router sites.

Determining the origin of LRD in Internet networks remains an important

research area and it is uncertain which (if any) of these four causes is really at

the heart of the problem. The possibility remains that it is a mixture of some

or all of them.



CHAPTER 2

Markov Modelling of Long-Range Dependence

2.1. Introduction

This chapter describes a Markov chain based model for producing time-

series exhibiting LRD. The model is a Markov Modulated Process (MMP)

which generates a time series {Yt : t ∈ N} which exhibits LRD.

Section 2.2 provides a simple introduction to the topic of Markov chains

and MMP. Much of this discussion is taken from [92]. Section 2.3 introduces

the structure of the infinite Markov model for LRD. In Section 2.4 a finite

approximation is given and it is shown that this converges to the infinite model.

In Section 2.5 a simple proof is given about the auto-correlation function for

two state processes. In Section 2.6 the parameters for the infinite Markov

model are given and the asymptotic form of the ACF is proved to be that

for LRD. In Section 2.7 an algorithm is given for implementing the finite

chain computationally. In Section 2.8 an improved algorithm is given which

implements the infinite chain computationally. In Section 2.9 the MMP is

implemented and tested computationally. In Section 2.10 the simulated model

is used as a source model for a simple simulation of a computer network with

LRD sources showing the effect of the LRD on packet loss. I am grateful

with Dr. Yann Golanski who was instrumental in setting up and running the

simulation procedures used with his permission in this section. The work is

discussed and placed in context in Section 2.11.

2.1.1. The Need for a New Modelling Method for LRD. Given the

large (and not exhaustive) list of modelling techniques given in Section 1.2,

it might be asked whether there was a need for another model. However, the

53



2.2. MARKOV CHAINS AND MARKOV MODULATED PROCESSES 54

model here is specifically designed to be the simplest possible computational

representation of LRD.

Fractional Gaussian Noise (Section 1.2.1) and FARIMA (Section 1.2.2) are

relatively simple to analyse from a statistical point of view (though the model

described here is arguably simpler). However, these processes cannot easily

be calculated in an ongoing manner (that is, the entire time-series is usually

generated “at once” and, having generated n points, the user must effectively

start again to generate the n + 1th point) [90].

Iterated chaotic maps (Section 1.2.3) are computationally parsimonious

but are analytically problematic since no closed form for the invariant density

of the map is known. Therefore, it is difficult to generate traffic with a given

mean using the iterated map method and progress theoretically is difficult.

2.2. Markov Chains and Markov Modulated Processes

Definition 2.1. The sequence of random variables {Xt : t ∈ N} is a

discrete-time Markov chain if it takes values in some discrete sample space Ω

(Xt ∈ Ω for all t) and, for all t ∈ N and for all ik ∈ Ω, then

P [Xn = in|X1 = i1, X2 = i2, . . . , Xn−1 = in−1] = P [Xn = in|Xn−1 = in−1] .

In other words, a discrete-time Markov chain is a discrete-valued time-series

where the value at time t depends only on the value at time t − 1.

The possible values of the Markov chain Ω are known as the states of the

chain. It is usually assumed (and will be throughout this chapter) that the

possible states of the chain are numbered using integers. That is Ω ⊆ Z.

Definition 2.2. An homogenous, discrete-time Markov chain is a discrete-

time Markov chain for which

P [Xn = in|Xn−1 = in−1] ,

is independent of n.
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All the Markov chains which are discussed in this thesis are discrete-

time, homogenous Markov chains with integer numbered states. If the phrase

Markov chain is used unqualified within this chapter it will refer to a discrete-

time, homogenous Markov chain with integer numbered states.

Definition 2.3. The transition probabilities for a discrete-time, homoge-

nous Markov chain are given by pij where

pij = P [Xn+1 = j|Xn = i] .

This is the probability that the chain will move from state i to state j in one

time step.

Definition 2.4. The m-step transition probabilities for a discrete-time,

homogenous Markov chain are given by p
(m)
ij where

p
(m)
ij = P [Xn+m = j|Xn = i] .

Definition 2.5. A Markov Modulated Process is a process or time-series

{Yt : t ∈ N} where Yi is a function of an underlying Markov chain or, more gen-

erally, where the density function of Yi is a function of an underlying Markov

chain.

Yt = g(Xt),

for some function g(x) or, more generally Yt might be generated by sampling

from a probability distribution which depends upon the state of the underlying

chain.

Definition 2.6. A Markov chain is irreducible if, for all states i, j ∈ Ω,

then there exists some m such that p
(m)
ij > 0. That is any state j can be

reached from any state i.

Definition 2.7. A state i ∈ Ω of a Markov chain is periodic with period

γ if, for some k > 0 and, for some γ ∈ N : γ ≥ 2, then,

p
(m)
ii




≥ 0 m ∈ {γ, 2γ, 3γ, . . . }

= 0 otherwise.
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In other words, a state i is periodic with period γ if returns to the state i are

only permitted after some multiple of the period γ.

Definition 2.8. For a state j ∈ Ω then for n ∈ N the n-step first return

probability r
(n)
j is the probability that the first return to state j occurs after n

steps or

r
(n)
j = P [Xt+n = i|Xt = i,Xt+1 6= i,Xt+2 6= i, . . . , Xt+n−1 6= i] .

Definition 2.9. The terms recurrent and transient are defined in terms

of the probability rj that the state of a chain ever returns to j ∈ Ω, where

rj =
∞∑

n=1

r
(n)
j .

A state j ∈ Ω is recurrent if rj = 1 and transient if rj < 1.

Definition 2.10. The mean recurrence time Mi of a state i ∈ Ω of a

Markov chain is given by

Mi =
∞∑

n=1

nr
(n)
i .

In other words, Mi is the expectation value of the first recurrence time. A

recurrent state i ∈ Ω of a Markov chain is said to be recurrent null if Mi = ∞
and recurrent nonnull if Mi < ∞.

Definition 2.11. The probability of finding the system in state j ∈ Ω at

time n is given by

π
(n)
j = P [Xn = j] ,

and the limiting probabilities (if they exist) are given by

πj = lim
n→∞

π
(n)
j .

The terms πj are known as the equilibrium probabilities for the states.

The following two theorems are taken from [92, page 29].
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Theorem 2.1. The states of an irreducible Markov chain are either all

transient or all recurrent nonnull or all recurrent null. If periodic, then all

states have the same period γ.

Theorem 2.2. In an irreducible and aperiodic homogenous Markov chain,

the limiting probabilities πj always exist and are independent of the distribu-

tion of X1 (the initial state of the chain). Moreover either

(1) all states are transient or all states are recurrent null and πj = 0 for

all j ∈ Ω, or

(2) all states are recurrent nonnull and for all j ∈ Ω, πj = 1/Mj > 0.

If the second case occurs in Theorem 2.2 then the quantities πj are uniquely

determined from the equations

∑

j∈Ω

πj = 1, (2.1)

and

πj =
∑

i∈Ω

πipij. (2.2)

Definition 2.12. A state of a Markov chain is said to be ergodic if it is

irreducible, aperiodic and recurrent nonnull. If all of the states are ergodic

then the chain itself is said to be ergodic and πj is known as the equilibrium

probability of state j.

Definition 2.13. The transition probability matrix P is the matrix of the

elements pij for all i, j ∈ Ω and the equilibrium probability vector π is the

vector of all the equilibrium probabilities πj for all j ∈ Ω.

For example, if Ω = {1, 2, . . . , n}, then the transition matrix P is given by

P =




p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn




,
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and the equilibrium probability vector by

π = (π1, π2, . . . , πn) .

Equation (2.2) can be rewritten in terms of P and π as:

π = πP. (2.3)

Note that, together with equation (2.1) this will always form n + 1 equations

for an n state chain and therefore π is always in principle determined fully by

these two equations.

2.3. An Infinite Markov Model for LRD

OFF ON

0 1 2 . . . n . . .
f1

f2

fn

f0

Figure 2.1. An infinite Markov chain which generates a time

series exhibiting LRD.

The infinite Markov model developed in this research to capture the statis-

tical properties of Internet data is shown in Figure 2.1. This chain with various

transition parameters has been studied by a number of authors. The model is

extremely simple. All states of the chain have a probability one transition to

a lower state except for state zero which has a probability fi of transition to

a new state i.

The Markov chain will be used to derive two time series {Xt : t ∈ N} and

{Yt : t ∈ N}. Xi is the state of the Markov chain at time step i.
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Definition 2.14. The traffic process generated by the chain is given by

Yi which is 0 if Xi = 0 and 1 otherwise. In other words, the system will emit

at rate 1 if the underlying Markov chain is in a state other than zero.

It will be shown that, for a suitable choice of values for the fi then the

process Yi will have long-range dependence.

The transition matrix P for the model shown is given by

P =




f0 f1 f2 . . . fn . . .

1 0 0 . . . 0 . . .

0 1 0 . . . 0 . . .

0 0 1 . . . 0 . . .
...

...
...

. . .
...

. . .




(2.4)

It is an obvious property that the sum of all the transitions from any state

to all other states must equal one. Therefore,

∞∑

i=0

fi = 1. (2.5)

Proposition 2.1. If f0 > 0 and for any i there exists fj > 0 where j ≥ i

then the chain given above is irreducible and aperiodic.

Proof. State zero can be reached from any state. A given state j > 0 will

reach state j − 1 after one step and therefore state zero after j steps. More

generally, a state j will reach a state i after j − i steps, if j ≥ i. Since for

any i there exists fj > 0 by the condition given in the proposition, then state

i can always be reached from state zero for any i. State zero can be reached

from any state i > 0 and state i can be reached from state zero. Therefore the

chain is irreducible.

To see that the chain is aperiodic, consider state zero. If it has an orbit of

period γ then it can also have an orbit of period γ +1 since f0 > 0. Therefore,

state zero is not periodic and by Theorem 2.1 the chain itself is aperiodic. �

Proposition 2.2. Given choices of fi such that the chain is aperiodic and

irreducible then the chain is also ergodic if and only if
∑∞

i=0 ifi < ∞.
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Proof. Consider the state zero. The probability that the next state is i

is given by fi from the definition of the chain. The probability that the chain

will be in state i after one step is given by fi. If the chain is in state i then

the total time to return to state zero is i+ 1 (i steps plus the one step already

taken). By Definition 2.8 then r
(i+1)
0 = fi. Therefore, from Definition 2.10,

M0 =
∞∑

i=0

(i + 1)fi =
∞∑

i=0

fi +
∞∑

i=0

ifi.

By equation (2.5), the mean return time for state zero is

M0 = 1 +
∞∑

i=0

ifi.

This expression is finite if and only if
∑∞

i=0 ifi < ∞ and therefore this is

the condition for state zero to be recurrent nonnull. From Theorem 2.1 the

chain itself is, therefore, recurrent nonnull. Since by hypothesis, the chain is

irreducible and aperiodic then, from Theorem 2.2, the chain is ergodic. �

Proposition 2.2 gives a second condition on the chain. From this point on,

it is assumed that the fi variables will be chosen in such a way as to guarantee

both of these conditions are met and the chain is ergodic.

2.4. A Finite Approximation to this Model

It is convenient to approximate this model with a finite Markov chain with

N + 1 elements numbered from 0 to N . This chain is constructed from the

previous chain with transition probabilities gN
i (for state i in the model with

states from 0 to N). These transition probabilities are constructed from the

rules

gN
i =





fi 0 < i < N,

1
N

∑∞
j=N jfj i = N,

1 −∑N
j=1 gN

j i = 0.

(2.6)

Note that the condition on gN
N is valid only if

∑∞
j=N jfj < N (otherwise

gN
N > 1). The condition on gN

0 ensures that the transition probabilities sum

to 1. The chain is similar to the previous chain but with the states N − ∞
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combined into a single state. The transition probabilities are the same as for

the infinite chain except for states 0 and N . The same reasoning can be used

to prove that this chain is also irreducible, aperiodic, recurrent nonnull and

therefore ergodic. The only difference is that proposition 2.1 must be modified

slightly.

Proposition 2.3. If gN
0 > 0 and gN

N > 0 the chain given above is ergodic.

Proof. The conditions for irreducible and aperiodic follow from the same

reasoning as for the infinite chain. The recurrent nonnull condition follows

from the fact that the maximum possible time any state can take to get back

to state 0 is N steps (from state N). State 0 is recurrent nonull and therefore

all the other states must also be. �

Now it remains to be shown that, as N → ∞, the N+1 state approximation

of this chain tends to the same equilibrium probabilities as the infinite model.

Denote the equilibrium probabilities of the ith state of the finite model with

N + 1 states (numbered 0 to N) as πN
i .

Theorem 2.3. The equilibrium probabilities of the finite model are given

by

πN
i = πN

0

N∑

j=i

gN
j ,

for i ≥ 0.

Proof. From equation (2.2), for 0 ≤ i < N ,

πN
i = gN

i πN
0 + πN

i+1

= gN
i πN

0 + gN
i+1π

N
0 + πN

i+2 for 0 ≤ i < N − 1

= gN
i πN

0 + · · · + gN
N−1π

N
0 + πN

N ,

and

πN = gN
N πN

0 .
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Hence,

πN
i = πN

0

N∑

j=i

gN
j ,

as required. �

Next it will be shown that the finite model converges to a limit as N → ∞.

It is necessary to show that both gN
i → fi and πN

i → πi for all values of

0 ≤ i ≤ N . This will be shown in two parts.

Proposition 2.4. In the limit as N → ∞ then gN
i → fi.

Proof. Define δN
i = gN

i − fi for all N > 0. The proposition is equivalent

to the claim that for any ε > 0 there exists an Nε such that |δN
i | < ε for all

N > Nε and for all i in the range 0 ≤ i ≤ N .

For 0 < i < N the proposition is trivially true since gN
i = fi and therefore

δN
i = 0. Consider the two remaining cases, for i = 0 and for i = N .

Firstly, for i = N ,

gN
N =

1

N

∞∑

i=N

ifi.

Therefore,

δN
N =

(
1

N

∞∑

i=N

ifi

)
− fN =

1

N

∞∑

i=N+1

ifi.

Since
∑∞

i=1 ifi < ∞, let
∑∞

i=1 ifi = K. It follows that
∑∞

i=N+1 ifi ≤ K for

all N > 0. Therefore, there exists some Nε such that K/Nε < ε. Thus for all

N ≥ Nε it is the case that |δN
N | < ε.

For i = 0,

f0 = 1 −
∞∑

i=1

fi,

and also,

gN
0 =1 −

N∑

i=1

gN
i ,

=1 −
N−1∑

i=1

fi −
1

N

∞∑

i=N

ifi.
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Therefore,

δN
0 =

∣∣∣∣∣
∞∑

i=N+1

1

N
(Nfi − ifi)

∣∣∣∣∣ =

∣∣∣∣∣−
1

N

∞∑

i=N+1

(i − N)fi

∣∣∣∣∣ .

Now, since i > N and fi ≥ 0 then,

∣∣∣∣∣−
1

N

∞∑

i=N+1

(i − N)fi

∣∣∣∣∣ <
∣∣∣∣∣
1

N

∞∑

i=N+1

ifi

∣∣∣∣∣ .

Therefore there exists some Nε such that |δN
0 | < ε for all N > Nε since

∑∞
i=N+1 ifi is convergent.

�

This is the first part of the proof that the finite model converges to a limit.

It now remains to show that the equilibrium probabilities converge.

Proposition 2.5. For every i then πN
i is a Cauchy sequence and will

therefore converge to a limit as N → ∞.

Proof. The proposition is equivalent to the claim that for any ε > 0

there exists NK such that |πN
i − πM

i | < ε for all N,M > NK and for all

i : 0 ≤ i ≤ NK .

Define γN
i = πN

i − πN+1
i for all N > 0. Assume, without loss of generality,

M > N .

πN
i − πM

i =
M−1∑

j=N

γj
i , (2.7)

for all M ≥ N .
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Since πN
i = πN

0

∑N
j=i g

N
j from Theorem 2.3 and πN

0 = 1 −∑N
i=1 πN

i from

equation (2.1). Therefore,

πN
0 = 1 − πN

0

N∑

i=1

(
N∑

j=i

gN
j

)

= 1 − πN
0

N∑

i=1

igN
i

= 1 − πN
0

N−1∑

i=1

ifi − πN
0 N

1

N

∞∑

i=N

ifi

= 1 − πN
0

∞∑

i=1

ifi.

Soliving for πN
0 gives

πN
0 = (1 +

∞∑

i=1

ifi)
−1. (2.8)

Thus γN
0 = 0 and therefore from equation (2.7) the proposition is true for

i = 0. That is πN
0 = πM

0 for all M,N > 0. In fact, this should be no surprise,

since gN
N was chosen to ensure this property.

Again, from Theorem 2.3, πN
i = πN

0

∑N
j=i g

N
j and hence from the definition

of γN
i , for all i > 0,

γN
i = π0

[
N−1∑

j=i

fj +
1

N

∞∑

j=N

jfj

]
− π0

[
N∑

j=i

fj +
1

N + 1

∞∑

j=N+1

jfj

]
,

which simplifies to

γN
i = π0

[
1

N
− 1

N + 1

] ∞∑

j=N+1

jfj. (2.9)

It is obvious that since all fj ≥ 0 and N > 0,

∞∑

j=N

jfj ≥
∞∑

j=N+1

jfj.
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Therefore, from equations (2.7) and (2.9),

πN
i − πM

i =
M−1∑

k=N

π0

[(
1

k
− 1

k + 1

) ∞∑

j=N+1

jfj

]

≤π0

(
∞∑

j=N+1

jfj

)
M−1∑

k=N

[
1

k
− 1

k + 1

]

≤π0

[
1

N
− 1

M

] ∞∑

j=N+1

jfj. (2.10)

Clearly, since
∑∞

j=N+1 jfj < ∞ there exists some Nε such that for all

N > Nε,

π0
1

N

∞∑

j=N+1

jfj < ε,

and since M > N > 0,

∣∣∣∣∣π0

(
1

N
− 1

M

) ∞∑

j=N+1

jfj

∣∣∣∣∣ < ε,

for any choice of M and N such that M > N > Nε.

Combining this with equation (2.10) gives

|πN
i − πM

i | ≤ π0

[
1

N
− 1

M

] ∞∑

j=N+1

jfj < ε,

for any choice of M and N such that M > N > Nε and for any i > 0. The

case for i = 0 has already been covered and thus the proposition is proved. �

From Propositions 2.4 and 2.5 then Theorem 2.3 can be extended to the

infinite case as follows:

πi = lim
N→∞

πN
i = π0

∞∑

j=i

fj for i > 0. (2.11)

It is also useful to extend equation (2.8) to the infinite case.

π0 = lim
N→∞

πN
0 = (1 +

∞∑

i=1

ifi)
−1. (2.12)
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2.5. The ACF for Two-state Processes

The ACF, ρ(k), for a stationary time series {Xt : t ∈ N} was given in

Definition 1.18 and the autocovariance, γ(k), was given in Definition 1.17.

Consider a time series, {Xt : t ∈ N} where Xt ∈ {a, b} for all t and where

a 6= b.

The following shorthand notations will be used throughout this chapter

Pk(a) = P [Xt+k = a|Xt = a]

Pk(b) = P [Xt+k = b|Xt = b]

p = P [Xt = a] .

Note that clearly, if the time series is to have two values, these three quan-

tities must be in the range (0, 1).

The mean µ is given by

µ = E [Xt] = pa + (1 − p)b. (2.13)

The variance σ2 is given by

σ2 = E
[
(Xt − µ)2

]
= E

[
X2

t

]
− µ2 = a2p + b2(1 − p) − (pa + (1 − p)b)2

= p(1 − p)(a − b)2.

Theorem 2.4. For a weakly-stationary time series Xt : t ∈ N, which can

only take two distinct values a and b, the autocorrelation function ρ(k) is given

by

ρ(k) = Pk(a) + Pk(b) − 1 =
Pk(a) − p

(1 − p)
=

Pk(b) − (1 − p)

p
.

Proof. Rearranging equation (2.13) then

a − µ = (1 − p)(a − b), (2.14)

and,

b − µ = p(b − a). (2.15)
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Since the series has only two values, it must be the case that

Pk(a) = 1 − P [Xt+k = b|Xt = a]

and,

Pk(b) = 1 − P [Xt+k = a|Xt = b] .

The auto-covariance γ(k) is given by

γ(k) = E [(Xt+k − µ)(Xt − µ)]

= P [Xt+k = a,Xt = a] (a − µ)2

+ P [Xt+k = b,Xt = a] (a − µ)(b − µ)

+ P [Xt+k = b,Xt = b] (b − µ)2

+ P [Xt+k = a,Xt = b] (a − µ)(b − µ)

= P [Xt+k = a|Xt = a] p(a − µ)2

+ P [Xt+k = b|Xt = a] p(a − µ)(b − µ)

+ P [Xt+k = b|Xt = b] (1 − p)(b − µ)2

+ P [Xt+k = a|Xt = b] (1 − p)(a − µ)(b − µ)

= Pk(a)p(a − µ)2 + (1 − Pk(a))p(a − µ)(b − µ)

+ (1 − Pk(b))(1 − p)(a − µ)(b − µ) + Pk(b)(1 − p)(b − µ)2.

Substituting from equations (2.14) and (2.15),

= Pk(a)[p(1 − p)2(a − b)2 + p2(1 − p)(a − b)2] − p2(1 − p)(a − b)2

+ Pk(b)[(1 − p)p2(a − b)2 + p(1 − p)2(a − b)2] − p(1 − p)2(a − b)2

= Pk(a)p(1 − p)(a − b)2 + Pk(b)p(1 − p)(a − b)2 − p(1 − p)(a − b)2

= σ2[Pk(a) + Pk(b) − 1].

Therefore, since ρ(k) = γ(k)/σ2,

ρ(k) = Pk(a) + Pk(b) − 1, (2.16)

which is the first part of the theorem.
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Again, taking the autocovariance gives

γ(k) = E [(Xt+k − µ)(Xt − µ)] = E [Xt+kXt] − µ2

= Pk(a)pa2 + (1 − Pk(a))pab + (1 − Pk(b))(1 − p)ab

+ Pk(b)(1 − p)b2 − µ2

= a(a − b)p [Pk(a) − p] − b(a − b)(1 − p) [Pk(b) − (1 − p)]

=
σ2

a − b

[
a

(1 − p)
[Pk(a) − p] − b

p
[Pk(b) − (1 − p)]

]
.

This gives an ACF

ρ(k) =
a [Pk(a) − p]

(1 − p)(a − b)
− b [Pk(b) − (1 − p)]

p(a − b)
(2.17)

Setting this equal to equation (2.16) and rearranging gives

Pk(a) + Pk(b) − 1 =
aPk(a) − ap

(1 − p)(a − b)
− bPk(b) − b(1 − p)

p(a − b)

p(1 − p)(a − b)Pk(b) + bPk(b)(1 − p) = apPk(a) − p(1 − p)(a − b)Pk(a)

+ p(1 − p)(a − b) − ap2 + b(1 − p)2

(1 − p)[Pk(b) − 1] = p[Pk(a) − 1]

Pk(a) − p

(1 − p)
=

Pk(b) − (1 − p)

p
.

Substituting this into equation (2.17) gives

ρ(k) =
a [Pk(b) − (1 − p)]

p(a − b)
− b [Pk(b) − (1 − p)]

p(a − b)
=

Pk(b) − (1 − p)

p
,

which, in view of equation (2.16) completes the proof. �

Definition 2.15. Let I(Xt) be an indicator variable which has the value

1 if Xt = a and 0 otherwise.

Definition 2.16. Let An, where n ∈ N, be the expected number of oc-

curences of the value a in n samples from a weakly stationary, two-valued

time-series. Let An(t) be the number of occurences of a between Xt+1 and
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Xt+n. Then

An(t) =
n∑

i=1

I(Xt+i).

Theorem 2.5. Given the conditions of the previous theorem then, for

k > 2,

ρ(k) =
var (Ak+1) − 2var (Ak) + var (Ak−1)

2p(1 − p)
.

Proof. Expanding the variance of An(t) in terms of expectation values

gives:

var (An(t)) = E
[
An(t)2

]
− E [An(t)]2

= E



(

n∑

i=1

I(Xt+i)

)2

− E

[
n∑

i=1

I(Xt+i)

]2

= E



(

n∑

i=1

I(Xt+i)

)2

−

(
n∑

i=1

E [I(Xt + i)]

)2

Since the series is stationary, E [Xt] = E [X0] and also E [XtXt+k] = E [X0Xk].

Therefore E [I(Xt)] = E [I(X0)]. Similarly var (An) = var (An(t)). Substitut-

ing and rearranging the first sum gives

var (An) = E

[
2

(
n−1∑

i=0

(n − i)I(X0)I(Xi)

)
−
(

n∑

i=1

I(X0)I(X0)

)]

−
(

n∑

i=1

E [I(X0)]

)2

.

Clearly, E [I(X0)] = p and E [I(X0)
2] = p. Also:

E [I(Xt)I(Xt+k)] = E [I(X0)I(Xk)]

= P [Xk = a,X0 = a]

= P [Xk = a|X0 = a] P [X0 = a]

= Pk(a)p.
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Making these substitutions and rearranging the sums gives

var (An) =

(
2

n−1∑

i=0

(n − i)E [I(X0)I(Xi)]

)
−

n∑

i=1

E [I(X0)I(X0)] −
(

n−1∑

i=0

p

)2

= 2

(
n∑

i=1

(n − i)Pi(a)p

)
− np − n2p2.

By the same process,

var (An+1) = 2

(
n∑

i=0

(n + 1 − i)Pi(a)p

)
− (n + 1)p − (n + 1)2p2.

Taking the first difference gives

var (An+1) − var (An) = 2

(
n∑

i=0

Pi(a)p

)
− p − 2np2 − p2.

Similarly,

var (An) − var (An−1) = 2

(
n−1∑

i=0

Pi(a)p

)
− p − 2(n − 1)p2 − p2,

where n ≥ 2. The second difference is therefore,

var (An+1) − 2var (An) + var (An−1) = 2p(Pn − p).

Therefore, subsituting this into Theorem 2.4 gives, for n ≥ 2,

ρ(n) =
var (An+1) − 2var (An) + var (An−1)

2p(1 − p)
.

�

2.6. Introducing Correlations Into the Markov Traffic Model

The original aim of the Markov model was to produce a time series Yi (as

given in Definition 2.14 which exhibits LRD. The next step is to choose fi so

as to induce correlation in the time series Yt in order to meet the conditions

for LRD. From Definition 1.21, a series is LRD with Hurst parameter H if the

ACF ρ(k) meets the condition,

ρ(k) ∼ Ck−α, (2.18)
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where ρ(k) is the ACF, C is some positive constant and α ∈ (0, 1). The Hurst

parameter is then given by H = 1 − α
2
.

An obvious way to introduce correlations over a lag of k is to include

unbroken sequences of k or more 1s into a binary time series. In other words,

P [Yi = 1, Yi+1 = 1 . . . Yi+k = 1] ∼ Ck−α.

This occurs if and only if Xi ≥ k. The desired property is that P [Xi > k] ∼
Ck−α which, in an ergodic chain, is equivalent to requiring that the sum of all

states k or larger falls off with the form

∞∑

i=k

πi ∼ Ck−α.

To achieve this, an extremely strict condtion is introduced for k > 0,

∞∑

i=k

πi = Ck−α, (2.19)

where C is a constant. Note, that there is, as yet, no guarantee that this is a

valid Markov chain — this will be discussed later.

The constant C can be quickly calculated by setting k = 1.

∞∑

i=1

πi = 1 − π0 = C1−α = C,

and therefore C = 1 − π0. Therefore equation (2.19) becomes

∞∑

i=k

πi = (1 − π0)k
−α k > 0.

From this equation for k and subtracting the same equation for k + 1

πk = (1 − π0)[k
−α − (k + 1)−α] k > 0.

Similarly, taking equation (2.11) for k and k + 1,

π0fk = πk − πk+1 k > 0,

and therefore for k > 0,

fk =
1 − π0

π0

[
k−α − 2(k + 1)−α + (k + 2)−α

]
k > 0. (2.20)
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Obviously, to satisfy the Markov property given in equation (2.5),

f0 = 1 −
∞∑

i=1

fi,

which can be seen to be

f0 = 1 − 1 − π0

π0

∞∑

i=1

[
i−α − 2(i + 1)−α + (i + 2)−α

]
.

Expanding the sum and changing the limits gives

f0 = 1 − 1 − π0

π0

[
∞∑

i=1

i−α − 2
∞∑

i=2

i−α +
∞∑

i=3

i−α

]
.

Most of the terms of the sum cancel leaving

f0 = 1 − 1 − π0

π0

[
1 − 2−α

]
. (2.21)

2.6.1. A Brief Summary of the Infinite Chain Model. This infinite

chain model is the main outcome of this chapter. For reference, the model is

summarised here. The infinite chain model, is a Markov chain as shown in

Figure 2.1. The chain generates a zero when in state zero and a one otherwise.

The model has only two parameters, π0 ∈ (0, 1) and α ∈ (0, 1).

The first, π0 is the equilibrium probability of the zero state and is 1 − µ

where µ is the mean output of the model. The second, α is related to the

Hurst parameter by the equation H = 1 − α/2.

The transition probabilities fk of the chain are given by equation (2.20) as

fk =
1 − π0

π0

[
k−α − 2(k + 1)−α + (k + 2)−α

]
for k > 0,

and for k = 0,

f0 = 1 − 1 − π0

π0

[
1 − 2−α

]
.

The equilibrium probabilities of the chain are given for k > 0 by

πk = (1 − π0)[k
−α − (k + 1)−α],

and, as has already been stated, π0 is a parameter of the model.
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2.6.2. Checking the Infinite Chain is Valid. It has been assumed

that the chain is ergodic. Recall that by Proposition 2.2 the chain is ergodic

if
∑∞

i=0 ifi < ∞.

Substituting from equation (2.20) gives

∞∑

k=0

kfk =
1 − π0

π0

∞∑

k=1

[
k1−α − 2(k + 1)1−α + 2(k + 2)−α + (k + 2)1−α

−2(k + 2)−α

]
.

The series telescopes, therefore,

∞∑

k=0

kfk =
1 − π0

π0

[
1 − 21−α + 2.2−α

]
=

1 − π0

π0

. (2.22)

This is finite as required when α ∈ (0, 1).

Finally, it should be noted that this equation is not valid for every possible

combination of π0 and α. In particular, for values of π0 near zero then the term

(1−π0)/π0 becomes extremely large and values of fi from equation (2.20) will

be negative but, since they are probabilities, they must remain in the range

(0, 1). The fact that the model is invalid for some combinations of π0 and α

is not a great problem and the model can be confined to the valid region for

experiments. Rearranging equation (2.21) shows that for α, π0 ∈ (0, 1) then

f0 ∈ (0, 1) if,

π0 >
2α − 1

2α+1 − 1
.

2.6.3. The ACF of the Infinite Chain. The ACF for the infinite chain

can be approximated as k → ∞ using a method due to Wang [154] which in

turn derives, in part, from [52] and [47]. Here an original proof is used which

relies only on [52] and gets tighter bounds on the performance.

The theory of recurrent events described in [52] describes the behaviour

of systems where an event occurs periodically over a number of trials. If this

event ε is associated with the event Xt = 0 the theory in [52] can be used. In

[52] the event ε is “characterised by the property that, as far as ε is concerned

the initial situation repeats itself every time when ε occurs: the trials following
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the occurence of ε are a replica of the whole sequence.” This is certainly the

case for Xt = 0 due to the Markov property.

Definition 2.17. The event ε is some event which may either occur at a

given sample in a time series Xt. The number of samples of the series between

occurrences of ε is an independent and identically distributed variable.

Definition 2.18. The indicator variable I(Xt) is defined as 1 if Xt = 0

and 0 otherwise.

Definition 2.19. The expected number of occurrences of ε in n trials is

Mn. The value of Mn where the zeroth trial is Xt is given by Mn(t) where

Mn(t) =
∞∑

i=1

I(Xt+i).

Definition 2.20. Define Nn as Mn with the restriction that the event ε

occurred on the trial before counting. Define Nn(t) as Nn measured where the

zeroth trial is at Xt which has the value Xt = 0. Note that this definition of

Nn is taken from [52] and [154].

Definition 2.21. Define Tj as one plus the number of trials between the

(j − 1)th and the jth occurrence of ε.

By the conditions of Definition 2.17, the Tj are mutually independent with

a common probability distribution. In the case of the chain described,

P [Tj = n] = fn−1,

for n > 0 since when the (j − 1)th occurrence of ε occurs the chain must be

in state zero and the next occurrence must be at its next return to the zero

state. The distribution function F (n) of Tj is therefore given by

F (n) =
n∑

i=1

fi−1, (2.23)

for the infinite chain.
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The results from [52] and [154] both assume that the distribution function

obeys

1 − F (n) ∼ Anγ, (2.24)

for some postive constant A and some γ. This will now be shown for the

specified infinite chain.

From equation (2.23),

1 − F (n) = 1 −
n∑

i=1

fi−1 =
∞∑

i=n+1

fi−1 =
∞∑

i=n

fi.

Substituting fi from (2.20):

1 − F (n) =

(
1 − π0

π0

) ∞∑

i=n

[
i−α − 2(i + 1)−α + (i + 2)−α

]

=

(
1 − π0

π0

)[
n−α − (n + 1)−α

]

=

(
1 − π0

π0

)
(n + 1)α − nα

(n + 1)αnα

=

(
1 − π0

π0

)
(1 + 1/n)α − 1

nα(1 + 1/n)α
.

Expanding (1 + 1/n)α using the binomial theorem gives

(1 + 1/n)α = 1 + α/n + O(n−2).

Substituting this expression top and bottom gives:

1 − F (n) =

(
1 − π0

π0

)
1 + α/n + O(n−2) − 1

nα(1 + α/n + O(n−2))

=

(
1 − π0

π0

)
n−α(α/n + O(n−2))

(1 + α/n + O(n−2))

∼
(

1 − π0

π0

)
αn−(1+α).

This is the form required by equation (2.24) with γ = (1 + α) and A =

α(1 − π0)/π0.
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From [154, page 6651] 1 if the density function is of the form F (x) =

1 − An−γ with 1 < γ < 2 then the autocorrelation function ρ(n) is given by

ρ(n) ∼ Cn−(γ−1),

for some positive constant C therefore,

ρ(n) ∼ Cn−α.

This is the form given by Definition 1.21 and therefore the time series Yt

generated by the infinite chain is long-range dependent with LRD parameter

α. In the rest of this section, an independent proof will be developed which

finds a value for C.

The proof in [154] is somewhat technical and relies on results from Fourier

analysis in addition to the work in [52]. The proof that follows relies only on

[52] but is not as general as that given in [154] since the proof given below

works only when the Markov chain is ergodic (which occurs, as has been shown,

when α ∈ (0, 1)).

From [52, Theorem 10], given that the probability distribution satisifies

1 − F (x) ∼ Ax−γ , where A is a positive constant and 1 < γ < 2 then

E [Nn] =
n

µ
+

A

(γ − 1)(2 − γ)
µ2n2−γ + o(n2−γ),

where µ is the mean recurrence time of ε, and

var (Nn) ∼ 2A

(2 − γ)(3 − γ)µ3
n3−γ .

In the case of the chain under investigation γ = 1 + α, and A = α(1− π0)/π0.

Since the chain is ergodic, from Theorem 2.2, the mean recurrence time of

state zero for the infinite chain is 1/π0. Therefore,

var (Nn) ∼ 2απ2
0(1 − π0)

(1 − α)(2 − α)
n2−α. (2.25)

1The reference uses α where this thesis uses γ — the change has been made to avoid a

clash with α in Definition 1.21.
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Theorem 2.6. As n → ∞ if E [Nn] → ∞ and the underlying Markov

chain is ergodic then

E [Nn] ∼ E [Mn]

and

var (Nn) ∼ var (Mn) .

Proof. Define Tk as one greater than the number of trials between the (k−
1)th occurrence of ε and the kth occurrence. The Tk are clearly independent

variables (from the definition of ε in Definition 2.17). Define Sk as

Sk =
k∑

i=1

Ti.

If k or more events ε occur in the n trials immediately following an event then

T1 + · · · + Tk must be less than or equal to n. This gives

P [Nn ≥ k] = P [Sk ≤ n] .

Using a similar expression for P [Nn ≥ k + 1] gives

P [Nn = k] = P [Sk ≤ n] − P [Sk+1 ≤ n] .

However, when considering Mn, there is no restriction that the n trials are

immediately following an event. Therefore define S ′
k as

S ′
k = T ′

1 + T2 + T3 + · · · + Tk,

where 0 < T ′
1 ≤ T1 is the number of trials before the first event occurs.

P [Mn ≥ k] = P [S ′
k ≤ n] ≥ P [Sk ≤ n] ,

and therefore E [Mn] ≥ E [Nn]. However, using the fact that the Ti are inde-

pendent and identically distributed,

P [Nn ≥ k − 1] = P [Sk−1 ≤ n] = P [Sk − T1 ≤ n] ≥ P [Sk − T1 + T ′
1 ≤ n] .

Therefore,

P [Nn ≥ k] ≤ P [Mn ≥ k] ≤ P [Nn ≥ k − 1] .
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Taking expectations gives

E [Nn] ≤ E [Mn] ≤ E [Nn] + 1,

which proves that E [Nn] ∼ E [Mn]. The derivation for variance follows since,

by similar reasoning, E [N 2
n] ∼ E [M 2

n] and E [Nn]2 ∼ E [Mn]2. �

This theorem allows the substitution of var (Nn) from equation (2.25) into

the result from Theorem 2.5 gives:

ρ(n) ∼ var (Nn+1) − 2var (Nn) + var (Nn−1)

2π0(1 − π0)

∼ K(n + 1)2−α − 2Kn2−α + K(n − 1)2−α, (2.26)

where

K =
απ0

(1 − α)(2 − α)
.

By the binomial theorem,

(n + 1)2−α − 2n2−α + (n − 1)2−α

=n2−α

[(
1 +

1

n

)2−α

− 2 +

(
1 − 1

n

)2−α
]

=n2−α

[
1 +

(
1

n

)
(2 − α) +

(
1

n

)2
(2 − α)(1 − α)

2
− 2+

1 −
(

1

n

)
(2 − α) +

(
1

n

)2
(2 − α)(1 − α)

2
+ O(n−3)

]

=n2−α

[
1

n2
(2 − α)(1 − α) + O(n−3)

]

=n−α(2 − α)(1 − α) + O(n−(1+α)),

Substituting this result into equation (2.26) shows that the ACF of the chain

has the form

ρ(n) ∼ απ0n
−α, (2.27)

which was exactly the fall off required to prove the existence of LRD in the

series.
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2.7. An Algorithm for the Finite Chain

For calculating which state of the Markov chain to move to next, it is useful

to be able to calculate certain parameters directly. From equations (2.6) and

(2.20) then

gN
N =

1

N

∞∑

i=N

1 − π0

π0

i
[
i−α − 2(i + 1)−α + (i + 2)−α

]
.

Rearranging this gives

gN
N =

1 − π0

Nπ0

[ ∞∑

i=N

i(i−α) − 2
∞∑

i=N

(i + 1)(i + 1)−α + 2
∞∑

i=N

(i + 1)−α

+
∞∑

i=N

(i + 2)(i + 2)−α − 2
∞∑

i=N

(i + 2)−α

]
.

Cancelling parts of the sums leads to,

gN
N =

1 − π0

Nπ0

[
NN−α − (N + 1)(N + 1)−α + 2(N + 1)−α

]
,

which finally gives

gN
N =

1 − π0

π0

[
N−α − (N − 1)

N
(N + 1)−α

]
. (2.28)

Now, to choose the state which follows the zero state, calculate the prob-

ability that the next state is in the range [j, k] where 0 ≤ j ≤ k ≤ N .

Definition 2.22. Let GN(j, k) be the probability that if the N state chain

is in state 0, then the next state picked is in the range [j, k] where 0 ≤ j ≤
k ≤ N .

In fact, this calculation is simple in the case 0 < j ≤ k < N since

GN(j, k) =
k∑

i=j

gN
i =

k∑

i=j

fi =
1 − π0

π0

k∑

i=j

[
i−α − 2(i + 1)−α + (i + 2)−α

]
,

which becomes

GN(j, k) =
1 − π0

π0

[
j−α − (j + 1)−α − (k + 1)−α + (k + 2)−α

]
. (2.29)
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This, is valid for the range 0 < j ≤ k < N . To calculate GN(j,N) with

j > 0 simply use

GN(j,N) = GN(j,N − 1) + gN
N .

Combining equations (2.29) and (2.28) gives

GN(j,N) =
1 − π0

π0

[
j−α − (j + 1)−α − N−α + (N + 1)−α

+ N−α − (N − 1)

N
(N + 1)−α

]
.

This becomes

GN(j,N) =
1 − π0

π0

[
j−α − (j + 1)−α +

1

N
(N + 1)−α

]
.

To use the N state finite chain, follow the simple procedure in Table 2.1.

(1) If Xn > 0 then Xn+1 = Xn − 1. Exit here.

(2) Choose a new random number R in the range [0, 1].

(3) Set j = 1.

(4) If R < GN(j,N) then the new state is Xn+1 = j − 1.

Exit here.

(5) Increase j by 1. If j > N the new state Xn+1 = N .

Exit here.

(6) Go to step 4.

Table 2.1. Procedure for finding Xn+1 in the N state finite

chain from Xn.

2.8. Calculating States in the Infinite Chain

The same calculations can be done for the infinite chain and an extension

allows use of the infinite model in practical computation.

Definition 2.23. Let F (j, k) be the probability that, if the infinite chain

is in state zero, then the next state picked is in the range [j, k] where 0 ≤ j ≤ k.
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In other words, F (j, k) =
∑k

i=j fi.

For j > 0 and k < ∞ this can be shown (in a similar way to the expression

for the finite chain) to be

F (j, k) =
1 − π0

π0

[
j−α − (j + 1)−α − (k + 1)−α + (k + 2)−α

]
. (2.30)

For j > 0 and k = ∞

F (j,∞) =
1 − π0

π0

[
j−α − (j + 1)−α

]
. (2.31)

For j = 0 and k < ∞

F (0, k) = 1 − F (k + 1,∞),

where F (k + 1,∞) can be calculated from the previous equation. The result

for j = 0 and k = ∞ is therefore

F (0,∞) = 1,

as would be expected.

To make the infinite chain useful in computation a few subsidiary results are

needed. A computer can only generate a random number to a finite precision.

Therefore, to simulate an infinite chain a method is needed to choose states

using finite precision arithmetic. If X is the first state chosen following state

zero then for 0 < k ≤ i ≤ j ≤ l,

P [X ∈ [i, j]|X ∈ [k, l]] =
P [X ∈ [i, j] ∩ X ∈ [k, l]]

P [X ∈ [k, l]]
,

and therefore, since [i, j] ⊆ [k, l],

P [X ∈ [i, j]|X ∈ [k, l]] =
P [X ∈ [i, j]]

P [X ∈ [k, l]]
.

Finally, if 0 < k ≤ i ≤ j ≤ l then from (2.30),

P [X ∈ [i, j]|X ∈ [k, l]] =
i−α − (i + 1)−α − (j + 1)−α + (j + 2)−α

k−α − (k + 1)−α − (l + 1)−α + (l + 2)−α
. (2.32)
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If l = ∞ then the l terms simply vanish from the equation as can be seen

in equation (2.31). This gives

P [X ∈ [i, j]|X ∈ [k,∞]] =
i−α − (i + 1)−α − (j + 1)−α + (j + 2)−α

k−α − (k + 1)−α
. (2.33)

The procedure for finding Xn+1 the first state after some Xn = 0 for the

infinite chain can be given by Table 2.2.

(1) If Xn > 0 then Xn+1 = Xn − 1. Exit here.

(2) Explicitly calculate F (j,∞) for values of j ≤ N where

N is some small integer. Use the procedure for the

finite state model to find a value for Xn+1 if Xn+1 < N .

(3) Generate a new random number R in the range [0, 1].

(4) Calculate P [Xn+1 ∈ [N, 2N − 1]|Xn+1 ∈ [N,∞]] from

equation (2.33). If R is less than or equal to this

probability then Xn+1 is in the required range.

Otherwise go to step six.

(5) If Xn+1 is in the required range then refine down by

generating a new random number and seeing if Xn+1 is

in the range [N, (3/2)N ]. Continue refining by a binary

search (with a new random number each time) until

Xn+1 is found. Exit here.

(6) Increase the value of N to 2N and go to step 3.

Table 2.2. A procedure for finding Xn+1 from Xn in the infinite chain.

2.9. Tests on Implementions of This Model

The model specified in Table 2.2 was run for various test scenarios to

test repeatability and ability to model LRD with a given mean and Hurst

parameter. Several simulation procedures are used, involving the finite and

the infinite chain. In general, the procedure is to generate a large number of
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values of Yi : i ∈ {1, 2, . . . , N} (the binary time series generated with the rule

Yi = 1 if Xi > 0 and Yi = 0 if Xi = 0). This series is aggregated over a scale

m to form a series Zi : i ∈ {1, 2, . . . , N/m} where Zi =
∑(i+1)m−1

j=im Yj. All the

series shown here are simulated with a mean of 0.5 (that is π0 = 0.5). The

tests shown in this section are aggregated over a scale m = 100.

Figures 2.2, 2.3 and 2.4 show sample traces generated from the infinite

chain with differing Hurst parameters. As described, each point in this plot

is the sum of one hundred binary samples generated from the infinite Markov

model. Traces generated from the finite chain are indistinguishable to the

naked eye. Figure 2.2 has the lowest Hurst parameter and, the majority of

the time the trace appears to stay around the mean level of 50. For Figures

2.3 and 2.4 the trace seems to have more peaks and remain at the highest

value (100) for longer. It should be noticed that because of the nature of the

chain, long high periods are common, long low periods are absent from the plot

(none of the plots reach 0). These plots should be viewed in conjunction with

the sample mean calculations in Section 1.1.3.1. The sample mean converges

more slowly as the Hurst parameter increases. This can be seen, as the Hurst

parameter in the plots increases the plots cover more points on the y-axis

showing that the variance on the sample mean estimate (represented by each

point on the plot) has increased.

Table 2.3 shows the sample mean for several realisations of different pa-

rameters of the infinite chain with an actual mean of 50. As can be seen, and

as expected, the smaller number of points and the higher Hurst values have a

worse convergence to the actual mean.

The next three plots, Figures 2.5, 2.6 and 2.7 show the ACF for three

realisations of ten thousand points (each of which is an aggregation of m = 100

points). Note that the plots are labelled R(k) (where R(k) is the ACF at lag k)

versus k. The three figures show π0 = 0.5 and Hurst parameters of H = 0.625,

H = 0.75 and H = 0.875. The plots are on a log scale, therefore, from (2.27),

log(ρ(k)) = log(απ0) − α log(k) + o(1),
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and therefore, a log-log plot of n versus log(k) should be a straight line. Breaks

in the logscale plots are where the ACF value was negative and therefore no

log could be computed. It should be noted, however, that when k is small

then the o(1) term may dominate and as k increases, the estimate of ρ(k)

becomes less reliable even when the sample size is as high as one million points.

This explains why the straight line deviates wildly in these realisations of ten

thousand points. It also explains why the three lines do not lie directly on top

of each other. As can be seen in the next three plots, Figures 2.8, 2.9 and 2.10

the autocorrelation function remains straighter for longer with a sample size of

one million points. By comparison, Figures 2.11 and 2.12 show ten thousand

and one million point samples respectively compared for three different Hurst

parameters.

Figures 2.13, 2.14 and 2.15 show the fit against the theoretical line. It is

clear from all three figures that the slope (which represents the rate of expo-

nential decay) is at least approximately correct for all three Hurst parameters

investigated. However, it also seems clear that for high Hurst parameters,

while the prediction of the slope is correct the absolute value is wrong. It

is not clear that the sample ACF is an unbiased estimator for a long-range

dependent process described and it is clear that the ACF estimate does not

converge quickly as the number of points in the series increases. This matter

clearly merits further investigation since the discrepency between the theory

and the experimental realisation is clear.

For contrast Figure 2.16 shows the results for a finite chain model with a

variety of different numbers of states. As the number of states increases, the

returns in accuracy diminish and the accuracy of real number storage in the

machine becomes an issue. This kind of problem will beset a large number of

LRD generating mechanisms in practical implementations. Breaks in the lines

are particularly notable when the number of states is low.
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Hurst parameter Points Run 1 Mean Run 2 Mean Run 3 Mean

0.625 10,000 49.9252 49.5322 49.7305

0.75 10,000 50.2001 50.3154 50.476

0.875 10,000 47.4101 46.9322 49.569

0.625 1,000,000 50.053464 50.00757 49.998927

0.75 1,000,000 49.847889 50.115351 49.835945

0.875 1,000,000 49.999512 48.590166 49.489746

Table 2.3. Means for several realisations of the infinite chain process
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Figure 2.2. A sample path of 1000 points generated from the
infinite chain with H = 0.625, π0 = 0.5 and m = 100.
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Figure 2.3. A sample path of 1000 points generated from the
infinite chain with H = 0.75, π0 = 0.5 and m = 100.
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Figure 2.4. A sample path of 1000 points generated from the
infinite chain with H = 0.875, π0 = 0.5 and m = 100.
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Figure 2.5. ACF of three runs of 10,000 points generated from
the infinite chain with H = 0.625, π0 = 0.5 and m = 100.
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Figure 2.6. ACF of three runs of 10,000 points generated from
the infinite chain with H = 0.75, π0 = 0.5 and m = 100.
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Figure 2.7. ACF of three runs of 10,000 points generated from
the infinite chain with H = 0.875, π0 = 0.5 and m = 100.
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Figure 2.8. ACF of three runs of 1,000,000 points generated
from the infinite chain with H = 0.625, π0 = 0.5 and m = 100.
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Figure 2.9. ACF of three runs of 1,000,000 points generated
from the infinite chain with H = 0.75, π0 = 0.5 and m = 100.
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Figure 2.10. ACF of three runs of 1,000,000 points generated
from the infinite chain with H = 0.875, π0 = 0.5 and m = 100.
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Figure 2.11. ACF of three runs of 1,000,000 points generated
from the infinite chain with H values and π0 = 0.5 and m = 100.
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Figure 2.12. ACF of three runs of 1,000,000 points generated
from the infinite chain with H values and π0 = 0.5 and m = 100.
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Figure 2.13. ACF of three runs of 1,000,000 points generated
from the infinite chain with H = 0.625 and π0 = 0.5 and m =
100 with theoretical line.
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Figure 2.14. ACF of three runs of 1,000,000 points generated
from the infinite chain with H = 0.75 and π0 = 0.5 and m = 100
with theoretical line.
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Figure 2.15. ACF of three runs of 1,000,000 points generated
from the infinite chain with H = 0.875 and π0 = 0.5 and m =
100 with theoretical line.
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Figure 2.16. ACF from the finite chain with 256, 1024 and
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π0 = 0.5 and m = 100 with theoretical line
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2.9.1. Comparison With Other Models. In this section, Fractional

Gaussian Noise (Section 1.2) and iterated chaotic maps (Section 1.2) are com-

pared with the Markov method for generating traffic previously discussed. In

each case, the traffic is generated with a known Hurst parameter and each

generation method with each Hurst parameter is run three times.

In each case, a million sample points are generated. In the case of the

Markov method and the iterated maps method each point is generated by

aggregating a hundred points as discussed previously. The three methods

were implemented in the C programming language. To generate one million

points took approximately 55 seconds for the Markov method, 60 seconds for

the iterated maps method and 6 seconds for the fractional Gaussian noise

method. However, it is debatable whether this is a fair comparison since the

first two methods could be considered to be generating a hundred million

points and aggregating into groups of one hundred. No C code to generate

FARIMA based data was available and the R code available took 188 seconds

to generate only a hundred thousand points.

The Hurst parameter is estimated using various of the measuring tech-

niques discussed in Section 1.3 to check the match between theory and prac-

tice. The estimators used are the R/S method and a modification of this which

automatically selects the lag ranges to look at, the aggregated variance, the

periodogram, local Whittle and wavelet based estimation.
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Source H R/S Mod. Agg. Period- Local Wave-
R/S Var. ogram Whit. lets

FGN 0.625 0.637 0.624 0.623 0.626 0.639 0.635
FGN 0.625 0.632 0.624 0.622 0.624 0.638 0.635
FGN 0.625 0.645 0.633 0.620 0.622 0.638 0.635
FGN 0.75 0.728 0.738 0.741 0.747 0.774 0.767
FGN 0.75 0.741 0.736 0.749 0.755 0.776 0.769
FGN 0.75 0.694 0.719 0.741 0.754 0.774 0.768
FGN 0.875 0.784 0.837 0.858 0.877 0.908 0.897
FGN 0.875 0.750 0.823 0.850 0.876 0.908 0.897
FGN 0.875 0.747 0.835 0.860 0.876 0.908 0.898
It. map 0.625 0.635 0.590 0.604 0.630 0.719 0.706
It. map 0.625 0.608 0.595 0.604 0.627 0.716 0.703
It. map 0.625 0.637 0.594 0.610 0.637 0.718 0.707
It. map 0.75 0.828 0.666 0.717 0.746 0.813 0.800
It. map 0.75 0.725 0.650 0.712 0.739 0.813 0.801
It. map 0.75 0.678 0.694 0.765 0.768 0.814 0.803
It. map 0.875 0.703 0.779 0.851 0.876 0.925 0.910
It. map 0.875 0.779 0.802 0.854 0.877 0.924 0.910
It. map 0.875 0.846 0.817 0.861 0.874 0.925 0.912
Markov 0.625 0.526 0.597 0.611 0.621 0.703 0.691
Markov 0.625 0.593 0.645 0.700 0.684 0.710 0.702
Markov 0.625 0.632 0.603 0.646 0.650 0.707 0.698
Markov 0.75 0.663 0.684 0.744 0.760 0.793 0.784
Markov 0.75 0.670 0.667 0.751 0.759 0.793 0.783
Markov 0.75 0.671 0.671 0.724 0.736 0.786 0.776
Markov 0.875 0.724 0.732 0.816 0.848 0.884 0.873
Markov 0.875 0.757 0.754 0.830 0.859 0.885 0.874
Markov 0.875 0.656 0.781 0.852 0.866 0.885 0.875

Table 2.4. Hurst Parameter Estimates on Simulated Data.

Table 2.4 shows the result of various estimators for six estimators (grouped

into three time-based and three frequency based 2) applied to traffic from three

different generating models. It would naturally be expected that the FGN

model is the easiest to estimate and this shows in the results in Table 2.4. All

the estimators were relatively close to correct with the possible exception of the

R/S plot on traffic with a Hurst parameter of 0.875 where the underestimate

of H was quite severe.

2Frequency based is arguable for wavelets which provide both time and frequency

information.
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Estimates on the iterated chaotic map traffic were not so successful. The

raw R/S plot proved inconsistent and had a hard time estimating higher hurst

parameters. It should be noted, for example, that for H = 0.75 estimates

varied from 0.678 to 0.828. The performance for H = 0.875 was similarly bad.

The modified R/S parameter was better in that it was more stable across runs

but tended to overestimate. Local Whittle and wavelets tended to overestimate

the Hurst parameter. It should also be noted that the true result was regularly

outside the 95% confidence intervals for the wavelet estimator.

Estimates for the Markov based method were, in many ways, similar to the

iterated map method. If anything, the results from the estimators are slightly

closer to the theory and this is particularly notable for the wavelet and local

Whittle case. The evidence provided by the estimators is hard to interpret.

However, it can certainly be said that the results for the Markov method are

as close as the results for the iterated map method.

Generally, considering the estimators themselves, the R/S method seemed

unreliable (and this agrees with theory which shows it to be a biased estimator

with poor convergence). The local whittle and wavelets methods which have

better theoretical backing seem to have a better agreement with theory but

it is worrying that the true Hurst parameter for the data lay outside 95%

confidence for the wavelet estimator in many cases.

2.10. Simulation Results on a Simple Network

The simulation results in this section were obtained with the help of Dr.

Yann Golanski. The software used was the ns-2 simulation [113] which models

individual packets in a network using approximations of the protocols used in

the Internet.

The topology chosen for testing in ns was to represent an aggregation of

traffic from different sources being fed into a larger router. In this case, eight

LRD sources generated from an infinite Markov chain feed into a single shaper

router. The shaper then feeds into a drop tail router which sends the packets
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Figure 2.17. The simulation topology used.
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into the sink. The simulation is shown in Figure 2.17. The buffer at the

shaper can hold twenty packets and the one at the router can hold only ten.

The buffers all operate as drop-tail buffers, that is when they are full then

newly arriving packets are dropped.

All links between the sources and the shaper have a capacity of 256kb/s,

the link between the shaper and the router has a capcity of 2048kb/s and

the router to the sink is half of that. The sources are all sending packets

of size 256b at a maximum rate of 256kb/s. The rates were chosen such

that if all the links send at exactly half their capacity then the router which

carries traffic to the sink will be exactly full. In this setting, therefore, if

the mean (1 − π0) is exactly 0.5 then the router will suffer a huge amount of

packet loss unless the traffic arrives with a completely flat distribution. The

system was chosen so that means between 0 and 0.5 could be tested in the

model with 0.5 representing the case of an extremely overloaded system. The

shaper maximum output capacity was chosen such that even if all links sent

at maximum capacity, the shaper itself would never overflow (as is the case in

the example discussed here).

Figure 2.18 shows a three dimensional plot of percentage of packet loss

versus the mean utilisation and the Hurst parameter for the topology discussed.

The z-axis is the percentage of packet loss over the entire network. Naturally,

in this example, all the loss occurred at the router node and none at the shaper

node (since the shaper node was simply outputting at its maximum rate and

performing no shaping). The figure shows clearly that packet loss increases as

the mean traffic level increases. Of course this is as expected. Similarly, the

packet loss increases as the Hurst parameter increases, at least up to a point.

It seems that, in these simulations at least, extremely large Hurst parameters

actually reduce the amount of packet loss. The reason for this is unclear and

merits further investiation.
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2.11. Discussion

The Markov chain based approach has a number of advantages both the-

oretical and computational over other LRD generation mechanisms. Firstly,

the method is extremely easy to implement and quick to run. A run of ten

million iterations of the chain took only 2.4 seconds on a 2.2GHz PC running

Free BSD. This makes it an attractive prospect for modelling. A number of

mechanisms for generating traffic (fGn, fBm and FARIMA) require the user to

specify in advance how many points are wanted and then the entire time series

is generated at once. This can be a problem when a simulation does not know

in advance how many points of data will be wanted. In addition these gener-

ation mechanisms are typically slower. The widely-used iterated map based

approach [4] has issues related to double precision arithmetic. While generally,

the precision is good enough for most purposes, the correlations in that model

necessarily fall off eventually due to the finite precision of comptuer arithmetic.

In the Markov model the limitation to accuracy is much less of a problem. In-

deed the only limitation is that the model as described above is incapable of

calculating series which contain bursts of ones of the order of INT MAX (the

largest integer which can be stored by the compiler used — approximately

two billion in C++ on a typical modern compiler). Using a language with

arbitrary precision integers would avoid this problem. However, this problem

would only be expected to be important if the number of packets generated

by a single stream was many orders of magnitude greater than two billion and

is, therefore, vanishingly unlikely to occur in computational experiments.

In addition to computational advantages, the analytical advantages of the

model may be considerable. Considerable work has already been done on

the queuing performance of Markov moderated processes and it is hoped that

existing theorems can be brought to bear to obtain queuing results without the

need for simulation. This would greatly enhance the theoretical underpinning

of the work as well as obviate the need for the many complexities involved

with computational simulation of weakly convergent statistical processes.



CHAPTER 3

Driver Route and Departure Time Choice in Road

Networks

This chapter has been developed, in part, from work presented at the

Universities Transport Studies Group conference as a paper jointly prepared

with Dr. Richard Batley of the Institute for Transport Studies, Leeds [8]. I

am grateful to Dr. Batley for allowing me to adapt parts of that paper which

were largely his work. In an adapted form, this gave the basis for Sections 3.7

and 3.8 and part of Section 3.9 in this chapter.

3.1. Introduction

Choice of route and departure time are considered by many researchers to

be the two most important driver responses to a change in network conditions.

According to an influential report: “...overall, the two responses — changing

route and changing journey time — seem to be the most universal” [23, page

28]. This conclusion follows a review of evidence from ninety case studies

where road capacity was reduced. This chapter reviews on-street evidence

about route choice and departure time choice and then considers the models

used to capture this phenomenon mathematically.

The behavioural evidence is further broken down into ambient variability

and variability which occurs in response to a network change. It has often been

noted that, even in situations where no changes occur in a network, drivers

modify their behaviour and, as noted by [45], many drivers choose inefficient

routes. When considering a network change, the time-scale of adjustment is

another consideration. After an intervention in the network has occurred, over

what time scale should choice effects be considered? Reference has been made

in the literature to a “settling down” period.

99
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Inevitably much of the evidence falls between camps and provides evidence

on route and departure time choice aspects or on both ambient and responsive

variability. This means that some reports will be mentioned in more than one

section within this chapter. There is a considerable body of literature based

upon laboratory and survey-based studies of route and departure time choice

where no actual on-street measurements are taken. While this is a rich area of

research with much published literature, it is less relevant to what follows in

Chapter 5 than reviews of on-street evidence. While such studies are briefly

mentioned in Section 3.9 no systematic attempt has been made to review them

here.

In reviewing the modelling, the groundwork is laid with a short review

of the theory of equilibrium modelling beginning with Wardrop’s influential

equilibrium condition [155]. Following this, deterministic and stochastic ap-

proaches to assignment are distinguished and attention is given to stochastic

loading models. The assumption underlying many modelling approaches is

that of “rational behaviour” on the part of drivers. Advancements in theoret-

ical modelling have sometimes failed to become part of established practice in

scheme assessment.

Including this introduction, this chapter is split into nine sections. Section

3.2 reports the on-street evidence on route choice, distinguishing between am-

bient variability in route choice and changes in route due to network changes.

Section 3.3 reports the on-street evidence on departure time choice. Section

3.4 considers the time-scales of importance for choice effects. Section 3.5 sum-

marises the modelling challenge when trying to capture these choice effects.

Section 3.6 briefly considers the theoretical underpinnings of equilibrium mod-

elling. Section 3.7 considers the modelling of route choice, distinguishing

between deterministic and stochastic user equilibrium models. Section 3.8

reviews the modelling of departure time choice. Section 3.9 describes the

practical difficulties inherent in these modelling approaches. This chapter is
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complemented by Chapter 5 which analyses data from two surveys in York in

considerable detail.

3.2. On-Street Evidence on Route Choice

In this section, evidence about driver route choice is reviewed, firstly with

consideration to studies where network conditions were not subject to major

change (that is to say the only changes to conditions on the network were

due to weather, day of the week and the usual changes in demand from day to

day). Following this, consideration is given to studies where network conditions

were subject to major change (where, either due to accident or intervention,

an identifiable major alteration to network conditions was made, for example

a major re-timing of traffic signals, a road closure or a bridge closure).

3.2.1. Ambient Variability in Route Choice. It is hard to find good

on-street studies of ambient variability in route choice. One reason for this is

that it is an extremely difficult phenomenon to study. Even if observations

show the same individual making a journey between the same origin and the

same final destination by a different route it is hard to prove this is not due

to some intermediate destination. Of the studies reported here, none were

motivated by a desire to study the problem directly and most provide evidence

which is tangential at best. While route choice is commonly cited as one of

the two most common choice elements, it seems that ambient variability in

this important choice dimension is rarely studied for its own sake.

A useful online review of this subject from the perspective of using Global

Positioning System (GPS) data is provided by [116]. In this report, variabil-

ity is split into inter-personal and intra-personal variability. The former arises

due to socio-economic and behavioural differences between individuals and the

latter is due to day of the week and other external effects not related to the

drivers themselves. The author analyses data collected from seven small sur-

veys each of a small number of individuals (each survey was of between sixteen

and thirty-two individuals). The data was collected in Lexington, Kentucky.
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One conclusion from analysis of the data is: “The percentage of individuals in

each sample who exhibit the same characteristic across all days...is extremely

small... [often] zero.”

The Uppsala Household Travel Survey was a Swedish study of repetition

in travel which was widely reported by Huff and Hanson in the 1980s ([67],

[68], [69], [70], [83] and [84]). The study monitored all travel from home

for 149 individuals over a thirty-five day period. An important conclusion

of their work is: “observations taken for a single day in the travel history of

an individual are not likely to be representative of the range of daily travel

patterns exhibited by that person over a more extended time period, and we

are led to reject the view that travel is highly routinized in the restricted sense

that every weekday is assumed to look much like every other weekday” [83,

page 108].

GPS data is a potentially valuable tool for the study of route choice. A

report on GPS data from single vehicles from one hundred households (216

drivers) over a one-week period is given by [87]. They report: “the path chosen

on a trip most often differs considerably from the shortest time path across the

network” [87, page 1] and also that “travelers habitually follow the same path

for the same trip” [87, page 12]. (The shortest path time accounted for errors

associated with random delays at traffic signals and delays due to congestion).

This suggests that the ambient variability in route choice may be low but also

that the assumption that users are rationally choosing shortest paths may be

a questionable one.

A variety of studies in Hertfordshire are examined in [45]. These studies

looked at how drivers choose either a rat-run or a main route on a network

(where the rat-run is defined as the usage of a minor road route as an alterna-

tive to a major road route — in some of the cases studied the rat-run was both

shorter and quicker than the main route). In summary, they state that “travel

time is the single most important criterion affecting driver route choice in net-

works where there is a viable alternative to the main route” [45, page 408].
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Their observations also indicate that drivers are willing to travel an increased

distance if it will reduce their travel time provided “the distance is not doubled

or the alternative tortuous” [45, page 408]. The work was accompanied by

questionnaire data about how drivers perceived factors affecting route choice.

The authors give the following equation for the percentage of drivers using a

particular rat-run route,

TRS = 9.14 − 22.27(TTR) + 30.98(DIR) + 26.65(SPR) − 0.089(TID),

where TRS is the percentage of drivers using the rat-run route, TTR is the

travel time ratio (rat-run / main road), DIR is the distance ratio (rat-run /

main road), SPR is speed ratio (rat-run / main road) and TID is the travel

time difference in seconds (main road − rat-run). Further details of the work

are reported in [44]. It is hard to square the authors’ statement that travel

time was the most important factor with the coefficients given in this equation.

A report on large licence plate surveys undertaken in Leeds is described in

[19]. One major conclusion of this report was that collecting licence plates in

this way can be extremely unreliable. They report that they must “assume a

15% increase in the number of matches” [19, page 387] due to missed matches

from incorrectly recorded data. Table 3.1 shows their data. From these data,

route choice changes cannot be distinguished from decisions not to travel. In-

deed, even when travel times are noted as being different, it is impossible to

distinguish if this was genuinely due to a departure time choice decision or

if this was due to congestion interfering with an unchanged departure choice.

However, it is clear from this data that the day-to-day variability in the actual

composition of the traffic is extremely large. On almost all days, even allow-

ing for the author’s suggested increase in matches due to misread data, the

majority of travelling vehicles in the rush hour are not seen in the next rush

hour.

To sum up this evidence, it would seem that a typical recurrence rate for

traffic during the rush hour on weekdays is something between thirty and fifty
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Day 1 % match % match % match

Time period in same period in same or in any

(beginning time) day 2 adjacent period period

7:15 23 36 35

7:30 24 26 30

7:45 15 23 28

8:00 19 28 32

8:15 24 38 45

8:30 19 27 38

8:45 11 21 23

9:00 9 15 22

9:15 6 10 8

9:30 5 8 0

Table 3.1. Match rates at different times within the peak from

[19]. All figures should be increased by 10-20% to allow for

misreading.

percent. While travel time is widely acknowledged to be the most important

element in the route chosen, other elements such as distance and perceived

directness of route are important. In general, it would seem that the variability

in the typical morning peak, which is traditionally seen by modellers as the

most stable part of the travelling day, is much greater than has been imagined.

3.2.2. Route Choice Responses to Network Changes. Data col-

lected in Edmonton monitoring the closure of the Kinnaird Bridge is analysed

in [139]. The Kinnaird Bridge was totally closed to traffic and rerouting was

an inevitable driver response. However, it is clear from the study results that

drivers who directly used the bridge were not the only ones to make a route

choice change as a result. Drivers who were affected by congestion as a result

of the closure made route choice responses to avoid the “knock-on” congestion

effects.
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Figure 3.1. Kinnaird Bridge closure — area map adapted from [139].

Figures 3.1, 3.2 and 3.3 are schematic diagrams adapted from the figures

in [139]. On these diagrams wider arrows indicate heavier flow (the indicated

flows are all between two hundred and eight hundred vehicles per hour). The

colours of the flows are consistent between the before and after figures and

correspond to the rerouting of drivers in response to the closure. The flows on

the diagrams are those from the morning rush hour. The route change can be

clearly seen when comparing Figures 3.2 and 3.3. Particularly interesting is

the rerouting of a traffic stream which was not actually using the closed bridge.

In the before diagram, the black arrow showing traffic moving down Stadium

Road is not using the closed bridge, but in the after-situation at least 25% of

this traffic has rerouted to 95 Street. While this effect is not unexpected it is

certainly good to have experimental confirmation of it.
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Figure 3.2. Kinnaird Bridge closure — before flows adapted

from [139].

On-street evidence from a number of bus priority schemes implemented in

the UK is reported in [38]. One conclusion is that “A feature of many schemes

is that traffic tends to divert from the priority route if drivers perceive that

their journey may be delayed along certain sections of the route. This is not a

problem if traffic diverts to routes suitable and capable of absorbing the extra

demand... however the diversion of traffic through residential areas or along

other routes unsuitable for additional car traffic... should be discouraged on

both environmental and safety grounds”. A main conclusion of the report was

that route choice adjustment, as a result of the capacity reallocation due to

bus lanes, was a major driver response and further that scheme assessment

should account for this.
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Figure 3.3. Kinnaird Bridge closure — after flows adapted

from [139].

The MUSIC (Management of traffic USIng flow Control) project studied

the effects of introducing new signal control policies in three European cities.

The signal control policies chosen were designed specifically with route choice

in mind. Computer simulation was performed with the aim of assessing the

on-street results of the signal timing changes designed as part of the project.

The project final report [34] states that at all of the three demonstration sites

“models tended to overestimate the amount to which drivers would reroute”.

However, models based on the assumption that no driver rerouting would take

place as a result of the signal timing changes were found to be less accurate

than models based on the assumption that drivers would reroute completely to

an equilibrium. Before and after studies measured the changes in vehicle flows
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arising from changes to signal timings. While other causes for the flow changes

cannot be ruled out, changes in flow levels of up to sixteen percent were found

between the before and after cases. This would seem to indicate that some

degree of driver rerouting is taking place (it is hard to imagine that a signal

re-timing could cause such a large change in demand). More information on

the MUSIC project can be found in [32], [33] and [34].

Again, finding good evidence of route choice in the literature was problem-

atic. Though driver route choice due to network changes was often mentioned,

it was hard to find concrete evidence on the subject. While some studies men-

tioned a belief that route choice had occurred as a result of a network change,

few had studied it explicitly. It seems that this important choice aspect is not

well-studied empirically.

3.3. On-Street Evidence on Departure Time Choice

It is perhaps useful to distinguish between two different types of departure

time choice before discussing the subject in detail. Evidence on the subject

often makes the distinction between small departure time shifts (of the order of

five minutes to an hour) and larger departure time shifts that move the journey

into an uncongested part of the day. These two effects, which are inevitably

blurred (it is not clear what counts as a “small” departure time shift), can be

the product of fundamentally different constraints upon the journey. For most

commuters a decision to set off ten minutes earlier to avoid the traffic is very

different to a decision to make their journey at mid-day instead of during the

morning peak. Naturally, we would expect the former decision type to be the

more common. In the literature this is often referred to as micro time-shifting

to distinguish it from more radical changes in journey time.

Another important issue when discussing departure time choice is distin-

guishing a departure time shift from an involuntary change in time caused by

delays elsewhere on the route. If a licence plate survey at a particular point
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records that the same drivers are, on average, arriving at that point five min-

utes later, then this could be indicative of a departure time shift on the part

of the drivers. Alternatively, it could indicate a five minute delay on an earlier

part of the route. When it is considered that driver departure time shifts are

often made in response to delays then the problem becomes a difficult one to

resolve. Evidence is often found of the phenomenon known as peak-spreading

— this, obviously, refers to the idea that the peak traffic period begins ear-

lier, ends later or both. This could be one result of departure time choices by

drivers.

Characteristic % Same all % Same all % Same all Total

all days but one day but two days

Three weekday Sample (N = 25)

Total trips 8.0 40.0 — 48.0

Non-work trips 12.0 40.0 — 52.0

Dep. time from home 44.0 40.0 — 84.0

Final arrival at home 72.0 24.0 — 96.0

Four weekday Sample (N = 32)

Total trips 3.1 6.3 40.6 50.0

Non-work trips 3.1 18.8 43.8 63.6

Dep. time from home 34.4 37.5 9.4 81.3

Final arrival at home 59.4 40.6 0.0 100.0

Five weekday Sample (N = 24)

Total trips 0.0 4.1 16.7 20.8

Non-work trips 0.0 4.1 16.7 20.8

Dep. time from home 8.3 41.6 33.3 83.2

Final arrival at home 50.0 37.5 8.3 95.8

Table 3.2. Selected Data showing ambient variability in week-

day data from [116].
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Table 3.2 shows selected data from a GPS study of user travel behaviour

[116]. The study shows the percentage of surveyed individuals who exhibit the

same behaviour across multiple surveyed days. Departure and arrival times

are considered to be equal if they are within twenty percent of the median

(where the value of travel times are expressed in minutes past midnight). This

is a somewhat curious choice since it means that the final arrival time at home

is considered to be equal within a much larger range (since, by this measure,

the median final arrival time is larger than the departure time from home and

therefore the permissible range for an arrival at home is much larger). This

masks the behaviour which would perhaps be expected that departure times

from home might be expected to be more consistent than arrival times back

at home (it might be argued that more drivers are expected to be at work at

a regular time that are expected to leave at a regular time given the reality

of overtime and working late). Note also that the “same on all but two days”

column is blank for the three day study (since the measure is meaningless on

this study).

The range allowed on departure times is extremely generous (a driver de-

parting from home at a median time of 8:00am would be counted as having

left the house at the “same time” for departure times from 6:24am to 9:36am).

This shows that departure times vary a great deal from day to day.

From the previously mentioned Kinnaird Bridge closure study [139], the

authors conclude that when comparing two days from the before-period, “60%

of drivers travelled at the same time (+/- 5 minutes) every day during uncon-

gested conditions”. However, when comparing one day from the before-period

with one day from the after-period, only twenty percent of drivers kept the

same travel time during the congested peak period. It is, however, unclear

whether these results are caused by drivers making a decision to change their

departure time or by drivers keeping the same departure time and their jour-

ney being delayed by the increased congestion. It should also be noted that it

is not clear from the report whether the statement suggests that of all drivers
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observed on one day, sixty percent of them were seen on the second day at a

similar time or, of all drivers who are seen on both days sixty percent of them

were seen at a similar time. The second interpretation is consistent with the

time adjustment which can be inferred from Table 3.1.

The collapse of the Tasman Bridge, Hobart, Tasmania, is reported in [96].

The bridge was destroyed in an accident involving an ore carrier. Amongst the

many effects observed by the authors was an effect on peak-spreading: “the

morning peak in 1974 was 7–9am, but in 1975 and 1976, this had extended to

6:30–9am”.

The closure of Lendal Bridge in York in 1978 is reported in [40]. The

bridge was closed for six months to all traffic apart from buses, cyclists and

pedestrians. In surveys, fifteen percent of drivers said that they had changed

the time at which they made their journey by more than ten minutes. This is,

perhaps, curious since elsewhere in the paper it is suggested that the average

change in journey time was low except for in the morning peak and even

then it was only 2.8 minutes. It is unclear if the high percentage of drivers

changing their journey time had averted the worst effects of congestion, if the

drivers were simply over-reacting to perceived congestion or if the drivers were

over-exaggerating their time-shifting.

Many authors report peak-spreading as a response to increased congestion,

but offer little in the way of evidence. Such studies are not included here since

spreading may be merely a result of a change in travel time with the departure

time remaining constant.

3.4. Time-Scales of Importance for Choice Effects

An important question about route and departure time choice arising from

a change to a network is how long the effects of the change take to stabilise.

According to [23] in the short term (defined as “say the second week”): “It

is the common experience that, after an adjustment period, traffic alters to

take account of the new conditions. Reference to a ‘settling down’ period has
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been made... Following the Kinnaird Bridge closure, flows were estimated to

stabilise in about three weeks”.
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Figure 3.4. Development of volume equilibrium at the critical

location near the Kinnaird Bridge closure (Recreated from

[139]).

Figure 3.4 is of flows on the eastern approach to the intersection of 112

Avenue and 82 Street (see Figure 3.1). It appears to show that the most

significant changes in flow occur in the first week after the closure although it

appears that there is a small but steady downward trend in the graph for the

following two weeks (after which time a second alteration to the network takes

place). The authors state “Following the closure of Kinnaird Bridge, severe

congestion developed in the immediate vicinity of the detour... Subsequent to

the initial congestion in the network, however, drivers responded, over a period

of two weeks, by altering their travel behaviour through the area” [139, page

378].

It should be noted that it is unclear from the original reference whether the

days in Figure 3.4 include weekend days (since it would be expected that flows
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would differ significantly on weekends). Also, while the authors claim that the

response took place over a period of two weeks, close examination of Figure

3.4 above (reproduced from their paper) seems to show that the flow is still

reducing slightly on day twenty-one and the introduction of improved control

sets up another change which continues to the end of the survey period. The

flows never seem to quite stabilise (though it should be noted that the flows

shown are unusually similar from day to day). In fact, it is unclear from the

paper exactly how many days have been surveyed.

The MUSIC project draws a slightly different conclusion. In the city of

Thessaloniki, 128 traffic signal timings were changed in an attempt to reduce

congestion and public transport queues in the city, at least partly by account-

ing for driver rerouting. The after studies took place six weeks after the final

scheme was implemented. The project final report [34] notes that “A long

time period after the implementation of the new traffic signal timing plans

is necessary in order to allow rerouting and attainment of a new traffic equi-

librium... it was considered that drivers had not fully settled into their new

routes by the end of the study period”. The study period mentioned was six

weeks, compared to the three weeks estimated for flows to stabilise following

the Kinnaird Bridge closure. Similar results were reported for a change of sig-

nal timings in the city of Porto. Perhaps the reason for this difference is that,

in the case of the Kinnaird Bridge, the change was physical, easy to assess

and located at a single point in the network whereas, in the case of Porto and

Thessaloniki, the changes were harder for drivers to assess and located at a

number of points in the transport network.

From the limited evidence available (very few reports could be found which

gave evidence on the length of time taken to establish a new equilibrium) it

would seem the agreement is that, as common sense would suggest, the most

extreme effects of a network change are on the first day afterwards. The first

week shows the major changes and then a more gradual settling down occurs
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over the next few weeks but the duration of this phase is uncertain and is

probably dependent on the exact nature of the change to the network.

3.5. The Modelling Challenge

The challenge faced in modelling route and departure time choice is consid-

erable. Even in the simple situation where we assume that the origin (home)

and the destination (work) are both fixed and the mode is fixed as private

transport then it remains for the driver to choose a departure time and a path

through the network. The route choice problem is a particularly problematic

one — in reality the choice set of all physically feasible routes is large but

it seems certain that the decision-maker will only consider a subset of such

choices although it is hard to know by what criterion such a subset is chosen.

Furthermore, it is uncertain what factors influence the decision maker when

he or she is making the choice. In the departure time choice problem, it is

clear that the problem must (in simulation approaches at least) be converted

somehow from a continuous to a discrete problem (since it would be impossible

to simulate all the points on an interval). The problem also involves finding

an acceptable range of departure times for an individual. It is also clear that

the two problems are somewhat inter-related (a route which is optimal in the

peak may no longer be optimal in the off-peak) but it is not clear which de-

cision (route or departure time choice) should be made first or if both should

somehow be assessed simultaneously.

3.6. The Theory of Equilibrium Modelling

This section provides a brief description of research into equilibrium theory

with some theoretical details given. The general formulation of traffic problems

can be stated in many ways. This discussion largely follows the work of Smith

[135] and describes a user-equilibrium formulation in a static network. For a

good review of research in the area see [157]. This section will restrict the

work discussed to that most relevant to route choice or assignment modelling

(which models how drivers desiring travel from an origin to a destination are
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assigned to a route on the network). There is a large literature on demand

modelling (which models how desire for travel translates into a specific demand

for a driver to travel between a particular origin and a particular destination).

The problem of demand modelling is not covered here.

Consider the network as a directed graph G = (N,A) where N are nodes

(junctions) and A are arcs (roads). The arcs are ordered pairs (a, b) where

a, b ∈ N . An arc (a, b) represents a road from node a to node b. The number

of nodes is n and the number of arcs is m.

For x, y ∈ N then the sequence of ordered pairs,

(x, x1), (x1, x2), . . . , (xk−2, xk−1), (xk−1, y),

is a route or chain (to use the terms of graph theory) from the origin x to the

destination y. All the pairs (a, b) in the above must be members of A.

Define R(x, y) as the set of all possible paths or routes from between the

origin-destination pair (O-D pair) (x, y). This is the set of all chains as defined

above which do not contain the same (a, b) ∈ A twice. In a network with a

finite set of nodes, then R(x, y) must clearly be a finite set.

The set of all routes between any O-D pair is given by

R =
⋃

(x,y)∈N×N

R(x, y).

The number of members of R is M .

An arc in A will be represented by Ai and a route in R will be represented

by Rr. The vector f = (f1, f2, . . . , fm) is a link flow distribution 1 vector or

simply link flow vector. Each of the fi ≥ 0 represent the flow on the arc Ai.

The vector F = (F1, F2, . . . , FM) where Fr ≥ 0 is the route flow distribution

vector or simply route flow vector. Each of the Fr represent the flow on the

route Rr ∈ R.

In a similar manner, the vector c is the link cost distribution vector and C

is the route cost distribution vector. With these vectors ci represents the cost

1This terminology is due to Smith in [135] and is not connected with distributions in

the statistics sense — link flow distributions need not total to a given constant sum.



3.6. THE THEORY OF EQUILIBRIUM MODELLING 116

of travelling along the link Ai and Cr represents the cost of travelling along

the route Rr. It should be noted that ci > 0 and Cr > 0.

Using these definitions, the total cost on a network is given by

M∑

r=1

CrFr = C · F, (3.1)

where the C · F is the scalar product. Alternatively, the sum over all links

could be considered.
m∑

i=1

cifi = c · f . (3.2)

It should be noted that a given route flow vector F implies a unique link

flow vector f . However, a link flow vector f may arise from a number of distinct

route flow vectors F.

The link-route incidence matrix (air) defines the connection between the

links A and the routes R.

air =





1 if link Ai is part of route Rr

0 otherwise.

This matrix can be used to formulate the correspondence between routes

and links and to convert between f and F or c and C.

fi =
M∑

r=1

airFr

Cr =
m∑

i=1

airci,

where the first equation can be stated as “the flow on a link is the sum of all

the flows on routes which include that link” and the second equation can be

stated as “the cost of traversing a route is the sum of all the links which are

part of that route.”

It is useful now to introduce the notion of a cost-flow function c : Rm
+ 7→ Rm

+

which relates the flow on the network to the cost of traversing a given link.

c(f) = (c1(f), c2(f), . . . , cm(f)),
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where ci(f) is the cost of traversing link Ai given the traffic distribution f . The

reason that ci(f) is a function of f rather than fi is to include junction inter-

actions. (For example, the cost of traversing a link may be greatly influenced

if the link ends in a give-way junction and an opposing link at that junction

has a high flow.)

The corresponding function for routes C : RM
+ 7→ RM

+ is also useful.

C(F) = (C1(F), C2(F), . . . , CM(F)).

A famous early paper in road traffic research is [155] which discusses a

wide range of subjects including optimising signals and speed-flow relations.

The paper is, perhaps, most famous for introducing Wardrop’s equilibrium

condition. In fact, the paper suggests two possible equilibrium conditions.

“(1) The journey times on all routes actually used are equal, and less than

those which would be experienced by a single vehicle on any unused route.

(2) The average journey time is a minimum... The first criterion is quite a

likely one in practice.” [155, page 345]. The equilibria described by these two

equilibrium principles are now known as User Equilibrium (UE) and System

Optimum Equilibrium or Wardrop’s First and Second Equilibrium Principles.

The UE principle is of most importance here.

Using the notation given above the first equilibrium principle can be ex-

pressed as follows. A route-flow vector H is in user equilibrium if it satisfies

(Cr(H) > Cs(H)) ⇒ Hr = 0, (3.3)

for all (x, y) ∈ N × N and all Rr, Rs ∈ R(x, y). This says, in effect, “for

all O-D pairs (x, y) if the cost on route Rr is greater than the cost on route

Rs then no flow will be on route Rr” which can be readily recognised as the

Wardrop principle (1) above.

The system optimal equilibrium can be simply seen as minimising the total

cost on the network given in equations (3.1) and (3.2).
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Next, the idea of demand on a network needs to be introduced. Again,

following [135], introduce the origin-demand matrix (O-D matrix) ρ where

ρ : N × N 7→ R+,

and ρ(x, y) represents the number of drivers who wish to travel from an origin

x to a destination y. Clearly not all F will satisfy this demand conditions.

Therefore, it is necessary to introduce the set ∆ of route-flow vectors which

satisfy
∑

Rr∈R(x,y)

Fr = ρ(x, y),

for all x, y ∈ N where Fr ≥ 0 for all r.

Formally ρ(x, y) is what is known as a fixed demand matrix — that is, the

number of drivers wishing to travel from x to y remains a constant whatever

the cost of that travel. A cost-flow vector F ∈ ∆ is known as demand feasible.

Similarly, define a set D of demand feasible link-flow vectors such that a link-

flow vector f ∈ D is demand feasible. (Note that route-flow vectors uniquely

determine link-flow vectors but link-flow vectors do not uniquely determine

route-flow vectors.)

An early modelling approach to the problem is provided by [51] which

combines a gravity model for demand with a Wardrop equilibrium formulation

for route choice. An early review of models including models which vary the

demand matrix is given by [58].

In [135] the author proves that, under certain quite general conditions, any

network of the type described will have a unique, stable equilibrium. It should

be noted that the formalism used here and the proofs given differ slightly

from those given in [135] since the author restricts solutions to flow vectors

within a supply feasible set S. This restriction is not made in this formulation

since the same ends can be achieved to a very close approximation with a

sufficiently steeply increasing cost function for areas outside S. The more

general solution with the addition of a supply feasibility restriction is useful

for problems related to control and pricing.
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Consider a vector of demand feasible route flows H ∈ ∆ which satisfies

equation (3.3). It follows from the definition of UE that no driver can lower

his or her cost by swapping to another route if those costs remain unchanged.

Therefore, it follows from equation (3.1)for total network cost that

C(H) · F ≥ C(H) · H for all F ∈ ∆. (3.4)

This statement is equivalent to

[−C(H)] · (F − H) ≤ 0 for all F ∈ ∆, (3.5)

or

−C(H) is normal, at H, to ∆. (3.6)

Now, if equation (3.3) is not satisfied (the system is not in equilibrium) then

there must be some (x, y) ∈ N × N and routes Rr, Rs ∈ R(x, y) such that

Hr > 0 and Cr(H) > Cs(H),

which violates (3.3). Hence, the equivalent conditions given by equations (3.4),

(3.5) and (3.6) are necessary and sufficient conditions for a Wardrop equilib-

rium. Reformulating these three conditions in terms of link flows, if h is the

link flow vector corresponding to H, then

C(H) · F = c(h) · f ,

which allows equations (3.4), (3.5) and (3.6) to be expressed as

c(h) · f ≥ c(h) · h for all f ∈ D. (3.7)

[−c(h)] · (f − h) ≤ 0 for all f ∈ D. (3.8)

−c(h) is normal, at h, to D. (3.9)

Given that D is a closed and convex set, for every point g ∈ Rm there

is a single point in D which is nearest to g (using the standard Euclidean

distance). Define this point as p(g). Define a map T (f) : D 7→ D for every

f ∈ D as

T (f) = p(f − c(f)). (3.10)
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It can be shown that

h ∈ D is a Wardrop equilibrium if and only if T (h) = h. (3.11)

Since c(f) is non-zero, the only way that T (h) = h can occur is if −c(h) is

normal at h to D which, by equation (3.9), is the condition for a Wardrop

equilibrium.

Theorem 3.1. If c(f) is a continuous function and D is a closed convex

subset of Rm
+ then there is a Wardrop equilibrium h ∈ D.

Proof. The map T (f) : D 7→ D is a continuous map if c(f) is continuous.

Therefore Brouwer’s fixed point theorem [21] applies and the map has some

fixed point h. By equation (3.11) such a fixed point must be in Wardrop

equilibrium. �

Theorem 3.2. If h ∈ D is a Wardrop equilibrium then given the mono-

tonicity condition

[c(f) − c(g)] · (g − f) < 0,

for any two distinct f ,g ∈ D then h is the only equilibrium in D.

Proof. If f is any link flow vector in D distinct from h ∈ D (which is a

Wardrop equilibrium) then

c(f) · (h − f) = c(h) · (h − f) + [c(f) − c(h)] · (h − f) < 0.

The first term must be zero or negative from equation (3.8) and the second

term must be negative from the monotonicity condition in the hypothesis. But

the equation with the terms reversed,

c(h) · (f − h) < 0,

cannot be true since this would violate equation (3.8). Therefore f ∈ D cannot

be an equilibrium position. �
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It should be noted that this uniqueness is only in the sense of link flows.

The route flows are not, in general, unique — a number of different route flow

vectors F ∈ ∆ may be equivalent to a single f ∈ D.

An ordered pair (F,H) of route flows in ∆ is known as an assignment

process if and only if

H = F or C(F) · H < C(F) · F.

The pair (F,H) can be thought of as follows: if F represents the flow on the

routes yesterday and H represents the flow on the routes today after drivers

have made their route choice in response to the costs and flows experienced

yesterday. This equation encodes the idea that drivers change their routes to

reduce the expected costs that they would experience if the costs on routes

remain the same on the next day.

A corresponding link-flow definition is that an ordered pair (f ,h) is an

assignment process if and only if f ,h ∈ D and

f = h or c(f) · h < c(f).f . (3.12)

A Wardrop equilibrium is defined in [135] as stable if and only if (f ,h) is

an assignment process for any f ∈ D.

Theorem 3.3. Given this definition of stable, and given the monotonicity

condition

[c(f) − c(g)] · (g − f) < 0,

for any two distinct link-flows f ,g ∈ D then a Wardrop equilibrium h ∈ D is

stable.

Proof. If f = h then (f ,h) is an assignment process. If f 6= h then, from

the proof of the previous theorem, c(f) · (h − f) < 0 and hence, by equation

(3.12) is an assignment process. �

The monotonicity condition in Theorems 3.2 and 3.3 is interesting. It was

shown by [36] to be equivalent to requiring that the Jacobian matrix of link
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costs with respect to link flows be positive definite. Without this condition

it is easy to conceive networks where there are multiple equilibria or unstable

equilibria. The condition can be thought of as very roughly stating, on the

network as a whole, if flows increase on a link costs increase on that link and

if flows decrease on a link costs decrease on that link. It is easy to conceive

examples (particularly if we consider junction interactions) where this property

does not hold. The monotonicity may also fail if responsive signal control or

mixed travel modes are considered on the same network.

Stronger results can be achieved by assuming that link costs are separable

(that is the cost on a link depends only on the flow on that link). The term

asymmetric is often used to describe cost-flow relationships which are non-

separable.

A number of extensions to this framework are possible. The most obvious

extension is that the demand is not fixed. This case is addressed by a number

of authors with the most obvious extension being the inclusion of an artificial

link from the origin x to the destination y which represents the no travel

decision. A model where the demand on the network is not fixed is known

as an elastic demand model. This is a rich area of research but will not be

covered in this chapter since the primary interest in this chapter is in route

choice modelling. Other extensions, for example, using different user classes

(for example, considering cars and goods vehicles as different demand matrices

with different costs) are considered in [1] and [137].

Define ∆rs where r, s ∈ {1, 2, . . . ,M} : r 6= s as a vector of length M with

−1 in the rth place, 1 in the sth place and 0 elsewhere. A route-flow vector

F ∈ ∆ is user-optimised if, for all origins x and destinations y then

Fr > 0 ⇒ Cr(F) ≤ Cs(F + ε∆rs),

for all 0 < ε < Fr and for all r, s ∈ R(x, y) : r 6= s.

This can be read as “flows are user-optimised if any driver who changes

to an alternative route will experience a cost which is at least as great as the
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old cost on his old route.” [78]. Note the subtle difference between this and

the claim that the user will experience greater costs if the route costs remain

the same as on the previous day). It is clear that if this condition is met

then the system is in a Wardrop equilibrium. In fact if ε = 0 this is just

a rearrangement of equation (3.3). However, it has not been shown that a

Wardrop equilibrium necessarily meets this condition. Indeed this condition

could be seen as an alternate measure of the stability of a given UE assignment.

For separable problems, the user-optimised condition is exactly equivalent to

the Wardrop equilibrium condition [136]. However, for asymmetric problems,

even monotone ones, counter-examples can be found.

It is proved in [78] that if the cost functions C(F) are differentiable and,

for all origins x and destinations y,

∂Cu

∂Fu

≥ ∂Cu

∂Fw

for all u,w ∈ R(x, y),

then a Wardrop equilibrium is user-optimised. This condition is true if no route

passes through any intersection more than once and the dominant effect on a

cost on a given link is due to flows on that link (as opposed to the dominant

effect on the cost of the link being due to opposing links at an intersection for

example).

The same paper makes the following definition.

Definition 3.1. A route-flow vector F ∈ ∆ is termed equilibrated if and

only if for all origins x and destinations y,

(Fr > 0) ⇒ Cr(F + ε∆rs) ≤ Cs(F + ε∆rs),

for all 0 < ε ≤ Fr and for all r 6= s ∈ R(x, y).

This condition can be stated as: “any driver who changes to an alternative

route will experience a cost which is at least as great as the new cost on his

old route.” It is a more rigorous condition than the previous one [78].

The extension of this type of problem to the dynamic case is problematic.

It can be shown [109] that in the dynamic case the monotonicity condition of
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Theorems 3.2 and 3.3 does not hold and thus the theorems do not translate

naturally to the dynamic case.

3.7. Modelling Route Choice

This section describes the various theoretical models for route choice which

have been developed stemming from the equilibrium theory given in the pre-

vious section. By necessity this review cannot be complete (and such a review

ignores research on behavioural simulation models which are not based upon

equilibrium assumptions). The section is split into discussions of Determin-

istic User Equilibrium (as described in the previous section), Stochastic User

Equilibrium and Stochastic Loading Models.

3.7.1. Deterministic User Equilibrium Models. Deterministic user

equilibrium (DUE) models are commonly used in practical assignment models.

They are based on the assumption that drivers are rational, have complete

and perfect information regarding network conditions and behave identically.

(Some of these restrictions can be relaxed slightly, for example by splitting

drivers into different “classes” of driver). Congestion is represented by means

of capacity restraint and drivers choose a least cost route. The models seek a

Wardrop type equilibrium [155].

Although DUE models are perhaps the most widely used models in prac-

tical assignment, it is recognised that they are characterised by limitations.

“Empirical studies of route choice demonstrate that the capacity restraint

mechanism in such models is insufficient to explain the variety of routes chosen,

especially in more lightly-loaded inter-urban networks” [98, page 174].

“Deterministic assignment is unrealistic since route choice decisions are

based on perceived travel times or costs, which may vary across individuals.

Further, some drivers do not know or judge incorrectly the shortest travel-time

or least-cost path, or choose a path for reasons not captured by the time and

cost functions” [61].
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“...a deterministic (Wardrop) equilibrium is an unrealistic representation

of the state of most urban networks. This is caused by variations in network

conditions (e.g. the effect of weather and unexpected incidents on capacity)

and variations in demand...” [150, page 42].

3.7.2. Stochastic User Equilibrium Models. Stochastic User Equilib-

rium (SUE) models were developed to account for the fact that not all users

behave identically by assigning a variety of perceived link costs according to

a distribution function. They form an equilibrium based around the idea of a

random utility model which adds a random component to utilities (the benefit

a user gets from traversing a link). They were originally described in [22]

and [42]. At first stochastic models omitted capacity restraint considerations

which limited their applicability to congested urban networks. This was recti-

fied by models which combined UE with the SUE framework [37] [54] [130].

In such models, drivers’ route choices are modelled as stochastic processes with

capacity represented as link-based cost-flow relationships. The models can be

thought of in terms of a utility (the costs/benefits of a certain route) and an

error term.

The distribution function, also known as the error term (since it can be

thought of as representing the “error” in the drivers’ perceptions of the costs

on the network), has proved extremely useful in justifying the applicability

of such models. For example [150, page 41] states that the error term could

represent three distinct effects: “influences on route choice which have been

excluded from the generalised cost function; variations in route choice prefer-

ences between drivers, which are not explained by the route choice parameters

used in assignment models; daily variation in network traffic conditions.”

A general random utility model can be specified as,

Uin = Vin + εin, (3.13)

were Uin is the utility that individual n associates with choice i, Vin is the

deterministic part of that utility and εin is an error term for that choice and
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that individual. The probability that individual n chooses alternative i is then

given by

P [i|Cn] = P [Uin ≥ Ujn for all j ∈ Cn] = P

[
Uin = max

j∈Cn

Ujn

]
,

where Cn is the set of choices available to the individual. By varying the

assumptions of this model a number of different models are available. In an

SUE formulation, all paths are used (although excessively long paths will be

used only by a vanishingly small amount of traffic).

Multinomial models, either multinomial logit(MNL) or probit(MNP), are

used to implement SUE models. MNL is characterised by the following as-

sumptions [18]:

(1) The utilities are independent and identically distributed (i.i.d.) with

a Gumbel distribution.

(2) There is a response homogeneity across individuals.

(3) There is error variance-covariance homogeneity across individuals.

The Gumbel distribution is given by the distribution function,

F (ε) = exp(−e−µ(ε−η)),

where µ > 0 and η are the parameters of the distribution. The density function

is

f(ε) = µe−µ(ε−η) exp(−e−µ(ε−η)).

The mean of the distribution is η + γ/µ, where,

γ = lim
k→∞

k∑

i=1

1

i
− ln(k) ≈ 0.5772,

also known as the Euler constant. The variance of the distribution is π2/6µ2.

Solving this model, the probability that individual n chooses alternative i

within the choice set Cn is given by

P [i|Cn] =
eµVin

∑
j∈Cn

eµVjn
.
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The first assumption is particularly important when considering route and

departure time choice. For route choice it implies that the costs of the routes

are independent — this property is known as independence from irrelevant

alternatives (i.i.a.) An illustration of the problems inherrent in the i.i.a. prop-

erty is given by contemplating the distribution of users between, say, bus and

private car. If the utility of each mode were identical for every user then half

the population would use the bus and half would use the car. However, if

we split the bus population into red and non-red buses then one third of the

population would use the red buses, one third would use the non-red buses

and one third would use the car. It is clear that red and non-red buses should

not be considered as independent.

The i.i.a. property is widely held to be a difficulty for most route choice

situations where two alternative routes may be largely (indeed almost entirely)

identical. As an illustrative example consider two routes which are exactly the

same except for at the end of the route where the driver has the choice of

being in the left or right hand lane. It is clear that the costs of these routes

are far from independent. Indeed they are almost wholly correlated. Similarly,

for departure time choice, it is absolutely clear that the cost of travel when

departing for work at 8:00am is, in no sense, independent from the cost of

travel when departing at 8:05am.

MNP does not assume the i.i.d. property and therefore this criticism can-

not be made of it. However, the formulation is much less tractable because

so many more parameters must be estimated and therefore the application of

MNP is restricted in real situations. The assumption of Probit is that the er-

ror terms in equation (3.13) are multivariate normal distributions with mean

zero and a variance term which explicitly captures the interrelations of the

choice set. The number of parameters to be estimated grows with the square

of the size of the choice set. Since a given origin-destination pair may have

an extremely large number of routes available, it can quickly be seen that the
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tractability of the model will be limited for route choice problems in realistic

networks.

3.7.3. Stochastic Loading Models. Following on from the MNL and

MNP approaches previously described come stochastic loading models which

attempt to address the gap between the i.i.d. problems of MNL and the

tractability problems of MNP. A theoretical and empirical analysis of such

models is provided by [9]. The models can be split into two main groups. The

first group are derived from generalised extreme value (GEV) theory [104]

and relax the assumption that the error components are independent. These

models include nested logit [10] and [104], cross-nested logit [153], C-logit

[26], paired combinatorial logit [27] and generalised nested logit [161].

The second group of models relaxes the assumptions of independence of

error components and the assumption that they are identical. These models

derived from the error components model [25]. Error components logit (ECL),

also known as the logit kernel or mixed logit model, is a main model in this

group and decomposes the error term into two components, one i.i.d. and

one non-independent and non-identical. Recent work [146] further relaxes

the MNL assumption of homogeneity across individuals. ECL is a relative

newcomer to route choice modelling but provides interesting possibilities for

the future of route choice modelling.

3.8. Modelling Departure Time Choice

A review of departure time choice up to 1996 is given by [7]. The report

concludes: “Although much of the current research into dynamic assignment

is also considering the simultaneous departure time choice problem, the addi-

tional computational complexity is likely to remain daunting for some time to

come...” [7, page 86]. The author states: “It will be clear from this report

that the topic is a major area of research, and that although much has been

achieved, a satisfactory resolution of the outstanding problems remains some



3.8. MODELLING DEPARTURE TIME CHOICE 129

way off.” [7, page 87]. The report is downloadable online and is an excel-

lent reference for the reader interested in more details of the topic than are

available in the short review in this section.

The earliers work in departure time choice is [152] in which the author

describes the use of tolls to spread departure time and hence reduce congestion.

Three pioneering works in modelling departure time choice are [75], [133]

and [134]. The first of these develops a UE based approach using queuing

theory. The authors note that the approach is limited in that variability in

travel times, work start times and users perception of costs may lead to their

model over-predicting peak-spreading and under-predicting queue lengths. A

stochastic approach and MNL formalism to analyse departure time choice is

used in [133]. However, this approach is problematic as the author notes since

the i.i.a. assumption is clearly violated. In [134] the author seeks to correct

this by employing a generalisation of MNL.

More recent work has sought to incorporate time choice with route choice

modelling in a dynamic framework. In [99] a framework is presented which

describes the processes by which commuters’ departure time decisions respond

to the congestion they experience. An “indifference band” of tolerable delay

which varies across individuals and shifts according to individual experienced

is used to model how commuters adjust their departure time.

A dynamic model of peak-period congestion with a limited number of bot-

tlenecks is developed in [12]. The model considers the effect of traffic condi-

tions on mode, route and departure time choices. The temporal distribution

of traffic volumes is predicted using an elastic demand model. The delays at

bottlenecks are modelled using a deterministic queuing model, which deter-

mines waiting time as a function of queue length on arrival at the bottleneck.

Day-to-day adjustments in the distribution of traffic are based on a Markovian

model.

Congestion leads to dispersion of demand over a larger number of routes

and simultaneously to shifts in departure time and peak-spreading [148]. The
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paper suggests a model which implements route and departure time choices

simultaneously, known as Dynamic User Optimium Departure time and Route

choice (DUO-D&R). The model requires a dynamic O-D matrix with preferred

arrival times.

Inspired by studies of peak-spreading [120] and demand responses for

scheme appraisal [65] and [127] the problem of departure time choice has

seen an upsurge of interest in the last five years. Recent work includes [86],

[118] and [151].

3.9. Criticisms and Developments of Current Modelling Practice

Both DUE and SUE models make inherent assumptions about both ratio-

nal behaviour and awareness of the network. Perhaps the best known paper

criticising current modelling practices is [62]. This paper reviews errors and

limitations of equilibrium modelling concluding: “It is the author’s view that

we were not in equilibrium when the data we use were collected, we are not

in such a state now, there is no guarantee that the system is currently mov-

ing towards it, we will never arrive there, and even if we did we would not

stay there for long.” [62, page 124]. While this report is talking about all

traveller choice dimensions (many of which are accepted to take place over a

much longer time-scale than route and departure time choice), the criticisms

are valid when applied to just the two choice dimensions in question here.

Another criticism of modelling practice comes from [131] which argues that

rationality is bounded because of limits on the ability of drivers to assess the

choices available. It is noted in [110] that most studies of transport networks

assume equilibrium which, in turn, implies that drivers select routes rationally

and from an unbiased perception of the state of the network. An alternative

model without these assumptions is proposed where drivers choose routes in

a heuristic manner with perceptions updated on the basis of user experience.

The study finds that the system arising does not necessarily converge to a

Wardrop type user equilibrium.



3.9. CRITICISMS AND DEVELOPMENTS OF CURRENT MODELLING PRACTICE 131

Driver information presents a specific challenge for equilibrium models.

Advanced Traveller Information Systems (ATIS) such as roadside variable

message signs and in-car systems for route guidance have impact only be-

cause they provide information to the driver. This information provision may

significantly impact route and departure time choice [11]. Citing [13], [100]

and [119], [72, page 110] argues that, “...the notion of a simple optimised

decision-making rule is unrealistic for understanding fully the impact of ATIS

on travel behavior.” In [88] a Bayesian updating model is developed to anal-

yse the mechanism by which drivers update their travel time perceptions from

one day to the next, on the basis of ATIS and previous experience.

In [101] the effects of ATIS on route and departure time switching are

analysed using experiments based upon a dynamic interactive travel simulator

The data was applied to a behavioural model and the authors concluded that

drivers’ route choice decisions are based on the expectation of a travel time

improvement exceeding a given threshold, which varies systematically with

the remaining travel time to the destination, subject to a minimum absolute

improvement.

As ATIS systems become more widespread, the assumption of rational be-

haviour in equilibrium models may become more reasonable. However, it is

recognised that individuals may not comply with the provided information

[147]. Route choice behaviour under real-time information is investigated by

[138]. The model assumed behaviour is being based upon compliance (willing-

ness to follow advice) and inertia (willingness to follow habitual behaviour).

Simulator experiments support the simultaneous presence of both mechanisms

in route choice behaviour.

While much attention has been given to the forecasting stage of SUE mod-

els, in practice, the parameters of such a model must be estimated from real-

life measurements and this has received less attention. In practical scheme

assessments, DUE models are more commonly used. Because of the previ-

ously discussed assumption of homogeneity of driver choice preferences and
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constraints DUE models may under-predict the spread of drivers across routes

in uncongested networks. The criticism about parameter estimation may also

be made of departure time studies with little attention given to parameter

estimation from on-street surveys or even driver surveys. Parameter values

are usually extracted from historical studies such as [76] and [133] which are

based upon surveys of user preferences.

Although substantial research effort has been devoted to the development

of new methods for modelling route and departure time choices, it might be

argued that more fundamental gaps in knowledge exist. One such gap is

knowledge of the attribute-set relevant to route and departure time choices,

and the appropriate representation of these attributes in choice utilities. In

[11] it is suggested that travel time is perhaps the most important attribute

influencing route choice, but recognised that difficulties exist in taking account

of how individuals perceive travel time. Others variables to include might be

path length, travel cost, traffic conditions, obstacles, road types and road

condition. It seems clear that research in this area is an important priority.

3.10. Conclusions From Literature Survey

This chapter highlights several important weaknesses in current modelling

practice and draws attention to certain research needs. Most modelling done

in genuine scheme assessment makes the assumption of a fixed pool of drivers

who travel every day or a larger pool who wish to travel every day but may

not due to demand elasticity. It is far from clear if it is widely recognised that

this is a crude approximation to the reality of a rush hour which appears to be

composed of a variety of drivers, the majority of whom appear to travel only

irregularly.

While SUE attempts to account for the fact that not all drivers have the

same perception of a network, it still works within the framework of a fixed pool

of rational drivers minimising their perceived costs within a network where

the costs are generally assumed to be some linear combination of time and
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distance. On-street evidence seems to show that the costs perceived by users

are more complex than this.

Small shifts in departure time choice are widely acknowledged to be a

major driver response to congestion. However, these have not been rigorously

investigated by on-street studies and are only rarely modelled in practical

scheme assessments even though they can absorb some of the worst impacts

of increased congestion (or conversely cancel some of the benefits of reduced

congestion).

It seems clear that route choice and departure time choice are, in some

way, linked. However, there is little research investigating the nature of this

linkage and practical evidence on the subject from on-street studies is scant.

Further, while research is beginning on how ATIS influences choice, the mod-

elling implications of this need to be examined, particularly with regard to

assumptions about rationality and information availability in UE models.

In practical scheme assessment, little attention is given to the estima-

tion of model parameters and there is a need to develop models which are

theoretically-reasonable yet which have parameters which are efficient and ro-

bust to estimate in real-life studies.



CHAPTER 4

Set Theory for Matching Data

4.1. Introduction

This chapter describes a general framework for analysing problems in match-

ing data across multiple data sets. The method developed is useful for situ-

ations where analysis is to be performed on several data sets containing in-

formation about unique individuals. The method answers questions of the

type “How many unique individuals appear in three or more of the five data

sets?” and is particularly useful for addressing situations where false matches

are possible (that is, where two distinct individuals appear to be the same as

a result of observational error).

The problem which gave rise to this work originally arose during roadside

traffic surveys when attempting to track vehicles using their licence plates at

multiple survey sites across a city. It should be emphasised, however, that the

framework is sufficiently general that it could prove of use in any situation

where it is important to track matches in data items across a small number

of different data sets. In the real-life situation reported, the number of false

matches could often be a significant fraction of the number of matches recorded

Using set theory, the problem has been placed in the context of lattices

of the integer partition and a solution algorithm has been developed. The

algorithm answers problems of the type “How many individuals are genuinely

seen once each in every data set when the false matches have been excluded?”

The algorithm has been implemented in the C++ programming language and

tested on simulated data sets. The test results suggest that the method does

indeed provide an unbiased estimator for the true number of matches in the

data although the variance in the estimate can, unfortunately, be extremely

134
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high in some cases. The method has been tested and found useful in removing

false matches from real data but the high variance in the estimate can be

a problem. The approach taken in this chapter is to begin by creating a

framework for examining matches in multiple data sets in the most general

manner and then to use this to specify the problem at hand and create an

algorithm for its solution.

In Section 4.2 background to the problem within the context of transport

engineering is described. In Section 4.3 an initial framework for discussing

the problem is laid out. In Section 4.4 the concept of a type of match is

defined using set theory and the concept of equivalence class. In Section 4.5

the set Mn of all types of match across n sites, is introduced. In Section 4.6 a

partial ordering is defined for Mn and related to the problem of false matches.

In Section 4.7 some functions for counting matches are introduced which, in

Section 4.8, are used to create an algorithm for estimating the number of false

matches in data. Finally, in Section 4.9 computational results are given for

the performance of the matching algorithm on simulated data.

4.1.1. A Note About Tuples. Throughout this chapter the term n-

tuple is used to describe an ordered set of n elements — somewhat akin to an

n-vector but the n-tuples will not usually be elements within a vector space.

The tuples are ordered sets of general elements. Sometimes tuples of sets are

used. The notation of making an n-tuple bold will be used and its individual

elements will be subscripted: x = (x1, . . . , xn).

4.2. Background and Context of the Problem

The problem of tracking individual vehicles on a road network is a well-

known and common problem in transport surveys. Several approaches are used

for vehicle tracking. For example GPS location [87], [121] or cell-phones and

vehicle tags [43]. One widely used method is the licence plate survey which

may be either manual (using a roadside observer with a note pad, dictaphone

or specialist recording equipment for the purpose) or automatic (using roadside
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cameras [162]). In both manual and automatic surveys the problem of errors

in the recordings must be considered. Some of the difficulties with such surveys

are described in [132] and [129]. Manual surveys are commonly partial plate

surveys (for reasons of time and convenience) and, in addition to the recording

errors, the problem of accidental false matches between different vehicles which

have the same partial plate is an important one.

A number of researchers have approached the false matching problem for

licence plates. An early approach for removing false matches between observa-

tions at two sites is given by [73] which uses a simple correction based upon the

probability of two plates being the same. Several methods for approaching the

problem, including a method for making two point matches between pairs se-

lected from a number of survey sites, is described in [97]. A graphical method

which provides a good visualisation of the problem is described in [158] and

this is used in the next section. A further refinement which uses journey time

to assess the likelihood of a match is described in [159]. A maximum likelihood

estimator for the true matches based upon assumptions about the statistical

nature of the inbound traffic is provided in [156] and [94] extends this method

to three sites. Many of these methods are used for matching between two sites

in the next chapter. However, none of the authors tackles the general problem

of removing false matches from matches across n sites.

More generally, a considerable amount of work has been done on “matching

problems” in combinatorics — the usual approach being graph theoretic with

an edge between two nodes indicating a match. However, in the case of matches

across n data sets, the graph theoretic approach is inappropriate since the

matches are not just pairwise.

The framework developed in the next section considers problems of the

type “How many individuals occur in three of the five data sets?” or “How

many individuals are genuinely seen in all five data sets being investigated

once all false matches are removed?”. The framework places the problem in
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the context of basic set theory [66] and shows how the problem maps onto the

well-known mathematical topic, partitions of the natural numbers.

The motivating problem for this chapter arose when partial licence plate

data was collected across a number of survey sites (the survey itself will be

described in Chapter 5). In the survey undertaken, the researchers wished

to know how many vehicles were seen on all of six survey days. Because only

partial plate surveys were conducted, false matches occurred. In extreme cases,

the number of matches attributed to false matching in data were estimated to

exceed the number of genuine matches (and this was certainly the case in the

simulated data). The problem is a surprisingly tricky one since false matches

can occur in a huge number of ways. For example, the same partial plate

observed on all five weekdays could represent: a single vehicle identified on all

five days; five vehicles which by coincidence have the same partial plate, one

observed on each day; one vehicle observed on Monday and a second vehicle

observed on Tuesday through until Friday; one vehicle observed on Monday

and Tuesday, a second vehicle observed on Wednesday and Friday and a third

vehicle observed only on Thursday, and all three having the same partial place;

or any of a multiplicity of other ways false matches could occur. Indeed, it is

evident that merely enumerating the ways in which a false match can occur is

a non-trivial problem.

4.2.1. Notes on Licence Plate Observation. Throughout this chap-

ter, examples will be given using licence plates with a specific format. An

example plate would be: A134SDR. This type of plate was used in the UK from

1983 up until mid 2001 [5]. The specific details of the type of plate used are

completely irrelevant to the methods developed within this chapter. However,

choosing parts of a plate to survey for partial plate surveys and estimating the

probability of two unique plates matching is not straightforward due to corre-

lations related to year and location identifiers on licence plates. The properties

of UK licence plates are not of general interest and are not covered here.
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While the exact details of licence plates themselves are not relevant, in

general, when collecting partial plates, it is important to record sufficient in-

formation. Consider, for example, using the old format plates and collecting

only digits. Add the simplifying assumption that the digits are flatly dis-

tributed over the thousand possible combinations from 0 to 999. Therefore,

the chances of two distinct vehicles being a false match is one in one thousand.

Now, a reasonable size of data set for a traffic survey is one thousand vehicles

collected at a site — this would represent quite a significant flow but (as will

be seen later) real roads have larger flows than this even in town centres. If

two sites each have one thousand vehicles surveyed and the two sites have no

genuine matches between them, the expected number of false matches is one

thousand (from the fact that there are a million pairs of vehicles between the

two sites, each with a one in a thousand chance of a match). When the num-

ber of false matches is obviously greater than the effect being measured (one

thousand is the largest possible number of true matches) then the problems

encountered are likely to be extreme. The problems worsen as the probabil-

ity of a false match increases or as the number of vehicles seen at each site

increases.

The specific details of the licence plates collected are not relevant to the

method described here and it is not a problem for the work described if the

fleet under study is composed of vehicles with different styles of licence plates.

Indeed the method is extremely general and, it is hoped, can be used on studies

which are of other observation types and are completely outside the sphere of

road traffic engineering.

4.3. Setting for the Problem

Assume that there are n data sets (survey sites) and at each site i there ex-

ist a set of observations Si. Each observation is a sighting of one from a set of

identifiable, unique individuals Ω = {ω1, . . . , ωN} where N is the number of in-

dividuals. The n-tuple of all n sites is denoted by S where S = (S1,S2, . . . ,Sn).
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It is assumed, initially, that enough information will be recorded in an obser-

vation to distinguish between any two members of Ω — this assumption will

be relaxed later.

Note that there is no restriction on the time and location of these obser-

vations. In the context of traffic engineering they could represent the same

site observed on different days or different sites observed on the same day or

any mix of this (for example, three sites observed on one day and the same

three sites observed again on a second day). There is no particular assump-

tion about the ordering of the data sets and it is perfectly reasonable for an

individual to be observed in data set one and three but not in data set two.

In fact, the ordering of the data sets is totally arbitrary.

Definition 4.1. The observation function is a function acting on the mem-

bers of Ω such that

(i = j) ⇔ (f(ωi) = f(ωj)) .

In other words, the observation function is a function which uniquely iden-

tifies the objects observed. If the objects are different then the result of the

observation function is different. The domain of f(ω) is Ω and its range is a

property of each ωi sufficient to uniquely distinguish it from other members of

Ω.

In the case of the licence plate surveys discussed here, the domain of f(ω)

is the fleet of vehicles operating in the UK and its range is the set of licence

plates used by the vehicles in this fleet. In other words, the observation rep-

resented by the function is enough to uniquely determine the object observed

and distinguish it from all other such objects.

The members of the sets Si will be observations f(ω) with ω ∈ Ω. There-

fore, for each site i,

Si = {f(ω(i,1)), f(ω(i,2)), . . . , f(ω(i,N))}, (4.1)
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where N is the number of observations at site i and ω(i,j) ∈ Ω for all i, j. In

the context of licence plate surveys, ω(i,j) is the jth vehicle observed at site i

and f(ω(i,j)) is the licence plate of this vehicle.

A technicality which should be noted in passing is the possibility that

some ωj is observed more than once in a set of observations Si (in other

words, an individual is observed twice at the same site). This would cause

a problem since, formally, a set cannot contain members which are identical

(or rather {x, x} = {x}). This would be the case if ωi,k = ωi,l for any k 6= l

in equation (4.1). This problem will be made worse when the requirement

that observations uniquely determine individuals is dropped. To prevent this

problem, the observations could be, for example, tagged with a time of day

or a suffix to denote the order in which the observation was made. This

requirement is a pure technicality and will not affect anything which follows

nor will it be mentioned again.

Definition 4.2. An n-tuple of observations can be formed by taking one

observation from each of the n sites in order.

x = (x1, . . . , xn),

where xi ∈ Si.

To make this more concrete, consider the following three sets of observa-

tions,

S1 = {A123XYZ, B256ABC}

S2 = {A123XYZ, C232SAD, B256ABC}

S3 = {C789ABC, A123XYZ, A543OPQ}.
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Three possible n-tuples of observations are,

x = (A123XYZ, A123XYZ, C789ABC) (4.2)

y = (A123XYZ, A123XYZ, A123XYZ) (4.3)

z = (B256ABC, B256ABC, A123XYZ). (4.4)

Definition 4.3. The set S is the set of all possible such n-tuples across

the observations in the set of sites S. This is given by the Cartesian product,

S = S1 × S2 × . . . × Sn =
n∏

i=1

Si.

It follows immediately that the number of possible n-tuples #S is given

by
∏n

i=1 #Si.

4.4. Types of Match

Consider the tuples, x, y and z as given by equations (4.2), (4.3) and (4.4).

It is clear that in some sense that x and z are in some way the same type of

tuple in that they both represent observations of the same vehicle at sites one

and two and a different vehicle at site three. It is equally clear that x and y

are in this sense a different type of tuple. This concept of type of match is

formalised by an equivalence relation.

Definition 4.4. Two n-tuples of observations x = (x1, . . . , xn) and y =

(y1, . . . , yn) are the same type of match if and only if x ∼ y where ∼ is the

equivalence relation

(x ∼ y) if and only if (xi = xj) ⇔ (yi = yj) for all i, j ∈ 1, 2, . . . , n.1

1For simplicity the limits i, j ∈ 1, 2, . . . , n on indices will usually be omitted where, as

in this case, they are obvious.
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In other words, two n-tuples of observations are the same type of match

if they match in the same places as each other and differ in the same places.

For example,

(1, 2, 2, 4) ∼ (5, 1, 1, 4),

and

(pear, pear, apple) ∼ (α, α, η),

but

(©,©,4,4) 6∼ (1, 2, 1, 2).

It must now be shown that Definition 4.4 is, in fact, an equivalence relation

(reflexive, symmetric and transitive).

Reflexive: [x ∼ x] follows immediately since clearly (xi = xj) ⇔ (xi = xj).

Symmetric: [(x ∼ y) ⇒ (y ∼ x)] follows by assuming the converse. If

x ∼ y and y 6∼ x then there exists some i and j where yi = yj but xi 6= xj, a

contradiction if x ∼ y.

Transitive: [x ∼ y and y ∼ z together imply x ∼ z] follows because if

x ∼ y and y ∼ z for all i and j then xi = xj implies yi = yj which in turn

implies zi = zj. The same chain of reasoning means that zi = zj implies

xi = xj and therefore the relationship is transitive.

4.5. The Set of All Types of Match, Mn

An obvious next question to ask is “For n sites, how many types of match

exist?” To answer this question, consider the equivalence relation given by

Definition 4.4 as a partition of the set of all possible n-tuples. A transversal

is a set containing one and only one representative for each partition. This

transversal will be referred to as Mn and by definition has the properties that

no distinct members of Mn are equivalent under Definition 4.4 but any n-

tuple is equivalent to some member of Mn. The notation xM
n will be used to

designate n-tuples which are members of Mn.
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Definition 4.5. An n-tuple xM
n = (x1, . . . , xn) ∈ Mn if and only if xi ∈ N

and

xi =





1 i = 1

xj for some j < i i > 1 or

1 + maxj<i(xj) i > 1.

This can be thought of as labelling the first element of the n-tuple 1 and

every subsequent element with either the same label as an appropriate earlier

element (if it matches some earlier element) or the next available integer (if it

matches no earlier element).

Theorem 4.1. The set Mn of all possible xM
n meeting the conditions of

Definition 4.5 is a transversal of the set of all possible n-tuples partitioned by

the equivalence relation in Definition 4.4.

Proof. It is necessary to establish two things:

(1) For any n-tuple x there exists some yM
n ∈ Mn such that x ∼ yM

n .

(2) No two distinct elements of Mn are equivalent.

To prove the first part define a procedure to calculate yM
n from x =

(x1, . . . ,xn) such that yM
n ∼ x. Such a procedure is defined in Table 4.1.

(1) Set y1 = 1.

(2) Set r = 2.

(3) If xr = xi where (i < r) then yr = yi

(4) Otherwise yr = maxi<r(yi) + 1

(5) If r < n then increment r and go back to step 3.

Table 4.1. Procedure for forming yM
n ∈ Mn such that x ∼ yM

n .

This procedure will create some n-tuple yM
n given an n-tuple x. It remains

to prove that yM
n ∈ Mn and yM

n ∼ x. Since y1 = 1 and either yi = yj
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for some (j < i) or yi = maxj<i(yj) + 1 then, clearly yM
n ∈ Mn. It is also

clear that if the above procedure is followed x ∼ yM
n . From step three in the

procedure it must always be true that (xi = xj) ⇒ (yi = yj) and from step

four then (xi 6= xj) ⇒ (yi 6= yj). Therefore (xi = xj) ⇔ (yi = yj) and so, from

Definition 4.4, x ∼ yM
n .

For the second part of the proof, it must be shown that no two distinct

elements of Mn are equivalent. Or alternatively, that if two elements of Mn

are equivalent then they must also be equal. That is, for all xM
n ,yM

n ∈ Mn

then (xM
n ∼ yM

n ) ⇒ (xM
n = yM

n ).

If xM
n 6= yM

n then there must be some earliest element r of the n-tuples at

which they differ. Therefore, define r as the earliest element of xM
n such that

xr 6= yr. Assume without loss of generality that xr < yr. By Definition 4.5,

either yr = yi for some i < r or yr = maxi<r(yi) + 1.

In the first case, yr = yi, however, xr 6= yr (by the definition of r) and

therefore, since yi = xi and xr 6= xi by Definition 4.4, xM
n 6∼ yM

n .

In the second case, yr = max(yi) + 1. Since xr 6= yr, it is clear that there

is some element xi with (i < r) such that xr = xi but yr 6= yi and therefore

xM
n 6∼ yM

n .

Therefore it has been proved that, if element r exists, the two classes are

not equivalent. If there is no such element r then obviously xi = yi for all i

and xM
n = yM

n . �

The procedure defined by Table 4.1 can be thought of as a map from the

set of all possible n-tuples to the set Mn. An example of this map in use is,

(©,�,©,4,4) 7→ (1, 2, 1, 3, 3).

Thus it has been shown that Mn in Definition 4.5 is a transversal of the

equivalence classes in Definition 4.4 for all n-tuples. Table 4.1 defines a proce-

dure which will convert any n-tuple of observations x into yM
n ∈ Mn : x ∼ yM

n .
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Definition 4.6. The matching class of an n-tuple x is the member of

Mn to which it is equivalent. That is, the matching class of an n-tuple x is

yM
n ∈ Mn : x ∼ yM

n .

Table 4.1 gives a procedure to find the matching class of any n-tuple.

Definition 4.7. The height H(xM
n ) of an n-tuple xM

n ∈ Mn is the value

of its maximal element.

H(xM
n ) = max(xi).

Definition 4.8. A true match Mn(T ) is the member of Mn with height

1. That is, Mn(T ) = (1, 1, . . . , 1). This represents an observation of the same

individual at every one of n sites. A false match Mn(F) is the member of Mn

with height n. That is, Mn(F) = (1, 2, . . . , n). This represents an observation

of n different individuals, one each at every one of n sites.

Note, that most matching classes are neither a true match nor a false match

by this definition but instead are somewhere in between. The matching classes

M1 and M2 are special cases. In M1 = {(1)} then the true and false matches

are identical. That is M1(T ) = M2(F) = (1). It should be noted that M1

is something of a special case since it is hard to define quite what a match

means when only one object is being matched. In M2 = {(1, 1), (1, 2)} then

M2(T ) = (1, 1) and M2(F) = (1, 2) and there are no other elements.

4.5.1. Mapping Mn to the Set of Partitions of the First n Integers.

A partition of the first n integers is a set P of non-empty sets Yi (that is

P = {Y1, . . . , Ym}) where each of the first n integers is a member of one and

only one of the sets Yi. Call the set of all possible such partitions of the first

n integers Pn.

Theorem 4.2. The set Mn has the same number of elements as the set

Pn, the set of all possible partitions of the first n integers.

To complete this proof some subsidiary propositions must first be proved.
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Definition 4.9. An injection from a set A to a set B is a function such

that:

(1) f(a) ∈ B for all a ∈ A.

(2) (f(a) = f(a′)) ⇒ (a = a′) for all a, a′ ∈ A.

Definition 4.10. A bijection is an injection where, for every b ∈ B, there

exists a ∈ A such that f(a) = b. A bijection is also sometimes referred to as

a one-to-one correspondance.

If a function can be found which is a bijection from A to B then the two

sets must have the same number of members (#A = #B).

Take an n-tuple xM
n = (x1, . . . , xn) ∈ Mn.

(1) Set j = 1.

(2) Define Yj = {y1, . . . , ym} where the yi are all the

integers from 1 to n such that xyi
= j. (That is, Yj is

the set of indices of elements in xM
n for which the

elements with those indices have the value j.)

(3) Increment j and, if j ≤ H(xM
n ), then go to step 2.

The set P , given by

P = {Y1, Y2, . . . , YH(xM
n )},

is a partition of the first n integers.

Table 4.2. Procedure for mapping from xM
n ∈ Mn to P ∈ Pn.

Proposition 4.1. Table 4.2 defines a injective map Mn 7→ Pn.

Proof. It must be shown that if xM
n = (x1, . . . , xn) ∈ Mn and xM

n 7→ P
using the above procedure then P ∈ Pn. This follows immediately from the

fact that during step 2, every integer from 1 to n must be placed in one and
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only one Yj above since every xi must take a value in the range 1 to H(xM
n )

and j takes values from 1 to H(xM
n ). Thus Table 4.2 is a map from Mn 7→ Pn.

Secondly it must be shown that if xM
n 7→ P and yM

n 7→ P (where xM
n ,yM

n ∈
Mn) then xM

n = yM
n . Assume to the contrary, that xM

n 6= yM
n and define r

as the smallest integer such that xr 6= yr. Clearly r > 1 since by Definition

4.5, then x1 = y1 = 1. Now, assume without loss of generality that xr > yr.

Therefore, there must be some previous element yi of yM
n such that yi = yr

where (i < r). If this were not the case then yr = maxj<r(yj)+1 and xr can be

no bigger than this since the largest value xr can have is xr = maxj<r(xj) + 1

which is equal to maxj<r(yj) + 1 since, by the definition of r, xj = yj for all

j < r. Since yi = yr and yr 6= xr then xi 6= xr. However, by step 2, if yi = yr

then they must be in the same set Y ∈ P but if xi 6= xr then they cannot be

in the same set Y ∈ P . This is a contradiction and thus the assumption must

be false and xM
n = yM

n . Therefore, the map is an injection. �

An example of the map from Table 4.2 in use is

(x, x, y, x) 7→ {{1, 2, 4}, {3}}.

Begin with a set P ∈ Pn.

(1) Create the set P ′ = {Y1, . . . , Ym} which is a copy of P .

Create an n-tuple x.

(2) Define k = 1.

(3) Let X be the set Yi in P ′ which contains the smallest

integer. Remove the set Yi from P ′.

(4) For all xi : i ∈ X set xi = k.

(5) Add one to k and if P ′ 6= ∅ then go to step 3.

When this procedure is finished, x = (x1, . . . , xn) ∈ Mn.

Table 4.3. Procedure for mapping from P ∈ Pn to xM
n ∈ Mn.
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Proposition 4.2. Table 4.3 defines a injective map Pn 7→ Mn.

Proof. Begin with the assumption that some set P = {Y1, . . . , Ym} ∈ Pn

(where m is the number of sets into which the integers have been partitioned)

is mapped via this function to some n-tuple x.

First it is necessary to show that for all P ∈ Pn then the resultant x is a

member of Mn. Since all integers from 1 to n are part of some Yl ∈ P then

each element xi must be set at step 4 on some iteration of the procedure. By

the same token, no element xi will be set twice in step 4 since each number

can only be in one of the sets Yl. Consider the definition of the members of

Mn given in Definition 4.5. It is clear that x1 = 1 since, at step 4, when k = 1

then 1 is the lowest number from 1 to n in any of the Yl and so x1 = 1. It must

be proved that for i > 1 either xi = xj for some j < i or xi = maxj<i(xj) + 1.

Assume the contrary for some xi and further assume that i is the smallest such

i for which this is the case.

It is clear that xi ≥ 1 since k begins at 1 and counts upwards and it has

already been shown that all the xi were set equal to some k > 0 at stage 4.

Therefore xi > maxj<i(xj) + 1. This implies that there exists no xj < xi such

that j < i and xj = xi − 1. When stage 4 of the procedure was reached with

k = xi − 1 then there must have been some non-empty set Yl remaining in P ′.

Furthermore, Yl was chosen to be the set which has the smallest integer in it.

It follows that in step 4 some xj (where j < i) must have been set to xi − 1

which is a contradiction. Therefore it has been shown that P 7→ xM
n ∈ Mn.

It remains to be shown that for PA ∈ Pn and PB ∈ Pn, if PA 7→ xM
n and

PB 7→ xM
n then PA = PB. This follows almost immediately from noting that

if two numbers i, j ∈ (1, . . . , n) are members of the same set Yi in PA then

they are the indices of equal elements xi = xj in xM
n and must therefore be in

the same set Yk in PB. If two numbers i, j ∈ (1, . . . , n) are part of different

sets Yk and Yl in PA then they are the indices of unequal elements in xM
n (that

is xi 6= xj) and therefore must be part of different sets in PB. It therefore

follows that PA = PB since any two numbers are in the same set in PA and
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also in the same set in PB and any two numbers in different sets in PA are

also in different sets in PB. �

Since there is an injective map Pn 7→ Mn then #Pn ≤ #Mn. Similarly,

since there is an injective map Mn 7→ Pn then #Mn ≤ #Pn. Therefore there

are as many members in Mn as there are in Pn (#Mn = #Pn) and the maps

defined in Tables 4.2 and 4.3 are both bijections and Theorem 4.2 is proved.

4.5.2. Enumerating Mn. It is well-known (see [149, pages 119–128])

that the number of members of Pn can be counted using Bell Numbers and

Stirling numbers of the second kind.

Definition 4.11. Stirling numbers of the second kind S(n, k) are defined

by the recursive relationship

S(n, k) =





kS(n − 1, k) + S(n − 1, k − 1) n > 0 and 0 < k ≤ n

1 n = k = 0

0 otherwise.

Definition 4.12. The Bell number B(n) is given by

B(n) =
n∑

k=1

S(n, k) for all n > 0.

Theorem 4.3. Given the definitions of S(n, k) and B(n) above:

(1) The total number of members of Pn which are partitions into k sets

is given by S(n, k).

(2) The total number of members of Mn with height k is also given by

S(n, k).

(3) The total number of members of Pn (and therefore Mn) is given by

the Bell number B(n).
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Proof. The first part is proved in [149, page 125]. The second part

follows immediately from the fact that a partition of the integers into k sets is

mapped bijectively to a member of Mn with height k using the map defined in

Table 4.2. The third part follows from the fact that the Bell numbers are the

sum over all possible Stirling numbers for a given n and the already established

fact that #Mn = #Pn. �

4.5.3. Constructing Mn Computationally. Clearly M1 = {(1)}. To

construct Mn+1 from Mn use the procedure in Table 4.4.

(1) Define M = ∅ and X to be the set Mn.

(2) Set xM
n to be some element from X and remove that

element from X.

(3) From the n-tuple xM
n construct an (n + 1)-tuple by

adding the integers from 1 to H(xM
n ) + 1 as the n + 1th

element of the (n + 1)-tuple. Add these tuples to the

set M .

(4) If any elements remain in X then go to step 2.

Mn+1 is the set M after this procedure completes.

Table 4.4. Constructing Mn+1 from Mn.

This is process is illustrated in Figure 4.1.

(1)

(1,1) (1,2)

(1,1,1) (1,1,2) (1,2,1) (1,2,2) (1,2,3)

(1,2,1,1)(1,2,1,2)(1,2,1,3)

M1

M2

M3

M4(partial)

Figure 4.1. Construction of Mn+1 from Mn.
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4.6. A Partial Ordering on the Set Mn

A useful partial ordering can be defined on the set Mn.

Definition 4.13. For two n-tuples xM
n ,yM

n ∈ Mn a partial ordering re-

lation % can be defined by

xM
n % yM

n if and only if (xi = xj) ⇒ (yi = yj).

To be a partial ordering, the relation must be reflexive, anti-symmetric and

transitive. Again, these properties are easily proved.

Refexive [xM
n % xM

n for all xM
n ∈ Mn]: This is trivially true since (xi =

xj) ⇒ (xi = xj).

Anti-Symmetric [xM
n % yM

n and yM
n % xM

n together imply xM
n = yM

n for

all xM
n ,yM

n ∈ Mn]: This trivially follows since if both conditions together

apply then (xi = xj) ⇔ (yi = yj) and hence xM
n ∼ yM

n from Definition 4.4. It

has already been shown that this implies xM
n = yM

n .

Transitive [xM
n % yM

n and yM
n % zMn together imply xM

n % zMn for all

xM
n ,yM

n , zMn ∈ Mn]: This follows since, if xi = xj implies yi = yj and yi = yj

implies zi = zj then clearly xi = xj implies zi = zj.

Note that this definition is identical to the original equivalence relation

in Definition 4.4 except that the implication is only in one direction. Note

also that this partial ordering applies only to members of the set Mn not to

general n-tuples. This is because the property of anti-symmetry would not

hold for general n-tuples for example (1, 2) % (α, β) and (α, β) % (1, 2) but

(1, 2) 6= (α, β).

Definition 4.14. The symbol � will be used to mean strictly succeeds.

That is x � y means x % y and x 6∼ y. The symbol �� will be used to mean

immediate successor that is, if x �� z then x � z but there is no y such that

x � y � z. The symbols ≺, - and ≺≺ will have their obvious meanings. The

symbol x||y will be used to mean non-comparable under the relation defined

by %, neither x % y nor y % x applies.
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Lemma 4.1. For all m : 1 ≤ m ≤ n, if xM
n = (x1, . . . , xn) ∈ Mn then

xM
m = (x1, . . . , xm) is a member of Mm.

Proof. If Definition 4.5 holds for xi with 1 ≤ i ≤ n then clearly it holds

for xi with 1 ≤ i ≤ m if m ≤ n. Therefore, xM
m ∈ Mm. �

This lemma states that the m-tuple obtained by choosing only the first m

elements of a matching class is itself a matching class. (Note that this is not

the case if the last m members are chosen. For example the last member of

(1, 2) ∈ M2 is (2) which is not a member of M1).

Lemma 4.2. For all xM
n ,yM

n ∈ Mn, if xM
n % yM

n then xM
r % yM

r for all

r ≤ n .

Proof. By Definition 4.13 then since (xi = xj) ⇒ (yi = yj) for all i, j < n

this is also true for all i, j < r if r ≤ n by the same reasoning as for the

previous lemma. �

4.6.1. A Consistent Enumeration for the Partial Ordering.

Definition 4.15. A consistent enumeration of a partially ordered set S

is a real valued function f(x) where x ∈ S with the property that, for all

x,y ∈ S then x � y implies f(x) > f(y).

Theorem 4.4. The function H(xM
n ) provides a consistent enumeration of

Mn uder the partial ordering given by Definition 4.13.

Proof. It is necessary to show that for all xM
n ,yM

n ∈ Mn, then xM
n � yM

n

implies H(xM
n ) > H(yM

n ). The theorem is proved if, for all xM
n ,yM

n ∈ Mn,

then xM
n % yM

n implies either H(xM
n ) > H(yM

n ) or xM
n = yM

n .

Consider constructing xM
n and yM

n by stages — that is, starting with a

1-tuple and adding an element onto the end to construct a 2-tuple and so

on until an n-tuple is completed. Call the rth stage of construction xM
r and

yM
r respectively. At the first stage of construction: xM

1 = yM
1 = (1) and

the heights of both are one. The proof proceeds by induction considering the
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construction of stage r of xM
r by adding xr to the end of xM

r−1. There are three

possibilities.

Case 1: xr = xi for some i < r. By Definition 4.13, xr = xi ⇒ yr = yi and,

if xM
r−1 = yM

r−1 then xM
r = yM

r . If H(xM
r−1) ≥ H(yM

r−1) then H(xM
r ) ≥ H(yM

r )

(since the height of neither change) and if H(xM
r−1) > H(yM

r−1) then H(xM
r ) >

H(yM
r ).

Case 2: xr = maxi<r xi + 1 and yr = maxi<r yi + 1. In this case, trivially,

if xM
r−1 = yM

r−1 then xM
r = yM

r . If H(xM
r−1) ≥ H(yM

r−1) then H(xM
r ) ≥ H(yM

r )

(since the heights of both increase by one) and if H(xM
r−1) > H(yM

r−1) then

H(xM
r ) > H(yM

r ).

Case 3: xr = maxi<r xi + 1 and yr = yj for some j < r. In this case, if

H(xM
r−1) ≥ H(yM

r−1) then H(xM
r ) > H(yM

r ).

Consider constucting xM
n and yM

n by stages. If only cases 1 and 2 occur

then xM
n = yM

n . If case 3 occurs at any stage of construction then H(xM
n ) >

H(yM
n ). �

Corollary 4.1. If H(xM
n ) = H(yM

n ) then either xM
n = yM

n or xM
n ||yM

n .

Proof. The proof follows immediately from the construction in the proof

of the previous theorem. If H(xM
n ) = H(yM

n ) and xM
n % yM

n then xM
n = yM

n .

By the same reasoning, if H(xM
n ) = H(yM

n ) and yM
n % xM

n then xM
n = yM

n .

Therefore, if H(xM
n ) = H(yM

n ) then either xM
n ||yM

n or xM
n = yM

n . �

4.6.2. The Hasse Diagram. A Hasse diagram is a way of visualising a

partially ordered set. A Hasse diagram is constructed by plotting a partially

ordered set S graphically in such a way that for all x,y ∈ S if x ≺ y then x

is further to the bottom of the diagram than y. Further, if x �� y then an

arrow is drawn from x to y.

Every Hasse diagram for Mn will have discrete levels defined by H(xM
n )

(since this has been shown to provide a consistent enumeration) and will have

a singleton as the upper and lower levels defined, respectively, by Mn(F) (the

only possible n-tuple in Mn with height n) and Mn(T ) (the only possible
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n-tuple in Mn with height 1). As an example, the Hasse diagram for M4 is

shown in Figure 4.2.

(1,2,3,4)

(1,1,2,3)(1,2,1,3)(1,2,3,1)(1,2,2,3)(1,2,3,2)(1,2,3,3)

(1,1,1,2)(1,1,2,2)(1,1,2,1)(1,2,1,2)(1,2,1,1)(1,2,2,1)(1,2,2,2)

(1,1,1,1)

H(xM
n ) = 4

H(xM
n ) = 3

H(xM
n ) = 2

H(xM
n ) = 1

Figure 4.2. Hasse diagram for M4.

4.6.3. Partial (or Censored) Observations Related to Partial Or-

dering.

Definition 4.16. The censored observation function, C(x) is a function

which acts on an n-tuple x = (x1, . . . , xn) (this may be an n-tuple of observa-

tions or an n-tuple ∈ Mn) to produce an n-tuple y = (y1, . . . , yn) in such a

way that if y = C(x) then

(xi = xj) ⇒ (yi = yj),

for all i and j. The domain of C(x) is Ωn and its range is the space of

n-tuples of censored observations. For example, in the case of licence plate

observations, the domain is the space of n-tuples of all possible licence plate

observations and the range is the space of n-tuples of all possible partial licence

plate observations.

The censored observation function is equivalent to the common sense notion

of two or more observations of separate individuals which may be confused

and appear to be the same individual. An example of a censored observation

function would be correctly recording only part of a licence plate. By observing

only part of the licence plate the same vehicle can never be recorded differently

but different vehicles may be recorded as being the same.
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Theorem 4.5. The matching class of an n-tuple of censored observations -

the n-tuple of the original observations. That is, for an n-tuple of observations

z then

(xM
n ∼ z and yM

n ∼ C(z)) ⇒ (yM
n - xM

n ).

Proof. This follows immediately from the fact that by Definition 4.4 then

(zi = zj) ⇔ (xi = xj). By Definitions 4.4 and 4.16 (zi = zj) ⇒ (yi =

yj). Therefore (xi = xj) ⇒ (yi = yj) which is exactly the condition for the

relationship xM
n % yM

n from Definition 4.13. �

4.7. The Exact and Relaxed Matching Functions

In this section the exact and relaxed matching functions are introduced

and this is used to create an algebra of matching.

Definition 4.17. The exact matching function X(yM
n ,x), where yM

n ∈
Mn and x is an n-tuple of observations is defined as

X(yM
n ,x) =





1 if and only if x ∼ yM
n

0 otherwise.

This definition can be thought of as an indicator as to whether an obser-

vation is a equivalent to a particular matching class. The definition naturally

extends from a single n-tuple of observations to a set of n-tuples as shown.

Definition 4.18. The exact matching function X(yM
n ,Z), where yM

n ∈
Mn, Z = {z1, . . . , zm} and all zi are n-tuples of observations is defined as

X(yM
n ,Z) =

∑

z∈Z

X(yM
n , z).

In other words, the function counts the number of matches of type yM
n in the

set of n-tuples Z.

When used on a set of n-tuples, the exact matching functions simply counts

the number of matches in a set of observations which belong to the given
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matching class. The relaxed matching function allows the observations to

belong to a matching class or any predecessor of that class.

Definition 4.19. The relaxed matching function R(yM
n ,x), where yM

n ∈
Mn ans x is an n-tuple of observations is defined as

R(yM
n ,x) =





1 if and only if yM
n � xM

n

0 otherwise,

where xM
n ∈ Mn such that xM

n ∼ x.

As previously this definition can be extended to a set of n-tuples as shown

below.

Definition 4.20. The relaxed matching function R(yM
n ,Z), where yM

n ∈
Mn Z = {z1, . . . , zm} and all zi are n-tuples of observations is defined as

R(yM
n ,Z) =

∑

z∈Z

R(yM
n , z).

In other words, the relaxed matching function counts the number of n-

tuples equivalent to a class yM
n or any successor class.

4.7.1. Some Proofs Relating to Exact and Relaxed Matches. It

should be clear that the aim of the original problem (to find the number of gen-

uine matches in a data set) is the problem of evaluating X(Mn(T ),S) where

S is the set of all possible n-tuples of observations from Defintion 4.3. The

problem is complicated by the fact that the observations S are not available

and only the censored observations C(S) are available to work with.

Lemma 4.3. Let x = (x1, . . . , xn) be an n-tuple of observations and yM
n =

(y1, . . . , yn) ∈ Mn be a matching class. If both are reordered in the same man-

ner then the values of the exact and relaxed matching functions are unchanged.

Swapping the elements i and j in both, giving the n-tuple x′ = (x′
1, . . . , x

′
n) and

the matching class y′M
n ∈ Mn such that y′M

n ∼ (y′
1, . . . , y

′
n) (where x′

i = xj,

x′
j = xi and x′

k = xk for all k 6= i, j and, in addition, y′
i = yj, y′

j = yi
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and y′
k = yk for all k 6= i, j) 2 does not change the value of the exact or

relaxed matching functions. In other words, X(yM
n ,x) = X(y′M

n ,x′) and

R(yM
n ,x) = R(y′M

n ,x′).

Proof. Consider first the exact matching function. It is equal to 1 if and

only if yM
n ∼ x which implies in turn (yk = yl) ⇔ (xk = xl). It can be

easily seen that if yi and yj are swapped and simultaneously xi and xj are

swapped then the truth (or otherwise) of this condition remains unchanged.

Thus the lemma is proved for the exact matching function. The argument

for the relaxed matching function is exactly the same but the implication is

in one direction only since the relaxed matching function is 1 if and only if

(yk = yl) ⇒ (xk = xl). �

It should be noted that this lemma also applies to the relaxed and exact

matching functions operating on sets of n-tuples when each n-tuple in the set

is reordered in the manner described in the lemma.

Lemma 4.4. Given a set of n-tuples of observations Z = {z1, . . . zm} and

a matching class xM
n ∈ Mn then

X(xM
n ,Z) = R(xM

n ,Z) −
∑

yM
n

X(yM
n ,Z),

where the sum is over those elements yM
n ∈ Mn such that yM

n ≺ xM
n .

Proof. Rewrite the equation as

∑

z∈Z

∑

yM
n

X(xM
n , z) =

∑

z∈Z

R(xM
n , z),

where, again, the inner sum on the left-hand side is over all elements yM
n ∈ Mn

such that yM
n - xM

n .

Therefore it is sufficient to prove that for all possible n-tuples z,

R(xM
n , z) =

∑

yM
n

X(yM
n , z), (4.5)

2Note that the n-tuple (y′

1
, . . . , y′

n
) is not necessarily a member of Mn hence the ∼ sign

not the = sign.
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where yM
n ∈ Mn such that yM

n - xM
n .

Two cases are possible — either R(xM
n , z) equals zero or it equals one.

Case 1: R(xM
n , z) = 0.

In this case by Definitions 4.17 and 4.19 X(yM
n , z) = 0 for all yM

n - xM
n .

Thus
∑

yM
n

X(yM
n , z) must equal zero and equation (4.5) is true.

Case 2: R(xM
n , z) = 1.

By Definition 4.19 there exists yM
n ∼ z such that yM

n ∈ Mn and yM
n - xM

n

(note that by the definition of Mn there can be only one such yM
n ∼ z). Thus

∑
yM

n
X(yM

n , z) = 1 where the sum is over all yM
n ∈ Mn such that yM

n - xM
n

and therefore equation (4.5) holds and the lemma is proved. �

Corollary 4.2. For all n-tuples x,

R(Mn(T ),x) = X(Mn(T ),x)

Proof. This follows since there are no yM
n ∈ Mn such that yM

n ≺ Mn(T ).

Therefore, in the previous lemma, the term
∑

yM
n

X(yM
n , z) = 0. �

To proceed with the theory two definitions are necessary which will be used

in the next lemma. The definitions and lemmas which follow deal with the

idea of breaking tuples (both tuples of observations and matching classes) into

sub-tuples.

Definition 4.21. Define X(xM
n , i) as the tuple of indices within xM

n which

have the value i. The elements of X(xM
n , i) are ordered in increasing value.

X(xM
n , i) = (s(1), s(2), . . . , s(m))

where the s(j) are those elements of xM
n such that xs(j) = i and, obviously, m

is the number of such elements. The s(j) are ordered such that s(j) < s(k) if

j < k.
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An example of this definition in use may help. If xM
n = (1, 2, 1, 1, 3, 2) then

X(xM
n , 1) = (1, 3, 4) (since the first, third and fourth elements of xM

n are equal

to one). Similarly, X(xM
n , 2) = (2, 6) and X(xM

n , 3) = (5).

Definition 4.22. Define S(xM
n , i) as a set of tuples of observations, de-

rived from S (the set of all possible n-tuples of observations as given in Defi-

nition 4.3). The set S(xM
n , i) is given by the Cartesian product,

S(xM
n , i) =

∏

j∈X(xM
n ,i)

Sj,

where X(xM
n , i) = (s(1), s(2), . . . ) is as given in Definition 4.21 and the product

is over the elements s(i) of the tuple.

In other words, the tuple X(xM
n , i) picks out a selection of those sites which,

for a given matching class xM
n = (x1, . . . , xn), correspond to an element xj = i.

The set of observations S(xM
n , i) is the set of all possible tuples of observations

made at those sites only. For example, if xM
n = (1, 2, 1, 2) then S(xM

n , 1) is

the set of all pairs of observations made at sites one and three and S(xM
n , 2)

is the set of all pairs of observations made at sites two and four.

Lemma 4.5. Given a set S of all possible n-tuples from a set of observations

made over n sites (as defined in Definition 4.3), the number of relaxed matches

of class xM
n ∈ Mn in S is given by

R(xM
n ,S) =

h∏

i=1

X(Mm(i)(T ),S(xM
n , i)),

where h = H(xM
n ), m(i) = #S(xM

n , i) and S(xM
n , i) is given by Definition

4.22.

Proof. Firstly, from Lemma 4.3, the value of R(xM
n ,S) is unchanged if

xM
n and S are reordered in the same way. Therefore, assume, without loss of

generality that xM
n is ordered such that xi ≤ xj for all i < j and S has been

reordered in the same way. By this property, the tuples in S(xM
n , i) must be

made from elements which were adjacent in the original n-tuples in S. Define
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S(i) such that S(i) ⊆ S(xM
n , i) and S(i) consists of those tuples x ∈ S(xM

n , i)

such that x ∼ Mm(i)(T ). Clearly, because of the way these tuples were chosen

then

X(Mm(i)(T ),S(xM
n , i)) = #S(i).

In other words, S(i) is a set of all those tuples which appear to be obser-

vations of the same individual at all sites picked out by X(xM
n , i). Consider

the set of n-tuples Y formed by the Cartesian product of S(i).

Y =
h∏

i=1

S(i).

An n-tuple y ∈ Y is an n-tuple of observations with one observation from

each of the original n sites. It must now be shown that

Y = {y ∈ S : R(xM
n , y) = 1},

or, by the definition of R(xM
n , y) (Definition 4.19), Y is the set of all those

n-tuples in S for which y - xM
n . This is equivalent to the claim that for

all y ∈ Y then y - xM
n and for all z ∈ S/Y then z 6- xM

n . The set S(i)

was constructed from sites corresponding to the set of all elements in xM
n for

which xj = xk = i. Further, S(i) consists of all elements of observations where

yj = yk. Therefore, for any given i then (xj = xk = i) ⇒ (yj = yk) for all

y ∈ S(i). Similarly, if xj = xk = i then all tuples such that yj = yk are in

S(i). Since Y is the Cartesian product of all such S(i) then all tuples in S
such that y - xM

n must be in Y and all y ∈ Y must be such that y - xM
n .

Therefore,

R(xM
n ,S) = #Y = #

h∏

i=1

S(i) =
h∏

i=1

#S(i) =
h∏

i=1

X(Mm(i)(T ),S(xM
n , i)),

and thus the lemma is proved. �

The lemma can best be understood by example. Consider xM
n = (1, 2, 1, 1, 2).

Any observation y - xM
n must have y1 = y3 = y4 and y2 = y5. The set S(1)

is the set of all triples of observations from sites 1, 3 and 4 meeting the first

condition. The set S(2) is the set of all pairs of observations from sites 2 and
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5 meeting the second condition. Therefore, the cartesian product S(1) × S(2)

reordered must contain all y - xM
n and no y 6- xM

n .

Corollary 4.3.

R(Mn(F),S) =
n∏

i=1

#Si,

or, in other words, the number of relaxed matches against the false matching

class in a set of observations is simply the number of observations.

Proof. This follows from the fact that, for Mn(F) then X(Mn(F), i) is

the set of the single elements X(Mn(F), 1) = (1), X(Mn(F), 2) = (2) and so

on. Obviously, for just a single site, then M1 = {(1)} and all observations at

site i must be a member of S(Mn(F), i). So X(Mm(i)(T ),S(xM
n , i)) = #Si

and the corollary then follows from the lemma. �

Definition 4.23. For a given censoring function C(x) the probability p(n)

is defined for n ≥ 1 as

p(n) = P [C(x) ∼ Mn(T )|x ∼ Mn(F)] ,

for n-tuples of observations x = (x1, . . . , xn). Note that x is chosen in such a

way that xi = f(ωk) where the f(ωk) is the observation function from Defini-

tion 4.1 and the ωk ∈ Ω are chosen from the same distribution as the genuine

observations in the real data S.

Note that implicit in this is the assumption that the probability p(n) does

not depend on the particular sites chosen from a subset of sites. This is a rea-

sonable assumption for the particular problem chosen (that of vehicle licence

plates). However, it might be criticised on a number of grounds. For example,

in the UK, a wealthy neighbourhood might have a preponderance of newer ve-

hicles with similar year letters and a site might be near such a neighbourhood.

Also it is conceivable that military vehicles (which can have different plates)

might distort this assumption. Note also that by this definition then p(1) = 1

— this follows from the fact that M1(T ) = M1(F).
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Lemma 4.6. Given the censoring function C(x) and some n-tuple of ob-

servations x then

P [C(x) ∼ Mn(T )] = p(h),

where h = H(yM
n ) and yM

n ∈ Mn such that yM
n ∼ x and x is randomly chosen

in the same manner as in Definition 4.23. In other words, the probability that,

after censoring, a set of observations appears to be a true match is p(h).

Proof. Since x has h distinct elements then some h-tuple z can be formed

by choosing elements from x such that z ∼ Mh(F). From Definition 4.23

then P [C(z) ∼ Mh(T )] = p(h). If C(z) ∼ Mh(T ) then C(x) ∼ Mn(T )

and therefore P [C(x) ∼ Mn(T )] = P [C(z) ∼ Mh(T )] and thus the lemma is

proved. �

Lemma 4.7. For a set of n-tuples of observations Z with a censoring func-

tion C(Z) then an unbiased estimator for the number of true matches in the

set of observations t = X(Mn(T ),Z) is given by

t̂ = X(Mn(T ), C(Z)) −
∑

xM
n

X(xM
n ,Z)p(h),

where h = H(xM
n ) and the sum is over xM

n ∈ Mn such that xM
n 6= Mn(T ).

Proof. Firstly define Y(xM
n ) as the set of all those z ∈ Z such that

C(z) ∼ Mn(T ) and z ∼ xM
n . For a given z ∼ xM

n then P
[
z ∈ Y(xM

n )
]

= p(h)

by Lemma 4.6. The number of elements z ∼ xM
n is given by X(xM

n ,Z). It

therefore follows that

ŷ = X(xM
n ,Z)p(h). (4.6)

is an unbiased estimator for #(Y(xM
n )) since it is a sum of probabilities and

expectation is a linear operator.

X(Mn(T ), C(Z)) =
∑

xM
n

#Y(xM
n ),
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where the sum is over all xM
n ∈ Mn.

X(Mn(T ), C(Z)) = #Y(Mn(T )) +
∑

xM
n

#Y(xM
n )

= X(Mn(T ),Z) +
∑

xM
n

#Y(xM
n )

X(Mn(T ),Z) = X(Mn(T ), C(Z)) −
∑

xM
n

#Y(xM
n )

where the sum is over xM
n ∈ Mn such that xM

n 6= Mn(T ). The estimator (4.6)

substituted into this equation completes the lemma. Because the estimator is

a sum of unbiased estimators then the estimator for X(Mn(T ),Z) is itself

unbiased. �

4.7.2. Estimating p(n) in Real Data. It may be thought that estimat-

ing p(n) from Definition 4.23 is a major problem. It seems to require knowledge

of the distribution of the uncensored observations. A number of strategies for

estimating p(n) are possible. The best strategy will depend on the particu-

lar nature of the problem under study. For the case of partial licence plate

observations two sensible strategies are available.

The first strategy is to estimate the value of p(n) from knowledge of the

distribution of the licence plates themselves. Studies of UK plates in the form

ABC123X where X is a year letter show that the digits have an approximately flat

distribution, the year letter exhibits a complex distribution which depends on

vehicle sales in that year and the rate at which old vehicles retire from service

and the initial letters exhibit a distribution which depends upon where the car

was purchased.

A common method for reading partial plates in this type of plate is to

take the year letter and the three digits. The probability that two randomly

chosen different vehicles have the same digits in their plate is approximately

1
1000

. The probability of two randomly chosen vehicles having the same year

letter can be estimated as
∑

x∈A f(x)2 where A is the set of all year letters and

f(x) is the fraction of surveyed vehicles with the given year letter. Therefore
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the probability of two partial plates matching can be estimated as

p̂(2) =
1

1000

∑

x∈A

f(x)2.

Values of p(n) for n > 2 can be estimated with similar assumptions. Of course,

this method depends on the particular details of how plates are allocated and

is not of general interest.

The second strategy is based upon analysing the data recorded. Often

there are two survey sites where it is known that all the vehicles must be

different — for example, two sites that are fifty minutes drive apart in a half

hour survey. Any matches between these two sites must be false matches.

From this then an estimator for p(2) is given by

p̂(2) =
T

N1N2

.

where T is the total number of matches and N1, N2 are the number of ob-

servations at the first and second survey sites. Values of p(n) for n > 2 can

be estimated with similar assumptions if there are n widely separated survey

sites. Alternatively, the values of p(2) and p(3) could be used to estimate the

higher order probabilities.

It is important to note that a good estimate for p(n) particularly for n = 2

and n = 3 is extremely important to the estimates made by this method.

Section 5.8.1 discusses the estimation problem in a real data set.

4.8. An Algorithm for Estimating False Matches

It is not immediately obvious, but from the above Lemmas 4.4, 4.5 and 4.7

a procedure can be created to estimate X(Mn(T ),S) — the number of true

matches in a set of observations over the set of sites S. This was the original

aim of the false match problem in licence plate data. The idea is to take the

problem and reduce it to a number of sub-problems of finding false matches in

a lesser number of data sets. Eventually, the problem will “bottom out” when

there is only one data set since M1(T ) = {(1)} and X(M1(T ),S) is simply

the number of members in the single data set #S.
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Lemma 4.5 allows estimation of X(Mn(T ),S) from X(Mn(T ), C(S)) and

X(xM
n ,S) in classes other than Mn(T ). The quantity X(Mn(T , C(S)) can be

directly measured since it is the number of tuples of observations which are the

same in the censored data. Thus, from this data, the number of true matches

can be estimated from the number of exact matches in all other matching

classes.

From Lemma 4.4 these matches can be calculated exactly if the number of

relaxed matches R(xM
n ,S) is known and also the number of exact matches in

all successor matching classes is known.

From Lemma 4.5 the number of relaxed matches of a particular type can be

calculated if the number of exact true matches in a subset of sites is known.

The value of R(Mn(F),S) is given by Corollary 4.3. From Corollary 4.2,

then R(Mn(T ),S) = X(Mn(T ),S), which is the quantity desired. For all

other values of xM
n , Lemma 4.5 allows the calculation of R(xM

n ,S) in terms

of X(Mm(T ),S(xM
n , i)) where m < n and S(xM

n , i) is, from Defintion 4.22, a

set of tuples defined over some subset of the original sites.

These lemmas must be used in conjunction with computer algebra to pro-

vide a solution. In the interests of clarity, a brief example is given in the next

subsection.

Therefore, if p(n) can be estimated, the problem of estimating X(Mn(T ),S)

is solved by the procedure defined in Table 4.5.

4.8.1. Computer Algebra Example. In this section only a short hand

notation will be used in order to prevent the expressions used becoming un-

wieldy. Consider the problem with only three sites. Let t123 be the true number

of matches which occur between all sites and by extension t13 be the true num-

ber of matches which occur between sites one and three only. Similarly, let

Z123 be the set of all n-tuples of observations over all sites and let Z2 be the

set of all observations (strictly, 1-tuples of observations) at site two only. Let

s123 be the observed number of matches across all three sites.
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(1) Calculate from the data, X(Mn(T ), C(S)) for all n

sites — this is simply a matter of counting the number

true matches observed in the censored data.

(2) Begin with Lemma 4.7 and use computer algebra (see

example) to expand this using Lemmas 4.4, and 4.5 to

give an expression in terms of X(Mn(T ), C(S)),

X(Mn(T ),S), X(xM
n ,S) and p(n).

(3) Again using computer algebra, gather all the terms

which are X(Mn(T ),S) (the quantity to be found) on

the left hand side — these terms will all be functions of

p(k) where 1 < k ≤ n.

(4) Steps 1 to 3 produce an equation for X(Mn(T ),S) in

terms of p(k), R(Mn(F),S) (given by Corollary 4.3)

and X(Mm(T ),S(xM
n , i)) where m < n and S(xM

n , i)

is the set of tuples of observations over some subset of

sites.

(5) For each of the terms X(Mm(T ),S(xM
n , i)) then if

m = 1 the answer is trivial. If m > 1 then use this

whole procedure from step 1 with n = m and

S = S(xM
n , i). In other words, the problem has become

a sub-problem with a reduced number of sites.

Table 4.5. Algorithm for correcting false matches.

To relate this to the previous notation:

Z123 = S

t123 = X(M3(T ),S)

s123 = X(M3(T ), C(S))
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Now, in this new notation, beginning from Lemma 4.7 then

t̂123 = s123 −
∑

xM
n

X(xM
n ,Z123)p(h),

where h = H(xM
n ) and the sum is over xM

n ∈ Mn such that xM
n 6= Mn(T ).

The sum in full is, therefore,

t̂123 = s123 − X((1, 1, 2),Z123)p(2)

− X((1, 2, 1),Z123)p(2)

− X((1, 2, 2),Z123)p(2)

− X((1, 2, 3),Z123)p(3).

This can be thought of in terms of “The estimated number of true matchs

is the number of observed matches minus matches which appear to be true

matches in any one of these four ways.”

Next, the terms X(xM
n ,Z123) can be expanded using Lemma 4.4. For

example,

X((1, 2, 1),Z123) = R((1, 2, 1),Z123) − X((1, 1, 1),Z123)

= R((1, 2, 1),Z123) − t123.

Similarly,

X((1, 2, 3),Z123) = R((1, 2, 3),Z123) − X((1, 2, 2),Z123) − X((1, 1, 2),Z123)

−X((1, 2, 1),Z123) − X((1, 1, 1),Z123)

= #Z123 − R((1, 2, 2),Z123) − R((1, 1, 2),Z123)

−R((1, 2, 1),Z123) + 3t123,

where Corrollary 4.3 has been used to get the substitution for #Z123 in the

second line.

Now, terms like R((1, 2, 1),Z123) can be expanded using Lemma 4.5 so that,

for example,

R((1, 2, 1),Z123) = t13#Z2.
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After completing all these expansions then,

t̂123 = s123 − t12#Z3p(2) − t13#Z2p(2) − t23#Z2p(2)

+ 3t123p(2) − #Z123p(3) + t12#Z3p(3)

+ t13#Z2p(3) +t23#Z2p(3) − 3t123p(3).

Rearranging the terms in t123 gives

t̂123(1 + 3p(3) − 3p(2)) = s123 − #Z123p(3) − t12#Z3p(2)

− t13#Z2p(2) − t23#Z2p(2) + t12#Z3p(3)

+ t13#Z2p(3) + t23#Z1p(3)

The only unknown terms here are t12, t23 and t13. These can be found by

repeating the same procedure on the problem with just two sites. The result

obtained is that

t̂12(1 + p(2)) = s12 − #Z12p(2),

and, naturally, similar equations can be found for t23 and t13. With just three

sites, the problem can be solved explicitly without computer algebra. With

six sites this becomes sufficiently difficult that a computer is required to make

the subsitutions above.

4.9. Simulation Results

The procedure developed in the previous section has been implemented in

C++ and tried both on real data (from roadside surveys) and on simulated

data. The simulated data is also presented as if it were a roadside survey.

Results on the real data are not presented here since it is impossible to know

the correct answer for this data.
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No. 1–2 1–3 1–4 1–5 1–6 Av.Raw σ Raw Av.Cor. σ Cor.
Veh. Matches Matches Matches Matches
1000 10 111.4 8.5 11.4 8.5
2000 10 411.8 19.5 11.8 19.5
1000 100 199.2 12.0 99.2 12.0
1000 200 302.3 7.7 202.3 7.7
1000 500 596.6 12.3 496.7 12.3
1000 0 10 21.9 4.6 9.3 3.3
1000 500 10 73.8 7.5 10.2 6.2
1000 100 100 152.1 8.5 101.9 7.5
1000 500 250 388.3 22.7 253.2 20.1
1000 0 500 667.2 24.9 506.0 22.3
1000 0 0 100 154.6 26.6 104.0 22.6
1000 100 100 100 164.4 11.4 97.7 9.3
500 100 100 100 140.7 19.3 105.8 17.4
1000 500 250 100 207.8 29.7 106.1 23.7
500 10 10 10 10 14.2 2.2 10.5 1.8
1000 10 10 10 10 17.4 4.1 9.4 2.8
500 50 50 50 50 71.3 14.3 47.8 12.3
500 100 100 100 100 151.9 26.9 92.0 22.3
1000 0 0 0 100 177.6 29.9 103.4 22.6
1000 100 100 100 100 222.2 61.5 111.0 46.7
1000 0 0 0 0 10 21.2 13.4 12.3 9.9
500 0 0 0 0 100 152.6 45.5 92.2 37.3
1000 0 0 0 0 100 214.6 58.0 103.5 40.2
1000 100 100 100 100 100 289.8 88.4 101.3 55.0

Table 4.6. Simulation results — all performed over twenty
runs with 10,000 distinct vehicle types.
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Table 4.6 shows simulation results for between two and six observation

sites. The table is to be interpreted as follows. Num. Veh. refers to the total

number of observations at each of the sites (in these simulations, there are the

same number of vehicles in each data set). The five columns of the form 1−n

refer to the number of vehicles which genuinely went from site one to site n

visiting all sites in between. If this column is blank it means that there was no

site n. For example, if 1−2 = 100, 1−3 = 200 and 1−4 is blank. This means

that 100 vehicles travelled between site one and site two, 200 vehicles travelled

between sites one, two and three and there were only three sites. Note that

these are cumulative so that if 1 − 2 = 20 and 1 − 3 = 10 this means that 30

vehicles in total went from site one to site two and 10 of them continued to site

three. Thus the first experiment is two sites, 1000 vehicles at each for which

there were ten vehicles which were genuinely seen at both sites. Note that

in every experiment, the number of different vehicle types was set at 10, 000

with a flat distribution (equal numbers of vehicles seen at each site). It should

be clear that the desired answer from the correction process is the rightmost

figure in these columns.

Each experiment is repeated twenty times with simulated data being gen-

erated anew each time. The correction process has no random element and

will always give the same result for the same data. The mean raw number

of matches is given — this is the total number of n-tuples which were seen

to have the same value for each observation at every site (averaged over the

twenty simulation runs). Note that, because of the combinatorial nature of the

procedure, this could, in principle, be much larger than the number of vehicles

in any of the data sets. The sample standard deviation (σ) is given for the raw

matches. The mean estimated correct number of matches is then given (again

averaged over the twenty simulations). The sample standard deviation σ is

then given for the twenty corrected matches. It is clear that the most impor-

tant test is that the mean corrected number of matches is as near to correct as

possible. However, it should also be kept in mind that in reality, a researcher
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could only run the matching procedure once on any given set of data — so it

is also important that σ is as low as possible. A significant improvement to

the method would be to estimate the variance as well as producing an esti-

mate. If this were achieved, then the researcher could have some idea as to

the likely accuracy of the corrected results. It should also be noted that in

every experiment, the chances of any given two vehicles being a false match

is 1 in 10, 000 with a flat distribution (so the chance of three distinct vehicles

having the same partial plate is the square of this). In fact this is an extremely

pessimistic assumption since four digits of a licence plate would be the least

that a partial plate survey was likely to capture. A significant weakness of

the method is that it requires a good estimate for p(n). (In fact, it is mainly

significant for lower values of n with p(2) being the most important).

The first five rows are all results on just two test sites. This procedure is

not the ideal one to use for estimates on matches between just two sites and

the work of other authors in the field should be used in such a circumstance

(especially if extra information such as travel time is available). However, these

results are included here for completeness. In the two site case, the number

of corrected matches is simply obtained by subtracting n2/10, 000 3 from the

raw matches (where n is the number of vehicles at each site).

To take an example, in the first experiment, the average number of raw

matches over the ten runs is 111.4 and n = 1000. The average number of

corrected matches is 11.4 (obtained by subtracting 100 = n2/10, 000 from

111.4). This is close to the correct answer of 10. However, it should be noticed

that the σ is high in comparison to the actual answer. In this case, the σ is 8.5

which is of the same order of magnitude as the answer. This is to be expected

since we are looking for only 10 true matches in over 110 observed matches.

If we increase the number of vehicles to 2000 then, as would be expected, the

3Strictly, this is not exact. There is also a correction factor of 1/(1 + p(2)) but this can

generally be ignored since p(2) � 1 in real applications.
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number of false matches goes up (to approximately 400) and the σ also rises

(to almost 20).

The next five rows of results are all over three sites. In the first of these, 10

vehicles travel between all three and all other matches are coincidence. 1000

vehicles are observed at all sites. The mean corrected match across all sites

9.3 is close to the actual answer of 10 and the σ is lower than in the two site

case. However, when the same experiment is run with 500 vehicles travelling

from sites one to two in addition to 10 vehicles travelling from sites two to

three, the σ increases markedly (it almost doubles). In all cases with three

sites, the mean is a good estimate and the σ is generally low enough that a

good estimate can be expected.

The next four rows of results are for experiments made over four sites.

The first experiment has 100 vehicles which visit all four. The mean corrected

match is 104 (very close) and the σ is only 22. It is hard to explain why this

σ actually falls in the next experiment when more vehicles are genuinely seen

in common between the other sites. This fall in σ is puzzling. In all cases

the mean of the predictions is approximately correct (the worst performance

being in the case of the fourth experiment when the mean was 106 not 100).

The next six rows of results are experiments made over five sites. Again,

the mean corrected results are approximately correct. However, in the worst

case, the mean is 11 too high and the σ in the result is 46.7 which is comparable

to the level of the effect being observed. In this case approximately 120 false

matches are being removed each time. However, previous experiments have

been able to correct for a greater proportion of false matches with less σ in

the result.

The final four rows of results are experiments over six sites. This was the

largest number of sites for which it was practical to do runs of twenty or more

simulations with the computer power available. Again, the mean corrected

estimate of matches was nearly correct in all cases. The worst performance

was an estimate of 92.2 (correct result 100). The σ was, however, relatively
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high. This was a surprise in some cases — particularly the first row of results

where the mean number of false matches was only 21.2. In many senses, the

worst result was the final one where a σ of 55.0 was given on a corrected

prediction of only 101.3.

The time taken to do one run over six sites with one thousand pieces of data

on each site was thirty seconds on a Celeron 366 computer running Debian

Linux. It is practical (if time consuming) to do experiments on seven sites,

even using such comparatively obsolete equipment. However, eight sites or

more is probably too computationally expensive for the moment and this is a

limitation of the method outlined.

To test the method more fully, four very extreme tests were given. Each of

these tests involved six sites at each of which one thousand vehicles were ob-

served. Interacting flows were chosen to cause a large number of false matches

in a diversity of ways. Because these experiments were chosen to cause a large

number of false matches then one thousand runs of each experiment were per-

formed. The averaged results are shown in Table 4.7.

Experiment Expected Av.Raw σ Raw Av.Cor. σ Cor.
Number Answer Matches Matches Matches Matches
1 0 739 305 11.9 196
2 0 110 45.5 -0.950 27.1
3 250 836 287 249 205
4 500 1920 531 496 356
Table 4.7. Simulation results — all performed over one thou-
sand runs with 10,000 distinct vehicle types.

In experiment one, five hundred vehicles travelled from one to five and five

hundred from two to six. The remaining five hundred vehicles at sites one and

six were appeared nowhere else. No vehicles made the complete journey. As

can be seen, on average over seven hundred false matches were seen and the

standard deviation between runs was extremely large. However, the mean was

within twelve of the correct answer (zero) although the standard deviation was
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large. In such extreme circumstances, a single experiment would be next to

useless but it is good evidence that the method was unbiased.

In experiment two, five hundred vehicles travelled from one to three. Five

hundred vehicles travelled from four to six. Five hundred vehicles visited only

odd numbered sites and five hundred vehicles visited only even numbered sites.

In this experiment the corrected mean result was almost exact (within one)

and the standard deviation was much lower.

In experiment three, two hundred and fifty vehicles travelled to all sites.

Five hundred vehicles went from site one to three and five hundred from four

to six. The remaining two hundred and fifty vehicles at each site visited only

that single site. As can be seen, the corrected result is almost exactly correct

although, again, the standard deviation is so high that a single reading would

be worthless.

In experiment four, five hundred vehicles visited every site. Two hundred

and fifty vehicles went from sites one to three. Two hundred and fifty vehicles

went from sites four to six. Two hundred and fifty vehicles visited only sites

one and two, two hundred and fifty vehicles visited only sites three and four

and two hundred and two hundred and fifty vehicles visited only sites five and

six. Again, the mean of all results is very close (within four vehicles) but the

standard deviation is the highest yest seen. This is not surprising. The mean

number of raw 6-tuples of matches averaged nearly 2000 — twice the number

of vehicles at each site.

These four tests provide a convincing demonstration that the method is,

indeed, unbiased as was shown by theory.

4.9.1. Summary of Results. The results given here are certainly con-

sistent with the idea that the method gives an unbiased estimator for the

true number of matches. In some experiments, there were problems with the

standard deviation being higher than would be desirable in real cases. It is im-

portant to bear in mind that these were relatively extreme tests of the method

since p(2) and p(3) were relatively low and the number of samples given were
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quite high. Often the method was attempting to predict only ten true matches

in a number of observed matches which might be several hundred. In the most

extreme case given, the method was able to remove 1400 false matches and

find the correct answer to within six. However, this was averaged over one

thousand simulation runs. In reality only a single experiment run can be done

and, if the standard deviation were so high in a real situation then the answer

given would be useless. A critical need for this research is a method to assess

the standard deviation.



CHAPTER 5

Statistical Analysis of Route Choice Data

This chapter describes and analyses data which were collected as part of

an EPSRC funded project which was held jointly at the Universities of York

and Leeds. The aim of the project was to collect and analyse data to study

driver route choice. Some of the material in this chapter has previously been

presented at the Universities Transport Studies Group [31]. More information

can be found at the web site:

http://gridlock.york.ac.uk/route/.

Additional information and data connected with the project can also be found

at this site. An initial report on data matching as performed in this chapter

is given in [28].

Code to perform matching of licence plates based upon a Maximum Likeli-

hood Estimator approach was written by Stephen Clark (Leeds City Council)

and David Watling (Institute for Transport Studies, University of Leeds). This

code was used in this chapter with their permission. Their good work and

many useful discussions were extremely valuable in the work described here.

5.1. Introduction

Two large data collection exercises took place as part of this project. Both

attempted to gather a data set suitable for the investigation of problems related

to driver route choice. Both studies concerned capacity reducing network

interventions and both centred on large licence plate surveys conducted over

a number of weeks. The first study investigated the closure of Lendal Bridge,

part of York’s inner ring road and one of only three river crossing points in the

city centre. This major capacity reduction had significant effects on the traffic

in the city. However, complicating factors made the data hard to analyse.

176
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A second study investigated the partial closure of Fishergate in one di-

rection only. Again, this is part of York’s inner ring road and again, it was

anticipated that the effect on the traffic system would be significant. The

collected data was analysed to determine the most used routes through the

city and how drivers swapped between them. Given the difficulties inherent

in the Lendal Bridge data set, the analysis here will concentrate more on the

Fishergate data than on the Lendal Bridge data although some investigation

will be performed on both data sets.

The data from these studies is analysed using the methods of the previ-

ous chapter in addition to techniques from the literature about licence plate

matching and the standard statistical techniques of t-tests and modelling us-

ing General Linear Models (GLM). The aim of the modelling is to rigorously

investigate hypotheses related to driver route choice.

Section 5.2 describes the statistical techniques which will be used in the

analysis performed in this chapter. Section 5.3 describes the methodology

used to carry out the surveys. Section 5.4 describes the initial data analysis

and provides an overview of the data collected. Section 5.5 analyses the data

captured using a simple graphical technique to show the changes in the network

over time. Section 5.6 analyses the flow data in all the sites and Section 5.7

considers the data disaggregated by site. Section 5.8 matches data between

pairs of sites in terms of flows and travel times. Section 5.9 considers matches

between more than two sites using the methods of Chapter 4. Finally, Section

5.10 concludes the chapter with a summary of the main results of the analysis.

5.2. Statistical Techniques

A number of traditional statistics techniques are used in this chapter as well

as some useful graphical visualisation techniques (for example the time plots

in Section 5.5). A quick introduction to the statistical techniques is provided

here. Proofs are not included here but references to proofs in a standard text

are given.
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5.2.1. Confidence Intervals and the t-Distribution. The discussion

in this section follows [80, page 146].

Definition 5.1. The normal distribution is given by the density function

f(x) =
1

σ
√

2π
e−

1

2
(x−µ)2/σ2

,

where µ is the mean and σ2 is the variance. A standard normal distribution

has a zero mean and unit variance. In this case, the density function simplifies

to

f(x) =
1√
2π

e
1

2
x2

.

Definition 5.2. The chi-square distribution (χ2) is given by the density

function

f(x) =
x(ν/2)−1e−(x/2)

2(ν/2)Γ(ν/2)
, x > 0

f(x) = 0, x ≤ 0

where ν is a parameter of the distribution, known as the degrees of freedom

possessed by the distribution and Γ is the Euler gamma function defined in

Section A.3.

Theorem 5.1. The central limit theorem states that if X is a random

variable with a mean µ and a variance σ2 and X1, . . . , Xn is a random sample of

X, then Z = (X−µ)
√

n/σ (where X is the sample mean of the first n samples),

has a distribution which approaches the standard normal distribution as n →
∞.

Proof. For an outline proof see [80, page 383]. �

Theorem 5.2. If the variable X is normally distributed with mean µ and

variance σ2 and X1, . . . , Xn is a random sample of X then the random variable

U =
n∑

i=1

(Xi − µ)2/σ2,

will possess a chi-square distribution with n degrees of freedom.
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Proof. For a proof see [80, page 136]. �

Since the true mean of a population is generally not known, a similar

theorem for the sample mean is useful.

Theorem 5.3. Under the conditions of Theorem 5.2, the random variable

V 2 =
n∑

i=1

(Xi − X)2

σ2
, (5.1)

has a chi-square distribution with n − 1 degrees of freedom.

Proof. For a proof see [80, page 279]. �

This theorem is useful to calculate confidence intervals. Given a variable

X then a (1 − α) confidence interval [x1, x2] is given by two numbers x1 and

x2 such that

P [x1 < X < x2] = 1 − α.

In this chapter, confidence intervals will usually be given as a percentage con-

fidence. For example a 95% confidence interval is equivalent to α = 0.05.

Definition 5.3. Students’ t-distribution is given by

T =
Z

V

√
ν, (5.2)

where Z is a variable with a standard normal distribution and V 2 is an inde-

pendent variable with a chi-square distribution which has ν degrees of freedom.

A t-statistic is a variable which has a t-distribution.

The t-statistic is useful in a number of circumstances for estimation. For

example, given a normally distributed variable X then a standard normal

variable Z can be found by subtracting the mean and dividing by the standard

deviation. This gives

Z =
X − µ

σX

=
X − µ

σ

√
n, (5.3)

where n is the number of samples and the substitution in the final part of the

equation is from equation (1.3) (var
(
X
)

= σ2/n).
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It be shown [80, page394] that V 2 from equation (5.1) and Z from equation

(5.3) are independent. Therefore, the two can be substituted in equation (5.2)

to get

T =
(X − µ)

√
n√∑n

i=1(Xi − X)2

√
n − 1,

which will possess a t-distribution. This can be expressed in terms of the

sample variance S2 as

T =
X − µ

S

√
n.

Comparing this with (5.3) it can be seen that the difference is the use of the

sample variance rather than the variance itself. As would be expected, this

distribution quickly converges to a standard normal as n → ∞.

The t-distribution can be used to calculate a confidence interval for the

probability that the true mean µ lies within a certain range around the sample

mean X. For a given t-distribution and a given α then the procedure in Table

5.1 shows how to find a confidence interval for the mean.

This procedure can be simply adapted to find a confidence interval for

the difference between two means µX and µY of two independent normally

distributed variables X and Y with sample sizes nX and nY and the same

variance σ2. Follow the same procedure as before but with X − Y instead of

X [80, page 148]. The required t-distribution is given by

T =
(X − Y ) − (µX − µY )√

(nX − 1)S2
X + (nY − 1)S2

Y

√
nXnY (nX + nY − 2)

nX + nY

,

where T has ν = nX − nY − 2 degrees of freedom.

Following this, therefore, if t is chosen so that P [T > t] = α/2 then a

(1 − α) confidence interval is given by

X − Y ± t

√
(nX − 1)S2

X + (nY − 1)S2
Y

nXnY (nX + nY − 2)/(nX + nY )
.
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(1) Using tables or a computer, find t1 and t2 such that

P [T < t1] = α/2 and P [T > t2] = α/2. Since the

t-distribution is symmetrical about the origin then

t1 = −t2. Define t = −t1 = t2. If a variable has a

t-distribution then there is a probability (1 − α) that it

will fall in the range (−t, t).

(2) With probability (1 − α) then −t <
√

n(X − µ)/S < t.

(3) Rearranging this inequality gives

X − tS/
√

n < µ < X + tS/
√

n.

(4) Therefore, a (1 − α) confidence interval for µ is given

by [X − tS/
√

n,X + tS/
√

n]. Such an interval will

usually be given in the form

X ± tS√
n

.

Table 5.1. A procedure for finding confidence intervals for a mean.

This formulation is extremely useful for testing hypotheses of the form

H0 :µX = µY

H1 :µX 6= µY .

Note that this H1 defines a two-tailed test — that is, the possibility that

µX < µY or µX > µY . Sometimes, particular problems make one of these

options impossible and a one-tailed test is used.

If the two variables to be tested do not share a common variance then the

test requires further modification [105, page 455] to produce a t-distribution.

This is given by

T =
(X − Y ) − (µX − µY )√

S2
X/nX − S2

Y /nY

,



5.2. STATISTICAL TECHNIQUES 182

where ν is the degrees of freedom, where

ν =
(S2

X/nX − S2
Y /nY )2

(S2
X/nX)2/(nX − 1) + (S2

Y /nY )2/(nY − 1)
.

Note that, in this case, ν is not generally an integer.

Using this method, given a value of t such that P [T > t] = α/2 then a

(1 − α) confidence interval for µX − µY is given by

X − Y ± t

(
(S2

X/nX)2

nX − 1
+

(S2
Y /nY )2

nY − 1

)
.

Definition 5.4. The p-value for a test statistic is a measure of the con-

fidence level with which the null hypothesis H0 can be rejected. Let Xm be

the measured value of the test statistic on the real data. Let Xt be the value

of the test statistic measured on a sample of some hypothetical data set for

which H0 holds. The p-value is the probability that Xt has a value at least

as contradictory to H0 as Xm. This implies that the p-value is the confidence

with which H0 should be accepted. If the p-value is near zero then H0 should

be rejected and if it is near one then H0 should be accepted. A result is said

to be significant at a given level if the p-value is less than this. For example,

if a result is said to be significant at the 1% level this means that the p-value

is less than 0.01.

For a t-test as described then the p-value is the value of α at the borderline

between accepting and rejecting H0 — that is the smallest confidence level for

which the confidence interval for the difference between the means includes

zero.

5.2.2. General Linear Models. Multiple regression analysis attempts

to explain the relationship between a modelled variable and several explana-

tory variables. General Linear Models (GLMs) are one technique for this —

a fuller description can be found in [105] and also [80]. The discussion here

follows that in [105] and proofs are omitted.

If it is believed that a variable y depends on x1, x2
1 and x2 then write

E [y] = β0 + β1x1 + β2x2 + β3x
2
1, (5.4)
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where the βi are the model parameters to be estimated. (The models are

known as linear models because they depend linearly on these parameters.)

Qualitative data can be represented by indicator variables. For example,

to represent the situations of a road being fully closed, partially closed and

working normally then indicator variables can be used as follows,

x1 =





1 if the road is fully closed

0 otherwise

x2 =





1 if the road is partially closed

0 otherwise

x3 =





1 if the road is open

0 otherwise.

Therefore, a potential model for the volume of traffic for this road is

E [y] = β0 + β1x1 + β2x2 + β3x3,

where βi are the parameters to be estimated and y is the output volume of the

road in question.

The model assumes a random error ε and therefore

y = E [y] + ε.

The model itself can be written in a standard form as

y = β0 +
k∑

i=1

βixi + ε. (5.5)

where k is the number of variables in the model. The xi could be functions of

some other xj in the model. For example, the model in Equation (5.4) could

be specified in the standard form with n = 3 and x3 = x2
1.

The assumptions behind the model are as follows [105, page 603],

(1) The mean of ε is zero.

(2) The variance of ε is independent of the values of xi.

(3) The ε are normally distributed.
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(4) The ε are independent.

Such models are fitted by minimising the sum of the squared errors (the

technique of least squares). This can be done using matrix algebra although

this can be computationally expensive in large data sets. The GLM modelling

in this thesis is fitted using the computer package R [122]. The language R is a

statistical programming language whihc has no connection to the R2 statistic.

There are several measures which are used to assess the goodness of fit of

a GLM. The multiple coefficient of determination R2 is given by

R2 = 1 − SSE

SSyy

=

∑
(yi − ŷi)

2

∑
(yi − y)2

, (5.6)

where SSE is the sum of the squares of the errors, SSyy is the variance of y,

yi is a measured value, ŷi is the estimate produced by the model for yi and y

is the sample mean for y. If R2 = 1 then the model is a perfect fit with the

chosen model passing exactly through every data point. If R2 = 0 then the

model does not explain any of the variance in the data. Of course, it should

be noted that any model can be fitted with the R2 value arbitrarily close to

one by adding more parameters. For this reason, an alternative statistic, the

adjusted R2 value R2
a is often used.

R2
a = 1 =

n − 1

n − (k + 1)
(1 − R2), (5.7)

where n is the sample size and k is the number of parameters in the model.

The R2
a value will always be lower than the R2 value.

The R2 value can be used to test statistical hypotheses. Take the model

E [y] = β0 + β1x1 + . . . βkxk,

and the two hypotheses

H0 :β1 = · · · = βk = 0

Ha : there exists some i > 0 such that βi 6= 0,

where H0 is the null hypothesis.
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The F statistic is given by

F =
R2/k

(1 − R2)[n − (k + 1)]
.

Under the previously listed assumptions for the GLM then the hypothesis H0

is rejected with confidence (1 − α) if

F > Fα,

where Fα is a function of α (the required confidence level), ν1 = k and ν2 =

[n − (k + 1)] and can be looked up in tables or calculated by computer.

The p-value or observed significance level can be calculated as in the pre-

vious section. In the case of the F statistic, if the measured value from the

sample is Fm the p-value is the α where Fα = Fm. In the case of GLM it is

usually desirable that the p-value is near zero since the null hypothesis is that

the parameters of the model are all zero. If H0 were accepted it would mean

that the model were poorly specified. It should be noted that even if the p-

value is near zero this does not mean that all the parameters of the model are

necessary. It could well be that a more parsimonious model would fit the data

equally well. In general, a model with fewer parameters should be preferred if

one is available.

5.3. Survey Methodology

This section describes the data collection for the two surveys and the nature

of the data collected. The survey methodology was informed by a pilot study

on Park Row in Leeds. The pilot study data is also available for download from

the web site as is a report on the pilot study [29]. It was decided that for cost

effectiveness, the most appropriate survey type was a manual survey using

a tape recorder to read licence plate data and later transcription of licence

plate data. From the pilot survey, it was further decided that partial licence

plates only would be recorded in order to deal with the traffic volumes that

would be encountered in the main study. The surveys were also informed by

modelling using the SATURN modelling package at the University of Leeds.
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This software package was used to identify possible alternative routes used by

drivers.

5.3.1. General Notes on Survey Methodology. While the two sur-

veys were separately conducted, the same general methodology was employed

in both. The number of sites and days surveyed was constrained by the budget

available for the survey. Obviously, there was a trade-off between surveying a

large number of sites and surveying a large number of days.

Survey sites were, in both cases, chosen with several considerations in mind.

(1) Both surveys were centred on a major network intervention and it was

most important to concentrate on the effects of this intervention.

(2) Since the study was about route choice, it was considered important

to locate the same vehicles at multiple points on a route. Ideally,

vehicles would be spotted at three points: going towards the site of

the intervention; at the site (or some obvious alternative site); and

going away from the site.

(3) There was a trade-off between putting survey sites near to the in-

tervention site in order to be sure to record relevant vehicles and

putting survey sites further away and potentially gaining more infor-

mation about travel behaviour (but risking getting a smaller number

of matches).

Survey days were chosen with a number of considerations in mind:

(1) It was considered important to get a good estimate of the ambient

variability between days in the city and also the trends in traffic pat-

terns between weeks.

(2) It was considered important to monitor the transient response in the

days immediately following the closure.

(3) It was thought of as desirable to get some estimate of the longer-term

response to the closure (whether the traffic had time to form a new

equilibrium and how long this took to establish).
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(4) It was not considered appropriate to monitor weekends. While it was

recognised that traffic differs considerably between weekdays, it was

considered that this variation was extremely minor compared with the

variation in travel patterns between a typical weekday and a Saturday

or a Sunday.

The surveys themselves took place during the morning rush hour. This

was chosen since the morning rush hour in York is more congested than the

evening rush hour and is also held to be generally more consistent between

days. In the Lendal study, the sites were monitored from 8:00 to 9:00. In the

Fishergate study, the traffic was monitored at most sites from 7:45 to 9:15.

This was in order to catch all of the rush hour traffic and a quarter of an hour

window either side. However, at selected sites, this window was adjusted to

monitor from 8:00 to 9:30. This happened at those sites that would be reached

last on a journey (for example, in Figure 5.2 site J would always be reached

after site A). This was decided since the travel time between some pairs of sites

was of the order of half an hour. Without such an offset some of the survey

time would otherwise be wasted since the earliest (or latest) parts of the data

could not be expected to match with data at any other site. The sites which

were surveyed from 8:00 to 9:30 were sites A, I and J.

Timing on the surveys was performed by asking the surveyors to record

the time at approximately five minute intervals. Surveyors were supplied with

synchronised watches at the beginning of the surveys. The times for data

between each time stamp are interpolated so, for example, if there are ten

plates between a time stamp at 8:10 and one at 8:19 they will be split so that

one plate is seen in each minute. Because of this interpolation and possible

rounding of the time, the times recorded can only be assumed to be accurate to

within five minutes, however, it is hoped that it is accurate to a much greater

resolution than this.

5.3.2. Lendal Bridge Study Methodology. The first study took place

between June and October 2000. The aim of the study was to monitor the
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Figure 5.1. The Lendal Bridge study survey sites. Sites K, L

and M are off the map given.

Key Street Name Notes
A Blossom Street
B Bishopthorpe Road
C Skeldergate Bridge
D Fishergate Road
E Paragon Street
F Gillygate
G Bootham
H Lendal Bridge Site of Closure. Not surveyed when closed.
I Leeman Road
J Ouse Bridge Potential river crossing.
K Clifton Bridge Potential river crossing. Actual location is

off map.
L A1237 Outer ring road. Potential river crossing.

Actual location is off map.
M A64 Outer ring road. Potential river crossing.

Actual location is off map.
N Barbican Road Only surveyed when bridge is closed.

Table 5.2. A list of survey sites in the Lendal Bridge survey.
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closure of Lendal Bridge, part of York’s inner ring road, for scheduled main-

tenance. A diagram of the area of the study is shown in Figure 5.1. The sites

on the figure are described in Table 5.2. The closure took place on the 11th

of September 2000 and was planned to last for over a month. The bridge was

closed to all vehicles but left open for public transport and cycles.

As can be seen from the diagram, not only is the bridge part of the inner

ring road but it is also one of only three river crossings available to vehicles in

the centre of York (three other bridge crossings are also available further out

from the city centre, two of them on the outer ring road). In order to maximise

the number of vehicles observed at several points on their route, it was decided

to attempt to capture those vehicles making a journey from the south or west

part of the city to the north or east. These vehicles obviously have to cross a

bridge somewhere. The sites were chosen with the idea of capturing vehicles

at three points on their journey: once on the southwest side of the river; once

as they cross; and once on the northeast side of the river. Survey days were

chosen with regard to the considerations mentioned above. In addition, an

“early” before study was taken for two days a few months before the main

survey. This was to allow researchers to react and change any problems with

the survey methods used.

Table 5.3 shows the days that were surveyed for the Lendal Bridge study.

Unfortunately, the day that the bridge closed coincided with the beginning

of the UK Fuel Crisis. Because of a blockade of petrol depots by a group

protesting against high fuel tax, petrol supplies in the UK were extremely

limited for the entire week. This had a major effect on the flows throughout

the city for the first week of closure. Surveys were rescheduled to try and

avoid these effects and to concentrate on monitoring the bridge reopening. The

bridge reopening coincided with the flooding of the city of York in October

2000. The Lendal Bridge study was abandoned at this point. The analysis of

the fuel crisis data is of interest in itself and a report on this is available for

download from the project web site [30]. Note that, because the bridge was
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Day Survey Comment
27th June 2000 Before survey (not

site N)
Early before survey to establish
the repeatability of traffic pat-
terns and the expected change be-
tween months.

28th June 2000 Before survey (not
site N)

Early before survey to establish
the repeatability of traffic pat-
terns and the expected change be-
tween months.

6th Sept 2000 Before survey (not
site N)

7th Sept 2000 Before survey (not
site N)

8th Sept 2000 Before survey (not
site N)

Final weekday before closure.

11th Sept 2000 During survey (not
site H)

First day after closure. This also
marks the first day of the UK fuel
crisis.

13th Sept 2000 During survey (not
site H)

Third day after closure. This was
the third day of the UK fuel cri-
sis (and marked a low point for
flows).

27th Sept 2000 During survey (not
site H)

18th Oct 2000 During Survey (not
site H)

Last day before planned reopen-
ing.

Table 5.3. The Lendal Bridge survey summary.

fully closed, this freed up an extra surveyor who was used at site N during

the closure. This was identified as a possible rerouting for the closure using

SATURN modelling.

5.3.3. Fishergate Study Methodology. The Fishergate Study is shown

in diagrammatic form in Figure 5.2. Information about the survey sites is

shown in Table 5.4. This survey was based around works to repair a collapsed

sewer at site A. The repair site was slightly after the survey site (approximately

ten metres further down the road) and no turn offs were available between site

A and the site of the closure. The repair work involved a partial closure, es-

sentially one lane being removed from the road. The closure was originally
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Figure 5.2. The Fishergate study survey sites.

Key Street Name Notes
A Fishergate Left turners only (one of the two lanes

at this site was closed).
B Fishergate Right turners only (very low flow).
C Paragon Street
D Skeldergate Bridge
E Fulford Road
F University Road
G Lawrence Street
H Blossom Street
I Queen Street
J Rougier Street
K Cemetery Road

Table 5.4. A list of survey sites in Fishergate survey.

scheduled to last only two weeks and therefore the plan was to survey for one

week before, one week during and one week after the closure. However, the

closure was extended to four weeks and therefore no true after survey data
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Day Survey Comment
25th June 2001 Before survey
26th June 2001 Before survey
27th June 2001 Before survey
28th June 2001 Before survey
29th June 2001 Before survey
2nd July 2001 Before survey Partial closure occurred at 9:15

and should not affect the data col-
lected.

3rd July 2001 During survey First day of partial closure.
4th July 2001 During survey
5th July 2001 During survey
6th July 2001 During survey
11th July 2001 During survey
12th July 2001 During survey
13th July 2001 After survey Road works removed to ease traf-

fic for a race meeting in York.
This can be considered to be an
after survey day.

16th July 2001 During Survey Road works put back in place.
Table 5.5. The Fishergate survey summary.

is available with the possible exception of the 13th of July when the closure

was temporarily suspended to allow for the increase in traffic due to a major

horse-racing event that weekend. The extra traffic due to the race-goers is

thought not to have had a great effect on traffic during the morning peak.

5.3.4. Hypotheses Tested. Various hypotheses are tested on the data in

this chapter. The main hypotheses are discussed here to provide a framework

for the formal analysis later in the chapter. The hypotheses are investigated

both informally (using graphical techniques) and formally using statistical

models.

Several hypotheses relate to flow levels at individual sites. The most ob-

vious hypothesis is that on average sites will either increase or decrease in

flow as a result of an intervention in the network. Flow data is examined

graphically and using a statistical model in Section 5.6. Following this, the
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hypothesis is made the flows will be affected differently according to site de-

pending on whether a survey site is a potential rerouting (where flow might be

expected to increase) or is on the route affected (where flow might be expected

to decrease). This is investigated in Section 5.7.

The next group of hypotheses relate to flows and travel times between

site pairs. Section 5.8 investigates the hypothesis that at each site, travel

time and flow is affected by the intervention on the network and the level of

the effect produced changes with the number of days since the intervention.

This is essentially, a trial of the hypothesis that the network is in a transitory

state when the intervention first occurs and the effects of the intervention will

lessen as time goes on. This could be thought of as the system finding a new

equilibrium, to use the terms of Chapter 3.

The hypothesis relates to how vehicles change their behaviour as day fol-

lows day. Section 5.8.3 investigates the factors affecting a driver’s decision to

travel on a subsequent day and hypothesises that this depends on whether the

days in question are on same day of the week, whether the days in question

are in different weeks and how far apart in time the days in question are.

Finally, in Section 5.9 the hypothesis that individual drivers in the data can

be seen changing from one route to another as a result of the intervention is

investigated.

5.4. Initial Data Analysis

A number of issues are worth mentioning related to analysis of the data.

Firstly there is the problem of false matches that was extensively discussed in

the previous chapter. Secondly there is the problem of missed journey ends.

This is the problem of those vehicles that are seen at one site but are not seen

at a second site because the survey at the second site ended before the vehicles

were seen. It is difficult to avoid this problem totally but it can be mitigated

by removing the end part of the data at the first site to such an extent that

all vehicles seen at that site would complete their journey. Thirdly there is
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the problem of errors in data recording. Great efforts were made to avoid

the most common sources of error. Preliminary surveys found that a primary

source of errors was the mistaken transcribing of letters that sound alike (N

and M for example). This was reduced by encouraging surveyors to use a

phonetic alphabet and also by minimising the reliance on letters by primarily

recording digits.

Obviously, because the recordings were made by fallible human survey-

ors, not all vehicle plates were correctly recorded. Plate recordings which

were recorded with question marks where the surveyor missed a vehicle are

not matched. Similarly, any plate which had less than three digits or letters

recorded was not matched since these shortened plates would be more suscep-

tible to false matching. The flows presented in this section are also presented

as adjusted flows with these poorly recorded plates removed. Tables 5.6 and

5.7 show the flows at the sites in the Lendal Bridge survey with the adjusted

flows also recorded. Tables 5.8, 5.9 and 5.10 show the Fishergate flows and

adjusted flows. Note that surveys which are marked with a † or ? (a whole

lane or other large amount of missing data) will be omitted from subsequent

analysis but surveys marked with a ‡ (a small amount of missing data) will

be included. The latter category only includes a small number of days in the

Lendal Bridge survey.

5.5. Time Plots

Perhaps the simplest method for visualising matches between two sites is

using graphical techniques as described in [158] — while the techniques used in

this section do not provide quantitative results, they are extremely effective for

demonstrating the nature of matches and, indeed, provide more of an insight

into the data than some more sophisticated techniques. When the same plate

is found at two sites, plot a point on a graph with the x value as the time

at site one and the y value as the time at site two. The plots are collected

together in Appendix C.
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Site 27/6/2000 28/6/2000 6/9/2000 7/9/2000 8/9/2000
Flow Flow Flow Flow Flow

Raw Adj. Raw Adj. Raw Adj. Raw Adj. Raw Adj.
A 954 934 942 933 830 810 728 712 699 683
B 390 378 — — 410 407 441 434 487 473
C 906 884 876 857 — — 837 ‡ 813 ‡ 718 ‡ 695 ‡
D 1490 1412 1451 1395 1312 ‡ 1281 ‡ 1399 1359 1430 1384
E 572 † 560 † 631 † 621 † 1259 1234 1206 1181 1238 1209
F 413 399 399 390 434 419 429 420 438 424
G 419 413 381 374 364 345 395 381 341 323
H 519 502 458 444 472 459 488 474 446 431
I 344 ‡ 331 ‡ 449 437 491 481 479 473 533 522
J 462 453 526 517 567 558 592 579 569 553
K 864 845 871 849 879 865 861 840 860 841
L 1006 978 1068 1041 840 817 836 814 822 794
M 726 † 717 † 1729 1710 2079 2029 2040 2002 1994 1957

Table 5.6. Lendal survey before flows. † indicates data only
available in one lane for this survey. ‡ indicates small amounts
of missing data in this survey.

Site 11/9/2000 13/9/2000 27/9/2000 18/10/2000
Flow Flow Flow Flow

Raw Adj. Raw Adj. Raw Adj. Raw Adj.
A 710 693 659 652 633 620 185 ? 182 ?
B 394 386 446 440 502 490 475 464
C 906 ‡ 885 ‡ 846 835 927 901 — —
D 1494 1452 1222 1199 1465 1427 1438 1403
E 1295 1264 1175 1158 1323 1295 1080 ‡ 1060 ‡
F 290 279 278 273 298 283 351 334
G 399 382 345 341 393 376 432 415
H — — — — — — — —
I 461 446 361 355 416 408 420 412
J 621 602 508 497 596 584 557 541
K 873 850 761 750 799 782 863 839
L 851 838 755 738 855 834 868 838
M 1999 1954 — — — — 2145 2099
N 488 471 — — 417 404 443 430

Table 5.7. Lendal survey during flows. ? indicates only par-
tial data available on this survey. ‡ indicates small amounts of
missing data in this survey.

Figure C.1 shows two data sets which should be uncorrelated — the sites

chosen are on opposite sides of the city (sites L and M on Figure 5.1) and

the data is from the same day. A vehicle could not easily drive between

these sites at rush hour in the survey time and there are no reasonable routes
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Site 25/6/2001 26/6/2001 27/6/2001 28/6/2001 29/6/2001
Flow Flow Flow Flow Flow

Raw Adj. Raw Adj. Raw Adj. Raw Adj. Raw Adj.
A 2040 1994 1953 1916 1970 1936 2073 2039 2007 1979
B — — 87 87 103 103 82 81 92 92
C 996 972 991 969 995 966 1008 980 1014 987
D 1187 1169 1078 1052 1182 1146 1265 1235 858 ? 845 ?
E 1421 1372 1387 1349 1306 1272 1469 1429 1448 1410
F 502 494 547 533 543 522 587 560 575 561
G 1148 1127 1135 1116 1116 1095 1102 1078 1120 1098
H 903 894 753 ? 745 ? 878 863 856 843 920 901
I 810 793 877 856 909 889 902 881 855 837
J 498 477 509 495 473 ? 451 ? 491 466 447 430
K 546 532 565 553 508 498 589 575 646 630

Table 5.8. Fishergate survey week one. ? indicates only partial
data on this day.

Site 2/7/2001 3/7/2001 4/7/2001 5/7/2001 6/7/2001
Flow Flow Flow Flow Flow

Raw Adj. Raw Adj. Raw Adj. Raw Adj. Raw Adj.
A 2022 1993 1727 1673 1752 1696 1691 1637 1734 1667
B 100 100 93 91 79 73 76 73 95 89
C 1032 1003 898 873 972 946 903 877 959 926
D 1200 1172 1054 1039 1064 1042 1024 1003 1065 1045
E 1527 1488 1448 1413 1494 1445 1522 1485 1518 1465
F 583 564 595 572 619 591 573 552 589 568
G 1050 1032 1042 1021 1163 1138 1214 1186 — —
H 868 854 963 951 924 908 939 922 906 895
I 842 828 859 834 885 861 882 862 858 843
J 492 475 438 422 444 423 428 408 484 461
K 606 589 691 676 693 677 750 733 749 724

Table 5.9. Fishergate survey week two.

including both sites. Any matches on this graph should be false matches and

any perceived shape in the picture is due to the distribution of rush hour traffic

or due to coincidence rather than being due to genuine matches. This picture

of a set of false matches should be borne in mind when considering subsequent

pictures which represent true matches corrupted by false matches.

By contrast, in Figures C.2 and C.3 some correlations in the data should

be expected. Figure C.2 shows the matches between two days of plate data on

the A64 at rush hour (site M on Figure 5.1). The diagonal represents drivers

who are travelling at approximately the same time of day on both occasions.
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Site 11/7/2001 12/7/2001 13/7/2001 16/7/2001
Flow Flow Flow Flow

Raw Adj. Raw Adj. Raw Adj. Raw Adj.
A 1675 1639 1649 1606 1910 1889 1779 1732
B 84 81 69 68 98 98 65 62
C 827 806 856 835 918 890 979 961
D 509 ? 503 ? 946 934 1133 1116 1108 1096
E 1481 1439 1512 1468 1603 1553 1578 1538
F 557 545 548 527 643 624 603 582
G 1165 1136 1109 1084 1300 1270 1226 1210
H 948 929 862 848 843 829 1355 1307
I 898 872 881 870 837 825 886 871
J 494 476 506 488 477 451 460 443
K 675 ? 659 ? 723 708 680 665 727 716

Table 5.10. Fishergate survey final weeks. ? indicates only
partial data on this day.

It can be seen with reference to Tables 5.6 and 5.7 that Figure C.2 should have

a slightly higher number of false matches (due to the higher number of vehicles

in the pair of files). However, it should also be clear that there is a significant

number of genuine matches between the two days. In Figure C.3 matches are

made at the same site but on two days which are four months apart. As can

be seen, the correlation in the data is much lower. In both cases there appears

to be some effect from drivers travelling at the same time of day each day but

this effect is lessened as the days surveyed are further apart.

Figures C.4, C.5 and C.6 show journeys between Leeman Road and Ouse

Bridge (sites I and J on Figure 5.1). These sites were considered by surveyors to

be a common route through the city and should show a significant correlation.

The absolute level of traffic is lower than in the previous figures. As can be

seen in Figure C.4 there is a strong offset diagonal representing the vehicles

which moved directly between the two sites. Other points represent either

false matches or vehicles which (for whatever reason) travelled between the

sites taking an unusual time. This figure can be made clearer by plotting the

time seen at site one versus the travel time difference between the two. This

type of plot is shown in Figure C.5 and with the y axis magnified in Figure C.6.

These can be thought of as being like the previous figures but with a simple
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transform. The false matches in this type of plot form a parallelogram since

vehicles observed early at site one are more likely to falsely match with vehicles

seen after them at site two and the converse is true for vehicles observed in the

later parts of the data at site one (false matches will tend to show a negative

travel time to get to site two). From Figure C.6 it seems that the typical

vehicle takes three to five minutes to get between the sites.

Figures C.7 and C.8 show the travel times from these sites on the last

day before the Lendal bridge closure and the first day after. It is hard to say

whether a significant increase in travel time has taken place between these

sites as a result of the Lendal bridge closure. As mentioned, the fuel crisis was

a complicating factor. One possible explanation for Figure C.8 is that initial

early congestion was relieved by commuters deciding not to travel as the news

of the fuel crisis emerged that morning. However, it should be stressed that

this is extremely speculative given the limited nature of the evidence.

Figures C.9 to C.14 show the main inbound route from Fulford Road to

Fishergate (sites E–A on Figure 5.2) on the before survey days. From these

plots, it can be seen that the typical pattern of traffic between the sites is a

travel time of five minutes, rising to around twelve minutes in the rush hour

and then declining back to five minutes.

Figures C.15 to C.18 show a selection of plots from the surveys taken

during the closure. On the first day of the closure (3/7/01) it can be seen

that the travel time begins at five minutes but continues to rise throughout

the rush hour and at the end of the rush hour is up to approximately twenty

five minutes (but may be beginning to decline). In subsequent days, a similar

but less dramatic rise occurs. These plots on their own may be considered

as evidence that the first day impact of congestion is much stronger. For

whatever reason, it appears that on subsequent days the impact of the change

is mitigated (perhaps by some driver behavioural mechanism).
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5.6. Analysis of Flow Data

In this section, flow data is examined using standard statistical modelling

techniques. Tables 5.11 and 5.12 summarise the flow data. In the case of the

Lendal Bridge data the data is split according to whether the data is before,

during the fuel crisis (and bridge closure) or during the bridge closure. In the

case of the Fishergate date, the data is split according to whether the day is

a before day, a during day or an after day (the 13/7/01 is considered an after

day since the closure was not in place although it was reinstated on 16/7/01).

Site All Days Before Fuel Crisis During
Mean σ2 Mean σ2 Mean σ2 Mean σ2

A 769.4 15504.6 830.6 13870.8 684.5 1300.5 633 —
B 443.1 1821.8 432 1784.7 420 1352 488.5 364.5
C 859.4 4977.3 834.2 6804.2 876 1800 927 —
D 1411.2 8050.2 1416.4 4500.3 1358 36992 1451.5 364.5
E 1225.1 6619.1 1234.3 712.3 1235 7200 1201.5 29524.5
F 370 4412.5 422.6 264.3 284 72 324.5 1404.5
G 385.4 964.5 380 881 372 1458 412.5 760.5
H 476.6 807.8 476.6 807.8 — — — —
I 439.3 3715.2 459.2 5056.2 411 5000 418 8
J 555.3 2431 543.2 2625.7 564.5 6384.5 576.5 760.5
K 847.9 1609.9 867 63.5 817 6272 831 2048
L 877.9 9414.4 914.4 13050.8 803 4608 861.5 84.5
M 1997.7 20462.3 1960.5 25025.7 1999 — 2145 —
N 449.3 1290.3 — — 488 — 430 338

Table 5.11. Lendal survey flow data.

The analysis in this section is performed on the flow data shown in Tables

5.6, 5.7, 5.8, 5.9 and 5.10. The flows used are the total flows (rather than

the adjusted flows) each representing ninety minutes of data in the case of the

Fishergate surveys and one hour of data in the case of the Lendal surveys. All

survey days which are marked as partial in the tables are completely omitted.

In addition, the data from the Fishergate survey site H (Blossom Street) on

16/6/01 was omitted — this value was much larger than usual for that survey

site. If the observations here were correct then it seems clear that some external

effect caused a large increase in traffic at that site on that day. This site was
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Site All Days Before During After
Mean σ2 Mean σ2 Mean σ2 Mean

A 1855.9 23671.4 1970.3 13153.2 1735.2 8769.4 1779
B 86.4 141.1 92.8 76.7 80.1 128.8 98
C 953.4 3934.6 1006 238 913.4 3487 918
D 1108.8 7849.8 1182.4 4513.3 1043.5 3007.9 1133
E 1479.6 5841.8 1426.3 5695.9 1507.6 1622.6 1603
F 576 1256 556.2 1043.4 583.4 646 643
G 1145.4 5035.3 1111.8 1169.8 1153.2 4710.2 1300
H 900.8 1540.3 885 682 923.7 1297.9 843
I 870.1 775.9 865.8 1419.8 878.4 216.3 837
J 474.5 765.1 487.4 561.3 464.9 907.8 477
K 651.8 6610.5 576.7 2322.3 722.2 668.2 680

Table 5.12. Fishergate survey flow data.

omitted from analysis since, whatever this effect was, it is extremely unlikely

to be caused by the closure at site A.

One clear observation about the flow is that it is a function of the site at

which it was observed. One starting point for a GLM of flow would be a GLM

with an explanatory variable for the particular site at which the observation

was made. In fact, there would have to be one less variable than the number

of sites since the remaining variable is the intercept β0. If there are n sites

then this model can be specified as

E [f ] = β0 +
n−1∑

i=1

βiIi,

where f is the flow at a given site, Ii is an indicator variable which is one if

the site of an observation is site i and zero otherwise.

For the Lendal Bridge survey, fitting this model in R gives the results

shown in the table below.

Parameter β0 βA βB βC βD βE βF

Estimate 1997 -1228 -1554 -1138 -586 -772 -1627

Parameter βG βH βI βJ βK βL βN

Estimate -1612 -1521 -1558 -1442 -1149 -1119 -1548

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.9737 0.97 265.1 13 93 < 2.2 × 10−16
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The β values are labelled according to the site for which they are an estima-

tor. As can be seen, the R2 and R2
a values for the model are high indicating that

the parameters explain almost all the variance in the model. The extremely

low p-value shows that H0 can be rejected with a very high probability. All of

the β values are significant at the 0.1% level. There is no parameter for site

M and the flows at this site are represented by the β0.

For the Fishergate survey, fitting the model gives the results shown in the

table below.

Parameter β0 βA βB βC βD βE

Estimate 900 955 -814 52 208 578

Parameter βF βG βI βJ βK

Estimate -324 244 -30 -426 -249

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.9781 0.9765 603.9 10 135 < 2.2 × 10−16

The β values are labelled according to site as before. Again, the R2 and

R2
a values are high and the p-value is extremely low. In this case, the flows at

site H are represented by the β0 parameter. All of the βi are significant at the

0.1% level apart from βC (significant at the 10% level) and βI (not significant).

It might be assumed that this is an extremely good model since almost

without exception, the parameters are high when desired and low when desired.

However, the model is practically useless. In fact, the only information to be

found in this model is the mean flow at each site. The intercept β0 is the mean

flow at site H in the Fishergate model and at site M in the Lendal Bridge model.

For the other sites, β0 +βi is the mean flow at site i. (In the Fishergate model,

the parameters which are not significant are those representing sites which

have a mean close to the mean of site H.) The main point to be gleaned from

this model is the obvious one that the main source of variance in observed

flows (indeed, considering the F values, almost the only source) is the site

at which the flow was observed. Therefore, any GLM which to explain flow

must somehow avoid this problem. Two solutions suggest themselves, either
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consider only the flows from a single site or work with the proportional flow

at that site. That is, for each observation use

pi,s =
fi,s

fs

, (5.8)

where fi,s is the observed flow on day i at side s and fs is the mean flow from

the observations at site s over all survey days.

To illustrate the idea of working with flows as a percentage of mean, take

the hypothesis that flows were reduced during the fuel crisis. It would be

surprising if this were not the case and inspection of the raw data on flows

seems to confirm this. Take Xn as the sample flows on normal days (no

fuel crisis) and Xc as the sample flows on fuel crisis days (11/9/2000 and

13/9/2000 were the only days of the crisis). A t-test can be performed with

the hypotheses:

H0 :Xn = Xc

H1 :Xn 6= Xc.

Performing a t-test as described in Section 5.2.1 (without making the as-

sumption that σXn
= σXc

) gives the statistics listed in the table below.

Statistic Xn Xc t ν p-value

Estimate 823.9 767.3 0.541 38.01 0.591

A 95% confidence interval is given by µn − µc = 56.5 ± 211.3. The most

important things to note here are the p-value near 0.5 and the wide range of

the 95% confidence interval. The model is insufficient to distinguish between

H0 and H1 with confidence. This is certainly unsatisfactory since it is almost

certain that the flows observed were reduced by the fuel crisis but this cannot

be distinguished by this statistical model. The reason for the problem is

obvious. The majority of the variance is a result of the site at which the

observation was made (as seen in the previous model) rather than a result of

the fuel or lack of fuel on a particular day. Worse than this, the model could
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be extremely misleading due to missing data at a particular site, particularly

if that site had extremely high or low flow.

Repeating this model using the proportional flow defined by equation (5.8)

gives more satisfactory results. The range µn − µc = 0.069 ± 0.047 is a 95%

confidence interval. This indicates a reduction in flow over the fuel crisis of

between 2.2% and 11.6%. The fact that this confidence interval is entirely

positive indicates that (if the conditions of the model are met) then, with 95%

confidence µn > µc — the flows were reduced during the fuel crisis. The other

parameters of the model are shown in the table below. As can be seen, the

low p-value indicates that the hypothesis that the means are equal should be

rejected with high confidence (in fact there was a reduction in flow at the 99%

confidence level).

Statistic Xn Xc t ν p-value

Estimate 1.016 0.947 2.96 36.289 0.00543

As an aside, if just the single worst day of the fuel crisis is compared

with just the before data for the two survey days immediately before the fuel

crisis then a flow reduction of between 6.8% and 17.7% is indicated with 95%

confidence (the p-value of the t-test is 0.00018).

It is tempting to extend this model by asking if there is a measurable

difference in the proportional flow caused by the first two survey days (which

were well in advance of the other survey days) or if there was a measurable

difference in the proportional flow on the two final survey days where the

bridge was closed but there was no fuel crisis. One way to represent this is a

GLM specified as follows

E [p] = β0 + β1Ib + β2If + β3Ic, (5.9)

where p is the proportional flow on the route as defined by (5.8), βi are the

parameters of the model and Ib, If and Ic are indicator variables representing,

respectively, “long before” survey days (the first two survey days), fuel crisis

days and days where the bridge closure was in force but there was no fuel

crisis. The GLM produces the parameters shown below.
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Parameter β0 β1 β2 β3

Estimate 1.014 0.016 -0.062 -0.018

Std. Error 0.016 0.026 0.025 0.026

Significance 0.1% low 5% low

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.079 0.052 2.96 3 103 0.036

As can be seen, the p-value means that the null hypothesis can be rejected

at the 5% significance level. However, this is not a surprise since the null

hypothesis was that all the parameters of the model apart from β0, the inter-

cept, were zero. It has already been shown by a t-test that β2 6= 0. None of

the other parameters were statistically significant and it would seem that this

model is not well specified and the parameters chosen (with the exception of

β1) do not really represent the flows in the model. One important thing to

notice is the low R2 and R2
a parameters which indicate that this model does

not capture the majority of the variance in the flow data.

Separate t-tests confirm that there is no significant difference between the

proportional flows in the “long before” days and the before and also there is no

significant difference between the proportional flows in the before and in the

days where the bridge was closed but there was no significant changes to the

flows in the network — or rather that that change was not in one consistent

direction.

In the Fishergate data, a t-test can be performed to assess the effect of the

bridge closure on flows. If Xo is the series of observations of the proportional

flow when Fishergate was open and Xc is the series of observations when it

was closed then a model of this type can be formed. Performing a t-test on

this model gives a 90% confidence range of µo − µc = 0.0042 ± 0.0083. Note

that this confidence interval includes zero and therefore includes the possibility

that µo < µc and µc < µo. In other words, the model cannot say whether the

proportional flows before or after are higher. The other statistics produced by

the t-test are shown below.
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Statistic Xc Xo t ν p-value

Estimate 1.0060 0.9976 0.48 36.19 0.63

The middling p-value indicates that the model cannot distinguish between

H0 and H1 with confidence. The means may or may not differ and this cannot

be decided using this model on the data. This should not be a surprise because

the effect of the closure on the flow is not so clear cut — while it would,

obviously, be expected that the flow would be reduced at particular sites, it

might also be expected that the flow would increase at diversion sites and the

claim might be made (if the demand on the network were considered inelastic)

that the total flow on the network as a whole would remain unaltered.

5.7. Flow Models Disaggregated by Site

Figures 5.3, 5.4 and 5.5 show the raw flow figures on the Lendal Bridge

sites at each day. These flows are the flows for a single hour with incomplete

surveys omitted. It should be noted that the x axis is not to any scale — days

one and two are within a day of each other. Day three is more than two months

later. The main thing to be noticed is that there seems to be no real pattern to

be found. Days six and seven were the fuel crisis days but there does not seem

to be a great reduction in flows on those days. Day seven shows a reduction

on the majority of sites (this was widely held to be the most significant day of

the fuel crisis). The bridge closure effects are even harder to see. Site F shows

a considerable reduction on all days of closure. This might well be expected

given that it is directly after site H (the closed bridge). However, the same

thing could be said for site G which does not show a similar reduction. Site

I also seems to show a reduction during all the closure days which might be

expected as many drivers entering the network on site I might be normally

continue on through to site H which was closed. This might also be said for

site A although site A seems to show a consistent reduction throughout the

surveyed period.
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The Fishergate surveys appear to give much clearer results than the Lendal

surveys when considering the raw flow data. The flows on these surveys are

shown in Figures 5.6, 5.7 and 5.8. The graphs indicate the partial closure

occurring on day six. While this was the case, the closure should only affect

days from day seven onward. A noticeable drop in flow at site A occurs on days

seven through fourteen with the exception of day thirteen (where the closure

has been temporarily removed). This pattern is seen to a lesser extent in site

D. Both A and D are the ones which would be most affected by the closure.

Of the other sites, no particular reduction is seen but site G (identified as a

potential rerouting) appears to have an increase in flow as does the obvious

rerouting K. Site C feeds into site A and seems to show a slight reduction in

the surveyed period. Site B does not appear to show a significant increase or

decrease but this site has extremely low traffic.

In the previous section, it was shown that tests could not find a statistically

significant change in the flow data except in the case of the fuel crisis days

for the Lendal Bridge survey. From the graphs previously referred to, it can

be seen that this seems to be not because there was no significant change but

rather because such a change was observed in different directions at different

sites.
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Figure 5.3. Lendal Bridge survey flows on sites A–E.
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Figure 5.4. Lendal Bridge survey flows on sites F–J.
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Figure 5.5. Lendal Bridge survey flows on sites K–N.
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Figure 5.6. Fishergate survey flows on sites A–D.
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Figure 5.7. Fishergate survey flows on sites E–H.
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Figure 5.8. Fishergate survey flows on sites I–K.
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A potential model is to separate the sites into those which are most likely

to suffer a reduction in flow due to the closure and those which are likely to be

potential diversions. The Lendal survey is complicated by the presence of the

fuel crisis so this model is only applied to the Fishergate survey. Sites A, C

and D are those which are closest to the incident (site B is ignored because of

its low flow) and therefore most have their flows constrained. Sites F, G and

K were identified as the most likely potential reroutings. The model applied

is therefore

E [p] = β0 + β1Ic + β2Ir,

where p is the proportional flow, βi are the model parameters, Ic (closure

effects) is an indicator variable which is one if the survey in question comes

from site A, C or D and the closure is in place on that day and Ir (rerouting

effects) is one if the survey in question comes from site F, G or K and the

closure is in effect.

Parameter β0 β1 β2

Estimate 1.004 -0.063 0.037

Std. Error 0.006 0.017 0.018

Significance 0.1% 0.1% 5%

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.123 0.111 10.04 2 143 8.3 × 10−5

This model seems quite successful. The p-value is low indicating that, if

the assumptions of the GLM are met, then either β1 or β2 or both are non

zero. Both beta parameters are significant, one at the 5% level and one at

the 0.1% level. It seems likely, therefore, that there was a reduction on flow

on the routes affected directly (estimated here at 6.3% at sites A, C and D

together) and there was an increase in flow on the most obvious rerouting sites

(estimated here at 3.7% at sites F, G and K together). It should be noted that

the R2 and R2
a values show that the majority of the variance in the flows is

not explained by this model. This is only to be expected. It is probable that

the fit of the model could be improved by choosing sites according to how they
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maximise the fit — however, doing so would, effectively, introduce a hidden

parameter into the model (the set of sites in Ic and Ir) and, hence, invalidate

the p-value and the R2
a value calculated.

5.7.1. Flow Histogram Data by Site. The distribution of flow through-

out the surveyed time can be visualised by plotting a histogram. To do so,

those plates which were not removed for the reasons specified in Section 5.4

were put into five minute bins and a histogram is plotted of number of vehicles

in each bin. It is should be kept in mind that, due to previously mentioned

possible inaccuracies in timing, some vehicles may be misclassified by a single

bin. It should also be noted that the data in the first and last survey bins

may be partial if the survey began late or ended early by a few minutes. The

histograms are gathered in Appendix D.

Figures D.1 to D.18 show histograms of the arrival times for selected site

surveys from the Lendal Bridge Study. The times are given in minutes past

midnight so they run from 480 (8:00am) to 540 (9:00am). No particularly

obvious pattern emerges from the flow histograms. A large number of such

figures could be generated (one for every flow reading in the cells of Tables

5.6 and 5.7). Figures D.1 to D.13 show the flows on 8/9/00 (a normal before

day) at all sites. It is notable that site C (Figure D.3) shows two severe drops

in flow at particular times but these are due to missing data in recording as

indicated by the ‡ in Table 5.6. It is not clear from these plots whether there is

a shape to the peak of the rush hour. The flow appears to be largely constant

across the rush hour. This could indicate that the morning peak in York lasts

longer than an hour. It could indicate either that the network is saturated for

the full hour or, alternatively, that the demand on the network is extremely

flat in the period specified.

Figures D.14 to D.18 (in addition to Figure D.6 already mentioned) show

the histograms for a selection of other surveyed days at site F (Gillygate) which

would be one site where the flow was greatly affected by the bridge closure

(obviously site H would be affected more since it was completely closed apart
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from buses and taxis). Figures D.6 and D.14 show before days — both of

these show around thirty vehicles in the typical five minute period. The fuel

crisis survey days (Figures D.15 and D.16) show a large drop in flow but still

no noticeable peak structure. Figures D.17 and D.18 show the closure data

with no fuel crisis and again seem to show a drop in flow compared with the

before situation but no discernible structure to the peak itself.

Figures D.19 to D.29 show histograms of arrival times from selected site

surveys for the Fishergate study on 2/7/01 (the last day unaffected by the

partial closure) again with the flows in five minute bins. Most of the sites are

surveyed from 7:45 to 9:15 (465–555 minutes past midnight) but sites H, I and

J are surveyed from 8:00 to 9:30 (480–570 minutes past midnight). Sites H, I

and J, Figures D.26, D.27 and D.28 seem to show a fall off in flow after 9:15.

Site B (Figure D.20) is particularly unclear, presumably since the flow is so

low. There is no clear evidence but, the graph of site E (Figure D.23) seems

to show that the end of the rush hour is reached before the end of the survey

period (this could be explained by the fact that site E was the furthest survey

site from the centre of town).

Figures D.30 to D.34 in addition to Figure D.19 show the histogram for

a variety of surveyed days at site A which was the site where the closure

occurred. Figures D.32 and D.33 are the first two closure days and D.34 is the

final closure day. There is certainly evidence that the flows are reduced after

closure and this can be seen clearly from the graphs. Inspection of similar

graphs (not shown) for site E shows no clear reduction in flow or change in

flow pattern at this site. Site E also seems to keep the same slight decline in

flow through the surveyed period as show in in Figure D.23.

Figures D.35 to D.39 show similar survey days for site D (the exception

being that 27/6/01 is shown instead of 29/6/01 which was only partial data

as can be seen in Table 5.8). The histograms seem to hint at a slight peaking

phenomenon with lower flow at the left and right hand sides of the graphs

but it is not totally clear from the data shown. A reduction in flow on the



5.8. MATCHING BETWEEN PAIRS OF SITES 213

closure days at side D is certainly present as would be expected since this is

downstream from the closure point and there are few reasonable routes on the

network which reach site D without going via site A.

5.8. Matching Between Pairs of Sites

In this section, matching of sites by pairs is analysed. In this case, the

advanced multiple-site matching techniques discussed in Chapter 4 are not

necessary. In the two site case, the method simplifies to subtracting a constant

multiple of the number of pairs. However, this simple method is considered

sufficient to produce a matrix of all pairs of sites to evaluate which are widely

enough used for intensive study. This will be referred to as the probabilistic

correction in the rest of the chapter.

For calculating matches between two sites on the same day, the technique

used is the Maximum Likelihood Estimation (MLE) technique described in

[156]. This model attempts to fit data to pairwise matches and assign travel

times. The assumptions of the model are that vehicles travel between a number

of origins and destinations with travel times that have a normal distribution

for a given OD pair. The probability of a pair of plates being mistaken for

a genuine match is also based upon the distribution of year letters. This

method has been shown to produce robust estimates of the number of matches,

the journey time and the standard deviation of the journey times when its

assumptions are varied and when the distribution of travel times is not a

normal distribution (for example a log-normal distribution). It should be noted

that the actual mean travel time has already been shown to vary throughout

the period studied and is likely to be non-normal. This method will be referred

to as the MLE correction in the rest of this chapter. When considering matches

between days, obviously the assumption of normality in travel times is more

severely violated and the travel time between the two survey sites cannot be

used to eliminate spurious matches.
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5.8.1. Estimating p(2) and p(3). The parameter p(n) is specified by

Defnition 4.23. The value of p(2) can be estimated by looking at pairs of sites

where there is little or no chance that the same vehicle could actually be seen

at both. This is the case for the pairs L and M and M and J in the Lendal

survey and the pair E and H in the Fishergate survey. Assuming that there

were no genuine matches in the surveys (a reasonable assumption given the

locations of the sites) then the number of observed matches between each pair

can be used to estimate p(2).

Sites No. Samples p(2) s.d.(p(2))

L–M Lendal 6 8.49 × 10−5 3.81 × 10−6

J–M Lendal 6 7.69 × 10−5 4.16 × 10−6

E–H Fish. 12 7.90 × 10−5 8.97 × 10−6

Total 24 8.00 × 10−5 7.40 × 10−6

It is concerning that the site pairs produce different estimates of p(2). For

example, t-tests show that the estimates of p(2) obtained from L–M and M–

J differ with a p-value of 0.0058. While it seems certain that the estimates

differ it is uncertain as to why this should be – a possible explanation is

that different surveyors making different errors will sometimes confuse plates

and hence create more false matches (for example, a surveyor who always

reports M for M and N will clearly increase the number of false matches). The

difference between the lowest estimate (7.69× 10−5) and the highest estimate

(8.49×10−5) is considerable and tracking down the reasons for these differences

is important further work since a good estimate of p(n) for low n is critical to

the matching process. The value p(2) = 8×10−5 will be used for the matching

in the remainder of this chapter.

It is worth investigating the effects of separating the letters in the plate and

the digits in the plate. The table below shows a column for the p(2) estimate

obtained from considering the partial plate estimate (as discussed above). The

next column is the p(2) estimate if partial plates were collected from the year

letter only. The next shows the p(2) estimate if partial plates were collected
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using digits only. The final column shows the previous two columns multiplied

together. This would be the p(2) estimate from the partial plate (letters and

numbers) if the year letter and digits were independent.

Sites No. p(2) p(2) p(2) p(2) Letters ×
Samples Whole Letters Digits Digits

L–M Lendal 6 8.49 × 10−5 0.0715 0.00104 7.80 × 10−5

J–M Lendal 6 7.69 × 10−5 0.0754 0.00103 7.43 × 10−5

E–H Fish. 12 7.90 × 10−5 0.0658 0.00105 6.90 × 10−5

Total 24 8.00 × 10−5 0.0696 0.00104 7.26 × 10−5

From the table it is clear that the discrepencies in p(2) are largely due

to the year letters. One possibility is that different surveyors are likely to

confuse letters in different ways. It can also be noted from this table that it

seems unlikely that year letter and digits are uncorrelated which is somewhat

surprising.

The value of p(3) is estimated in a similar way. In the Lendal data, the

sites K, L and M should have no traffic in common between any pair. In

the Fishergate data, the sites, F, H and K should have no traffic in common

between any pair. (Note, however, that the possibility of a small number of

journeys between these match pairs cannot be eliminated.) For interest, the

number of possible 3-tuples (different samples with one plate from each site)

for sites K, L and M is between 1.3 × 109 and 1.6 × 109 depending on survey

day. For the less heavily trafficked F, K and H the number of possible 3-tuples

is between 2.2 × 108 and 5.5 × 108.

Sites No. Samples ˆp(3) s.d.(p(3))

K, L, M 6 1.52 × 10−8 3.23 × 10−9

F, H, K 12 9.60 × 10−9 3.56 × 10−9

Total 18 1.33 × 10−8 4.21 × 10−9

Again, a t-test shows that the two means differ (with 5% significance) and

this should be investigated in further work. A value of p(3) of 1.33× 10−8 will

be assumed for the rest of this work.
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Values of p(4) and above are calculated by considering the distribution

of year letters and assuming that the digits are uniformly distributed. Note,

however, that this will almost certainly produce an underestimate. p(2) calcu-

lated in this way is 0.0000644 not 0.00008 as used and p(3) is 4.83× 10−9 not

1.33 × 10−8. The values of p(n) are less critical as n increases. However, the

estimation of p(n) still remains a weakness in this method and needs further

work.

5.8.2. Within Day Matches. Tables 5.13 to 5.18 show the matches

between all the pairs of sites on the Fishergate survey. The matches are for

three days chosen to include two before days and one during day for which

complete data is available: 28/6/01, 2/7/01 and 3/7/01. The first two should

establish the repeatability of the results and the second one should show the

change caused by the intervention (if any).

In Tables 5.13, 5.15 and 5.17 the raw matches (number of pairs of plates

matched between the two sites) and corrected matches using the probabilistic

correction technique. The corrected matches are shown in brackets. The tables

should be read by picking two sites (a row and a column) and cross referencing.

So, for example, there were 29 raw matches between site A and site B and this

was corrected down to 15.8. The diagonal shows the match from a site to

itself. Naturally, this is usually large (of the order of the flow at that site)

since every vehicle will be seen at least once in the file (it will always match

with itself). The occasional small negative predicted flow is not unexpected.

This is a result of the correction method overestimating the number of false

matches. Naturally, these tables are symmetric about their diagonal and the

entry for B–A is the same as that for A–B.

Comparing the two before days (Tables 5.13 and 5.15) the two appear

largely consistent. The most noticeable difference is at site I which seems

to have more matches on 28/6/01. For example, A–I, D–I, G–I and H–I

show significantly lower matches on the second day surveyed. This cannot be
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explained by reduced flow since the flows can be seen from Tables 5.8 and 5.9

to be almost unchanged at site I on these two days.

Comparing the before days with the first after day (Table 5.17) shows a

much more significant change. This is to be expected, of course. However, a

cursory inspection shows a reduction in matches which appears to be much

greater than the reduction in flow (this will be confirmed statistically later in

this section). The exception is at site I where the matches are mainly larger

than on 2/7/01. It seems that, for whatever reason, vehicles found it hard to

get to or from site I on 2/7/01.

Tables 5.14, 5.16 and 5.18 show the raw and corrected matches as percent-

ages of the total flow on the first site. The corrected matches are in brackets.

That is, the figure in row B, column E this is the percentage of vehicles at

site B which are seen also at site E (34.6% uncorrected, 23.1% corrected).

Conversely, row E, column B is the percentage of vehicles at site E which are

seen also at site B (2.0% uncorrected 1.3% corrected). The reason for the

large discrepancy in the case given is that the flow at B is extremely small

(and a large percentage of it comes from site E which has a large flow). The

corrected figures on the diagonals would ideally be 100% (since all vehicles are

seen once in the two surveys) and, indeed, it can be seen that the figures are

all around this number but some are slightly over. Indeed the estimate is as

much as 111.2% at site B in Table 5.16 and 107.0% in Table 5.15. The site

B result could be explained by the low flows at site B. At least some of the

other overestimates could be the results of some vehicles (perhaps taxis) being

seen twice at the same site during the hour and a half survey although this is

speculation.

From these tables, the most significant matches in terms of percentages

can be identified. From this list, a number of pairs to study can be chosen.

The alternatives E–A, E–B, E–F and E–K seem to identify four possible routes

to take from E and it might be expected that these include the most obvious

reroutings if travel along E–A were slowed. A–D and A–J seem to be two
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possible routes from A (D–J is unused — the one way system makes that

route unlikely). G–C and C–A are obviously important pairs are D–I and

H–I. Finally, F–G and F–A seem to carry significant traffic. This leaves out a

number of pairs which have significant traffic. For example C–D seem to have

a large amount of traffic but via an intermediate site A. The site pairs C–A

and A–D are both studied.

Table 5.19 shows the journey times in minutes and estimated flows as

calculated using the MLE correction method described at the beginning of

Section 5.8. The standard deviation of the journey time is also shown in

brackets after the time. The flows in this method are estimated in vehicles

per hour. A number of observations can be made from this data. Firstly, on

those pairs leading towards site A (E–A and C–A) an increased journey time

is noted and a decreased flow. It also seems that the most severe effects are

on the first day. Sites F–A seem to have the same pattern although this is less

clear.

No particularly obvious effect is spotted at the possible diversion (E–F)

although it is possible that the flow is increased. This increase in flow also

seems to have occurred at diversion (E–K). Sites leading away from the inter-

vention site (A–I and A–D) seem to show decreased flow (although this is not

wholly clear with site D–I). Pairs further along from the diversion (D–I) and

(H–I) seem to have a marginally reduced travel time which might be expected

since the network would be slightly less congested. H–I also seems to be seeing

a marginally increased flow which could indicate rerouting or that more flow

was possible since competing flows were reduced.

In order to extract more information, a statistical model of the flows and

journey times was constructed. In these models the journey times and flows

from Table 5.19 were normalised to be zero mean and unit variance and then a

model was constructed to attempt to explain the normalised flows and times.
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The model was as follows:

E [f ] = β0 + β1Ic + β2D,

where E [f ] is the expectation of the normalised flow (or travel time), the βi

are the parameters of the model, Ic is an indicator variable which is one if the

closure is in place and zero otherwise and D is the number of days since the

closure occurred (not counting weekends) or zero if the closure is not in place.

The modelling was performed separately for the data for each site pair since

the responses from different site pairs might be in different directions.

Tables 5.20 and 5.21 show the parameter fitting for this model for the

various sites looking at flow and travel time. Parameter estimates are given

with percentage significance in brackets (or “low” if the parameter was not

significant at the 10% level). For the majority of site pairs the model is a poor

fit. This might be expected at some pairs. For example, sites (H–I) and (F–G)

might be expected to be only weakly affected (if at all) by the intervention

and the low fit to the model is to be expected.

Site pair C–A is interesting since it shows a considerable effect on travel

time (the model is an extremely good fit here). The travel time is increased

when the closure is in place but decreases as time goes on. The same seems

to be true of site pair E–A and also F–A. However, for none of the site pairs

(E–A, F–A or C–A) was the flow model a significantly good fit to the data.

The times were affected but the flows were not.

Conversely, at site pair E–K, the flow was increased by the closure but

no particular effect on travel time was observed. At sites A–D and A–J the

flows decreased after the intervention (unsurprising since both of these pairs

were directly after the intervention where the flow restriction was in place).

However, no statistically significant increase in travel times on these sites was

shown.

The only other site pair where a flow effect was observed was at site pair

G–C which also shows a significant effect on the base travel time (the base
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travel time being lower). The results of t-tests on the means show that G–C

has a greater travel time and lower flow when the closure is in place with a 1%

significance level. This could simply be a knock on effect from congestion at

C–A although it is curious that C–A did not show a reduced flow effect with

statistical significance.

The main striking feature of the results in Tables 5.20 and 5.21 is that they

are completely inconsistent with the usual assumption of traffic modelling, that

of the cost-flow curve. It is normally assumed that travel time between two

sites is an increasing function of the flow between the two sites. This is simply

not seen in this data. Indeed, almost the opposite would be hypothesised. For

those sites where flow was affected, time was usually unaffected. A similar

effect was noted when the histograms appeared to show a flat distribution

of flow throughout the rush hour but the travel time seemed to increase and

then decrease again throughout the hour. Of course for site A the saturation

flow has changed and normal cost-flow relations would not apply at site pairs

involving site A.

One possible explanation is that the model used all the data surveyed and

there was an effect caused by journeys with missing ends. Some flow is always

“missed” because the start of the journey is seen but the vehicle is not seen at

the end of the survey. As travel time increases, more journeys will be “missed”

like this and the flow will appear to decrease. To compensate for this effect, the

data was sampled to remove some of these missing vehicles. The first site of

the surveyed pair was trimmed so that the last half hour of data was removed.

In this way, all journeys apart from those with unusual delays would be seen at

the second site. The data from Table 5.19 is recalculated with this trimming

effect and this is shown in Table 5.22. The GLM modelling is repeated and is

shown in Tables 5.23 and 5.24.

In general, this trimming seems to have produced results which are broadly

similar to the untrimmed results. The main differences in the travel time model

is that the travel time now shows a significant difference in the closed case for
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F–A and F–G. In the F–A case the closure increases the travel time in the

F–G case it reduces it (this is hard behaviour to explain but this result is only

significant at the 10% level – running so many models some would be expected

to be significant at this level by chance). Most sites show the same trends in

flow and significant parameters in general remain signficant.

The aim of the trimming procedure was to improve the flow modelling and,

indeed, the model more often shows signficance in the flow modelling. This

is particularly notable for site pairs C–A and H–I which previously did not

have significant results in the flow model. C–A now shows an increase in flow

throughout the period of the closure which could be interpreted as a return to

base from an initial drop (although with only a 10% significance). H–I now

shows an increase in flow during the closure which might be expected either

if it were a rerouting or if traffic were able to flow more smoothly due to the

reduction in congestion around H–I.

Again, what is interesting is the lack of clear relationship between flow and

travel time. On some site pairs, when travel time decreases, flow also decreases

(A–D, A–J, D–I). At H–I the travel time decreases but the flow increases. At

E–K the flow has increased without significant effect on travel time. At C–A,

a travel time increase has not been caused by a significant change in flow.

Naturally, for sites directly leading to or from A then it might be expected

that the cost-flow relation would change and therefore a clear relationship

between flow and travel time would not be expected. However, the other sites

(for example G–C) do not appear to be showing the cost-flow effects in the

direction expected.

In all cases, when β2 is significant then it is of the opposite sign to β1 which

supports the idea of an initial response to an intervention which dies down as

time goes on.
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A B C D
A 2515 (2182.4) 29 (15.8) 992 (832.1) 1346 (1144.5)
B 29 (15.8) 83 (82.5) 21 (14.6) 15 (7.0)
C 992 (832.1) 21 (14.6) 1042 (965.2) 635 (538.2)
D 1346 (1144.5) 15 (7.0) 635 (538.2) 1335 (1213.0)
E 581 (347.9) 28 (18.7) 114 (2.0) 244 (102.8)
F 214 (122.7) 3 (-0.6) 41 (-2.9) 120 (64.7)
G 623 (447.2) 11 (4.0) 532 (447.5) 369 (262.5)
H 185 (47.5) 6 (0.5) 70 (3.9) 120 (36.7)
I 362 (218.3) 6 (0.3) 131 (61.9) 266 (179.0)
J 318 (242.0) 11 (8.0) 121 (84.5) 71 (25.0)
K 122 (28.2) 5 (1.3) 51 (5.9) 69 (12.2)

E F G H
A 581 (347.9) 214 (122.7) 623 (447.2) 185 (47.5)
B 28 (18.7) 3 (-0.6) 11 (4.0) 6 (0.5)
C 114 (2.0) 41 (-2.9) 532 (447.5) 70 (3.9)
D 244 (102.8) 120 (64.7) 369 (262.5) 120 (36.7)
E 1631 (1467.6) 115 (51.0) 116 (-7.2) 91 (-5.4)
F 115 (51.0) 586 (560.9) 85 (36.7) 42 (4.2)
G 116 (-7.2) 85 (36.7) 1160 (1067.0) 84 (11.3)
H 91 (-5.4) 42 (4.2) 84 (11.3) 951 (894.1)
I 148 (47.3) 49 (9.5) 150 (74.0) 450 (390.6)
J 107 (53.7) 41 (20.1) 109 (68.8) 83 (51.6)
K 364 (298.3) 31 (5.2) 58 (8.4) 31 (-7.8)

I J K
A 362 (218.3) 318 (242.0) 122 (28.2)
B 6 (0.3) 11 (8.0) 5 (1.3)
C 131 (61.9) 121 (84.5) 51 (5.9)
D 266 (179.0) 71 (25.0) 69 (12.2)
E 148 (47.3) 107 (53.7) 364 (298.3)
F 49 (9.5) 41 (20.1) 31 (5.2)
G 150 (74.0) 109 (68.8) 58 (8.4)
H 450 (390.6) 83 (51.6) 31 (-7.8)
I 1017 (954.9) 82 (49.2) 30 (-10.5)
J 82 (49.2) 510 (492.6) 26 (4.6)
K 30 (-10.5) 26 (4.6) 609 (582.5)

Table 5.13. Fishergate Survey 28/6/2001. Raw matches and
corrected matches between each pair of sites.
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A B C D
A 123.3 (107.0) 1.4 (0.8) 48.7 (40.8) 66.0 (56.1)
B 35.8 (19.5) 102.5 (101.8) 25.9 (18.1) 18.5 (8.6)
C 101.2 (84.9) 2.1 (1.5) 106.3 (98.5) 64.8 (54.9)
D 109.0 (92.7) 1.2 (0.6) 51.4 (43.6) 108.1 (98.2)
E 40.7 (24.3) 2.0 (1.3) 8.0 (0.1) 17.1 (7.2)
F 38.2 (21.9) 0.5 (-0.1) 7.3 (-0.5) 21.4 (11.5)
G 57.8 (41.5) 1.0 (0.4) 49.4 (41.5) 34.2 (24.4)
H 21.9 (5.6) 0.7 (0.1) 8.3 (0.5) 14.2 (4.4)
I 41.1 (24.8) 0.7 (0.0) 14.9 (7.0) 30.2 (20.3)
J 68.2 (51.9) 2.4 (1.7) 26.0 (18.1) 15.2 (5.4)
K 21.2 (4.9) 0.9 (0.2) 8.9 (1.0) 12.0 (2.1)

E F G H
A 28.5 (17.1) 10.5 (6.0) 30.6 (21.9) 9.1 (2.3)
B 34.6 (23.1) 3.7 (-0.8) 13.6 (5.0) 7.4 (0.7)
C 11.6 (0.2) 4.2 (-0.3) 54.3 (45.7) 7.1 (0.4)
D 19.8 (8.3) 9.7 (5.2) 29.9 (21.3) 9.7 (3.0)
E 114.1 (102.7) 8.0 (3.6) 8.1 (-0.5) 6.4 (-0.4)
F 20.5 (9.1) 104.6 (100.2) 15.2 (6.6) 7.5 (0.8)
G 10.8 (-0.7) 7.9 (3.4) 107.6 (99.0) 7.8 (1.0)
H 10.8 (-0.6) 5.0 (0.5) 10.0 (1.3) 112.8 (106.1)
I 16.8 (5.4) 5.6 (1.1) 17.0 (8.4) 51.1 (44.3)
J 23.0 (11.5) 8.8 (4.3) 23.4 (14.8) 17.8 (11.1)
K 63.3 (51.9) 5.4 (0.9) 10.1 (1.5) 5.4 (-1.4)

I J K
A 17.8 (10.7) 15.6 (11.9) 6.0 (1.4)
B 7.4 (0.4) 13.6 (9.9) 6.2 (1.6)
C 13.4 (6.3) 12.3 (8.6) 5.2 (0.6)
D 21.5 (14.5) 5.7 (2.0) 5.6 (1.0)
E 10.4 (3.3) 7.5 (3.8) 25.5 (20.9)
F 8.8 (1.7) 7.3 (3.6) 5.5 (0.9)
G 13.9 (6.9) 10.1 (6.4) 5.4 (0.8)
H 53.4 (46.3) 9.8 (6.1) 3.7 (-0.9)
I 115.4 (108.4) 9.3 (5.6) 3.4 (-1.2)
J 17.6 (10.5) 109.4 (105.7) 5.6 (1.0)
K 5.2 (-1.8) 4.5 (0.8) 105.9 (101.3)

Table 5.14. Fishergate Survey 28/6/2001. Raw and corrected
matches as percentage of flow.
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A B C D
A 2441 (2123.2) 30 (14.1) 1018 (858.1) 1301 (1114.1)
B 30 (14.1) 112 (111.2) 24 (16.0) 15 (5.6)
C 1018 (858.1) 24 (16.0) 1075 (994.5) 659 (565.0)
D 1301 (1114.1) 15 (5.6) 659 (565.0) 1278 (1168.1)
E 574 (336.8) 32 (20.1) 109 (-10.4) 242 (102.5)
F 197 (107.1) 13 (8.5) 47 (1.7) 110 (57.1)
G 603 (438.5) 17 (8.7) 554 (471.2) 367 (270.2)
H 185 (48.8) 17 (10.2) 89 (20.5) 115 (34.9)
I 277 (145.0) 13 (6.4) 121 (54.6) 204 (126.4)
J 303 (227.3) 7 (3.2) 113 (74.9) 42 (-2.5)
K 120 (26.1) 8 (3.3) 73 (25.7) 72 (16.8)

E F G H
A 574 (336.8) 197 (107.1) 603 (438.5) 185 (48.8)
B 32 (20.1) 13 (8.5) 17 (8.7) 17 (10.2)
C 109 (-10.4) 47 (1.7) 554 (471.2) 89 (20.5)
D 242 (102.5) 110 (57.1) 367 (270.2) 115 (34.9)
E 1676 (1498.9) 125 (57.9) 96 (-26.8) 120 (18.3)
F 125 (57.9) 590 (564.6) 90 (43.4) 46 (7.5)
G 96 (-26.8) 90 (43.4) 1142 (1056.8) 72 (1.5)
H 120 (18.3) 46 (7.5) 72 (1.5) 930 (871.7)
I 127 (28.4) 52 (14.6) 101 (32.6) 373 (316.4)
J 120 (63.5) 35 (13.6) 113 (73.8) 85 (52.5)
K 381 (310.9) 38 (11.4) 75 (26.4) 48 (7.8)

I J K
A 277 (145.0) 303 (227.3) 120 (26.1)
B 13 (6.4) 7 (3.2) 8 (3.3)
C 121 (54.6) 113 (74.9) 73 (25.7)
D 204 (126.4) 42 (-2.5) 72 (16.8)
E 127 (28.4) 120 (63.5) 381 (310.9)
F 52 (14.6) 35 (13.6) 38 (11.4)
G 101 (32.6) 113 (73.8) 75 (26.4)
H 373 (316.4) 85 (52.5) 48 (7.8)
I 900 (845.2) 50 (18.5) 42 (3.0)
J 50 (18.5) 511 (492.9) 30 (7.6)
K 42 (3.0) 30 (7.6) 631 (603.2)

Table 5.15. Fishergate Survey 2/7/2001. Raw matches and
corrected matches between each pair of sites.
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A B C D
A 122.5 (106.5) 1.5 (0.7) 51.1 (43.1) 65.3 (55.9)
B 30.0 (14.1) 112.0 (111.2) 24.0 (16.0) 15.0 (5.6)
C 101.5 (85.6) 2.4 (1.6) 107.2 (99.2) 65.7 (56.3)
D 111.0 (95.1) 1.3 (0.5) 56.2 (48.2) 109.0 (99.7)
E 38.6 (22.6) 2.2 (1.4) 7.3 (-0.7) 16.3 (6.9)
F 34.9 (19.0) 2.3 (1.5) 8.3 (0.3) 19.5 (10.1)
G 58.4 (42.5) 1.6 (0.8) 53.7 (45.7) 35.6 (26.2)
H 21.7 (5.7) 2.0 (1.2) 10.4 (2.4) 13.5 (4.1)
I 33.5 (17.5) 1.6 (0.8) 14.6 (6.6) 24.6 (15.3)
J 63.8 (47.8) 1.5 (0.7) 23.8 (15.8) 8.8 (-0.5)
K 20.4 (4.4) 1.4 (0.6) 12.4 (4.4) 12.2 (2.8)

E F G H
A 28.8 (16.9) 9.9 (5.4) 30.3 (22.0) 9.3 (2.5)
B 32.0 (20.1) 13.0 (8.5) 17.0 (8.7) 17.0 (10.2)
C 10.9 (-1.0) 4.7 (0.2) 55.2 (47.0) 8.9 (2.0)
D 20.6 (8.7) 9.4 (4.9) 31.3 (23.1) 9.8 (3.0)
E 112.6 (100.7) 8.4 (3.9) 6.5 (-1.8) 8.1 (1.2)
F 22.2 (10.3) 104.6 (100.1) 16.0 (7.7) 8.2 (1.3)
G 9.3 (-2.6) 8.7 (4.2) 110.7 (102.4) 7.0 (0.1)
H 14.1 (2.1) 5.4 (0.9) 8.4 (0.2) 108.9 (102.1)
I 15.3 (3.4) 6.3 (1.8) 12.2 (3.9) 45.0 (38.2)
J 25.3 (13.4) 7.4 (2.9) 23.8 (15.5) 17.9 (11.1)
K 64.7 (52.8) 6.5 (1.9) 12.7 (4.5) 8.1 (1.3)

I J K
A 13.9 (7.3) 15.2 (11.4) 6.0 (1.3)
B 13.0 (6.4) 7.0 (3.2) 8.0 (3.3)
C 12.1 (5.4) 11.3 (7.5) 7.3 (2.6)
D 17.4 (10.8) 3.6 (-0.2) 6.1 (1.4)
E 8.5 (1.9) 8.1 (4.3) 25.6 (20.9)
F 9.2 (2.6) 6.2 (2.4) 6.7 (2.0)
G 9.8 (3.2) 10.9 (7.1) 7.3 (2.6)
H 43.7 (37.1) 10.0 (6.2) 5.6 (0.9)
I 108.7 (102.1) 6.0 (2.2) 5.1 (0.4)
J 10.5 (3.9) 107.6 (103.8) 6.3 (1.6)
K 7.1 (0.5) 5.1 (1.3) 107.1 (102.4)

Table 5.16. Fishergate Survey 2/7/2001. Raw and corrected
matches as percentage of flow.
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A B C D
A 1881 (1657.1) 16 (3.8) 859 (742.2) 1102 (962.9)
B 16 (3.8) 91 (90.3) 17 (10.6) 11 (3.4)
C 859 (742.2) 17 (10.6) 939 (878.0) 577 (504.4)
D 1102 (962.9) 11 (3.4) 577 (504.4) 1121 (1034.6)
E 393 (203.9) 19 (8.7) 83 (-15.7) 175 (57.6)
F 198 (121.4) 11 (6.8) 44 (4.1) 114 (66.5)
G 540 (403.3) 10 (2.6) 507 (435.7) 338 (253.1)
H 143 (15.7) 10 (3.1) 67 (0.6) 102 (23.0)
I 211 (99.4) 5 (-1.1) 94 (35.8) 168 (98.7)
J 215 (158.5) 4 (0.9) 87 (57.5) 26 (-9.1)
K 120 (29.5) 5 (0.1) 58 (10.8) 75 (18.8)

E F G H
A 393 (203.9) 198 (121.4) 540 (403.3) 143 (15.7)
B 19 (8.7) 11 (6.8) 10 (2.6) 10 (3.1)
C 83 (-15.7) 44 (4.1) 507 (435.7) 67 (0.6)
D 175 (57.6) 114 (66.5) 338 (253.1) 102 (23.0)
E 1593 (1433.3) 146 (81.3) 101 (-14.4) 105 (-2.5)
F 146 (81.3) 618 (591.8) 104 (57.3) 51 (7.5)
G 101 (-14.4) 104 (57.3) 1105 (1021.6) 96 (18.3)
H 105 (-2.5) 51 (7.5) 96 (18.3) 1041 (968.6)
I 118 (23.7) 51 (12.8) 116 (47.9) 453 (389.5)
J 80 (32.3) 46 (26.7) 111 (76.5) 83 (50.9)
K 414 (337.6) 34 (3.1) 53 (-2.2) 51 (-0.4)

I J K
A 211 (99.4) 215 (158.5) 120 (29.5)
B 5 (-1.1) 4 (0.9) 5 (0.1)
C 94 (35.8) 87 (57.5) 58 (10.8)
D 168 (98.7) 26 (-9.1) 75 (18.8)
E 118 (23.7) 80 (32.3) 414 (337.6)
F 51 (12.8) 46 (26.7) 34 (3.1)
G 116 (47.9) 111 (76.5) 53 (-2.2)
H 453 (389.5) 83 (50.9) 51 (-0.4)
I 918 (862.4) 51 (22.8) 60 (14.9)
J 51 (22.8) 462 (447.8) 23 (0.2)
K 60 (14.9) 23 (0.2) 718 (681.4)

Table 5.17. Fishergate Survey 3/7/2001. Raw matches and
corrected matches between each pair of sites.
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A B C D
A 112.4 (99.0) 1.0 (0.2) 51.3 (44.4) 65.9 (57.6)
B 17.6 (4.2) 100.0 (99.3) 18.7 (11.7) 12.1 (3.8)
C 98.4 (85.0) 1.9 (1.2) 107.6 (100.6) 66.1 (57.8)
D 106.1 (92.7) 1.1 (0.3) 55.5 (48.6) 107.9 (99.6)
E 27.8 (14.4) 1.3 (0.6) 5.9 (-1.1) 12.4 (4.1)
F 34.6 (21.2) 1.9 (1.2) 7.7 (0.7) 19.9 (11.6)
G 52.9 (39.5) 1.0 (0.3) 49.7 (42.7) 33.1 (24.8)
H 15.0 (1.7) 1.1 (0.3) 7.0 (0.1) 10.7 (2.4)
I 25.3 (11.9) 0.6 (-0.1) 11.3 (4.3) 20.1 (11.8)
J 50.9 (37.6) 0.9 (0.2) 20.6 (13.6) 6.2 (-2.2)
K 17.8 (4.4) 0.7 (0.0) 8.6 (1.6) 11.1 (2.8)

E F G H
A 23.5 (12.2) 11.8 (7.3) 32.3 (24.1) 8.5 (0.9)
B 20.9 (9.6) 12.1 (7.5) 11.0 (2.8) 11.0 (3.4)
C 9.5 (-1.8) 5.0 (0.5) 58.1 (49.9) 7.7 (0.1)
D 16.8 (5.5) 11.0 (6.4) 32.5 (24.4) 9.8 (2.2)
E 112.7 (101.4) 10.3 (5.8) 7.1 (-1.0) 7.4 (-0.2)
F 25.5 (14.2) 108.0 (103.5) 18.2 (10.0) 8.9 (1.3)
G 9.9 (-1.4) 10.2 (5.6) 108.2 (100.1) 9.4 (1.8)
H 11.0 (-0.3) 5.4 (0.8) 10.1 (1.9) 109.5 (101.9)
I 14.1 (2.8) 6.1 (1.5) 13.9 (5.7) 54.3 (46.7)
J 19.0 (7.7) 10.9 (6.3) 26.3 (18.1) 19.7 (12.1)
K 61.2 (49.9) 5.0 (0.5) 7.8 (-0.3) 7.5 (-0.1)

I J K
A 12.6 (5.9) 12.9 (9.5) 7.2 (1.8)
B 5.5 (-1.2) 4.4 (1.0) 5.5 (0.1)
C 10.8 (4.1) 10.0 (6.6) 6.6 (1.2)
D 16.2 (9.5) 2.5 (-0.9) 7.2 (1.8)
E 8.4 (1.7) 5.7 (2.3) 29.3 (23.9)
F 8.9 (2.2) 8.0 (4.7) 5.9 (0.5)
G 11.4 (4.7) 10.9 (7.5) 5.2 (-0.2)
H 47.6 (41.0) 8.7 (5.4) 5.4 (0.0)
I 110.1 (103.4) 6.1 (2.7) 7.2 (1.8)
J 12.1 (5.4) 109.5 (106.1) 5.5 (0.0)
K 8.9 (2.2) 3.4 (0.0) 106.2 (100.8)

Table 5.18. Fishergate Survey 3/7/2001. Raw and corrected
matches as percentage of flow.
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Date t (s.d.) Flow t (s.d.) Flow t (s.d.) Flow t (s.d.) Flow
E–A E–B E–F E–K

25/6/01 7.52(2.23) 279 — — 6.50(0.94) 38 7.24(2.25) 241
26/6/01 9.15(1.75) 244 10.73(2.11) 15 7.48(1.22) 50 8.59(1.32) 205
27/6/01 9.34(2.1421) 236 9.60(1.67) 15 8.02(2.43) 49 9.04(2.66) 215
28/6/01 8.34(2.97) 258 8.54(1.60) 13 7.35(1.81) 51 5.36(1.84) 251
29/6/01 5.64(1.09) 258 6.84(2.28) 19 7.31(1.41) 59 5.24(0.85) 235
2/7/01 5.97(1.61) 258 5.58(1.53) 19 7.18(1.15) 51 5.47(1.07) 259
3/7/01 12.63(8.23) 237 9.50(4.73) 12 6.81(1.04) 52 6.46(3.20) 303
4/7/01 11.93(5.48) 236 10.31(3.17) 13 7.36(1.75) 56 5.90(1.95) 282
5/7/01 10.89(4.88) 233 10.38(7.83) 13 7.13(1.96) 68 4.85(0.94) 295
6/7/01 8.19(4.09) 253 6.15(2.21) 13 6.97(1.31) 59 4.73(1.03) 294
11/7/01 8.41(4.01) 232 11.18(5.39) 11 7.04(1.27) 57 — —
12/7/01 9.75(4.60) 244 11.15(8.04) 13 6.94(0.77) 52 5.03(1.35) 277
13/7/01 5.20(1.07) 229 6.79(3.59) 14 7.70(1.80) 96 4.62(0.98) 273
16/7/01 9.35(5.29) 271 9.24(5.00) 17 6.41(0.81) 59 4.99(1.27) 289
Date A–D A–J G–C C–A
25/6/01 0.61(0.76) 776 5.32(0.89) 151 1.66(0.66) 393 0.63(0.69) 652
26/6/01 0.21(0.76) 808 4.17(0.73) 176 1.48(0.88) 401 1.33(0.70) 680
27/6/01 0.39(0.63) 847 — — 2.34(1.15) 379 0.90(0.60) 662
28/6/01 0.32(0.66) 889 4.01(0.86) 160 1.32(0.70) 381 1.30(0.85) 654
29/6/01 — — 4.90(1.08) 155 1.00(0.62) 371 1.22(0.64) 657
2/7/01 0.27(0.72) 857 3.93(0.89) 164 2.07(0.69) 387 1.17(0.64) 673
3/7/01 0.25(0.59) 768 4.11(0.95) 128 2.46(1.14) 366 3.29(1.35) 610
4/7/01 0.59(0.52) 776 3.75(0.73) 131 2.16(0.75) 361 2.66(1.23) 678
5/7/01 0.46(0.67) 741 3.74(0.87) 111 2.87(1.24) 361 3.27(1.59) 625
6/7/01 0.52(0.60) 771 3.70(0.73) 142 — — 2.13(0.98) 630
11/7/01 — — 3.79(0.83) 147 3.02(1.56) 344 2.26(1.32) 561
12/7/01 0.72(0.58) 705 3.80(0.78) 143 3.55(1.50) 340 2.33(1.27) 585
13/7/01 0.92(0.53) 836 3.68(1.10) 148 2.23(0.82) 416 1.17(0.71) 590
16/7/01 0.94(0.80) 767 3.74(0.77) 134 2.51(0.67) 397 1.62(1.20) 647
Date D–I H–I F–G F–A
25/6/01 4.01(0.73) 74 1.29(0.82) 221 2.62(0.76) 29 4.19(1.52) 91
26/6/01 5.07(1.64) 85 — — 2.74(0.87) 35 3.95(0.83) 87
27/6/01 5.07(1.42) 96 1.25(0.70) 224 3.39(1.67) 33 3.82(0.83) 88
28/6/01 4.68(1.26) 100 1.08(0.62) 221 2.88(1.01) 33 4.03(1.56) 110
29/6/01 — — 1.30(0.71) 228 3.03(0.83) 39 3.57(0.97) 99
2/7/01 7.09(2.15) 85 1.02(0.67) 192 1.29(0.61) 24 3.29(0.99) 101
3/7/01 3.46(1.15) 63 0.97(0.61) 233 1.50(0.74) 34 5.58(1.92) 104
4/7/01 4.35(1.74) 72 1.42(0.80) 220 1.61(0.72) 36 6.48(2.50) 105
5/7/01 3.99(1.05) 70 1.13(0.70) 236 2.02(1.42) 52 4.59(1.26) 93
6/7/01 4.24(1.56) 101 1.23(0.82) 215 — — 3.79(0.89) 95
11/7/01 — — 1.29(0.64) 234 2.77(1.45) 30 6.36(2.72) 72
12/7/01 4.05(1.45) 82 1.61(0.71) 213 1.00(0.77) 27 4.04(1.61) 67
13/7/01 5.48(1.86) 106 1.37(0.61) 180 2.17(1.28) 36 3.62(1.05) 88
16/7/01 5.95(1.58) 100 — — 1.64(1.21) 36 4.36(2.01) 106

Table 5.19. Journey times and flows for Fishergate survey.
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Pair β0 (sig) β1 (sig) β2 (sig) R2 R2
a p-value

A – D -0.25 (low) -0.62 (low) 0.24 (10%) 0.40 0.27 0.096
A – J 0.57 (low) -0.88 (low) -0.03 (low) 0.31 0.17 0.16
C – A -0.82 (0.1%) 2.5 (0.1%) -0.18 (1%) 0.86 0.87 6.5 × 106

D – I 0.44 (low) -1.7 (10%) 0.18 (low) 0.39 0.26 0.10
E – A -0.64 (10%) 2.1 (1%) -0.15 (low) 0.57 0.49 0.0095
E – F 0.47 (low) -0.34 (low) -0.12(low) 0.32 0.20 0.12
E – K 0.37 (low) -0.44 (low) -0.08(low) 0.21 0.05 0.31
F – A -0.62 (10%) 1.80 (5%) -0.12 (low) 0.48 0.39 0.027
F – G 0.51 (low) -1.10 (low) 0.0023 (low) 0.33 0.19 0.14
G – C -0.66 (5%) 0.96 (low) 0.09 (low) 0.61 0.53 0.0095
H – I -0.16 (low) -0.97 (low) 0.31 (10%) 0.37 0.22 0.13

Table 5.20. GLM modelling results for travel times at various
site pairs for the Fishergate survey.

Pair β0 (sig) β1 (sig) β2 (sig) R2 R2
a p-value

A – D 0.76 (5%) -1.25 (5%) -0.058 (low) 0.65 0.57 0.0089
A – J 0.80 (5%) -2.0 (1%) 0.11 (low) 0.66 0.59 0.0045
C – A 0.44 (low) -0.41 (low) -0.09 (low) 0.26 0.12 0.19
D – I 0.34 (low) -1.70 (5%) 0.22 (low) 0.40 0.27 0.098
E – A 0.26 (low) -1.36 (low) 0.17 (low) 0.22 0.08 0.26
E – F -0.049 (low) 0.13 (low) -0.0067 (low) 0.0028 -0.18 0.98
E – K -0.73 (5%) 1.79 (1%) -0.04 (low) 0.69 0.62 0.0031
F – A 0.13 (low) 0.55 (low) -0.16 (low) 0.15 -0.0013 0.40
F – G -0.21 (low) 1.17 (low) -0.14 (low) 0.16 -0.0039 0.41
G – C 0.58 (10%) -1.47 (10%) 0.042 (low) 0.44 0.33 0.056
H – I -0.42 (low) 1.14 (low) -0.071 (low) 0.21 0.035 0.34

Table 5.21. GLM modelling results for flows at various site
pairs for the Fishergate survey.
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Date t (s.d.) Flow t (s.d.) Flow t (s.d.) Flow t (s.d.) Flow
E–A E–B E–F E–K

25/6/01 7.28(2.27) 242 — — 6.52(0.97) 29 7.00(2.20) 220
26/6/01 9.02(1.81) 215 10.85(2.25) 13 7.51(1.30) 43 8.51(1.31) 191
27/6/01 9.12(2.16) 209 9.29(1.67) 14 8.09(2.63) 43 8.70(2.50) 193
28/6/01 8.44(3.12) 220 10.08(3.52) 13 7.40(1.86) 48 5.30(1.78) 228
29/6/01 5.47(1.04) 214 6.76(2.39) 17 7.48(1.46) 48 5.27(0.81) 215
2/7/01 5.79(1.59) 224 5.35(1.45) 17 7.12(1.11) 48 5.41(1.08) 237
3/7/01 12.12(7.98) 224 9.50(4.73) 12 6.76(1.03) 50 6.12(2.91) 287
4/7/01 10.64(4.43) 207 10.31(3.17) 13 7.43(1.92) 54 5.46(1.48) 253
5/7/01 10.03(4.62) 199 10.38(7.83) 13 6.66(1.29) 62 4.70(0.82) 265
6/7/01 7.36(3.41) 224 6.15(2.21) 13 7.04(1.35) 53 4.69(1.03) 259
11/7/01 7.83(3.68) 206 9.33(3.74) 9 7.26(1.52) 50 — —
12/7/01 9.16(4.53) 216 11.00(7.76) 14 6.90(0.78) 39 4.62(0.89) 230
13/7/01 5.13(1.09) 202 5.70(1.00) 10 7.55(1.72) 88 4.48(0.89) 239
16/7/01 8.81(5.09) 253 8.82(4.53) 17 6.36(0.74) 56 4.70(1.08) 251
Date A–D A–J G–C C–A
25/6/01 0.60(0.78) 688 5.33(0.93) 135 1.73(0.58) 358 0.54(0.65) 586
26/6/01 0.23(0.79) 711 4.20(0.73) 158 1.45(0.88) 371 1.32(0.72) 594
27/6/01 0.38(0.64) 727 — — 2.19(1.05) 349 0.89(0.61) 579
28/6/01 0.29(0.67) 783 3.96(0.78) 136 1.29(0.72) 333 1.36(0.84) 569
29/6/01 — — 4.81(1.08) 134 1.04(0.62) 330 1.17(0.61) 588
2/7/01 0.24(0.73) 767 3.81(0.88) 137 2.06(0.66) 332 1.12(0.64) 582
3/7/01 0.25(0.60) 672 4.19(0.94) 113 2.41(1.16) 337 3.13(1.31) 542
4/7/01 0.61(0.51) 682 3.78(0.72) 117 2.05(0.68) 324 2.57(1.26) 578
5/7/01 0.40(0.68) 663 3.72(0.90) 103 2.94(1.28) 326 3.04(1.52) 548
6/7/01 0.52(0.61) 683 3.56(0.64) 118 — — 2.08(1.01) 556
11/7/01 — — 3.81(0.85) 136 2.73(1.38) 308 2.09(1.24) 501
12/7/01 0.72(0.58) 627 3.88(0.75) 127 3.49(1.53) 312 2.10(1.11) 522
13/7/01 0.93(0.53) 747 3.58(1.06) 133 2.23(0.85) 378 1.17(0.72) 528
16/7/01 0.79(1.09) 694 3.77(0.77) 112 2.51(0.67) 370 1.37(0.98) 576
Date D–I H–I F–G F–A
25/6/01 3.90(0.72) 61 1.29(0.86) 187 2.62(0.75) 24 4.17(1.54) 82
26/6/01 4.87(1.56) 78 — — 2.97(0.90) 31 3.96(0.80) 82
27/6/01 4.94(1.48) 83 1.19(0.70) 187 3.20(1.88) 25 3.86(0.86) 77
28/6/01 4.53(1.22) 87 1.04(0.62) 189 2.87(1.02) 30 4.02(1.60) 96
29/6/01 — — 1.30(0.73) 195 2.94(0.84) 34 3.47(0.94) 85
2/7/01 7.04(2.20) 78 0.98(0.69) 172 1.32(0.65) 19 3.29(1.03) 92
3/7/01 3.48(1.24) 54 0.92(0.59) 202 1.32(0.60) 28 5.20(1.48) 92
4/7/01 4.60(1.70) 63 1.22(0.59) 188 1.66(0.69) 32 6.33(2.57) 94
5/7/01 3.87(1.03) 63 1.11(0.69) 198 1.89(1.30) 44 4.45(1.16) 87
6/7/01 4.42(1.19) 83 1.31(0.81) 186 — — 3.78(0.94) 82
11/7/01 — — 1.34(0.60) 204 2.78(1.52) 27 5.85(2.57) 60
12/7/01 4.03(1.50) 74 1.48(0.59) 182 0.91(0.65) 23 3.76(1.29) 62
13/7/01 5.65(1.95) 95 1.31(0.58) 150 2.31(1.72) 35 3.66(1.06) 83
16/7/01 5.91(1.68) 78 — — 1.68(1.28) 31 4.02(1.90) 91

Table 5.22. Journey times and flows for Fishergate survey —
adjusted by trimming.
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Pair β0 (sig) β1 (sig) β2 (sig) R2 R2
a p-value

A – D -0.58 (5%) -0.32 (low) 0.24 (0.1%) 0.74 0.68 0.002
A – J 0.65 (low) -0.54 (low) -0.10 (low) 0.35 0.22 0.12
C – A -0.67 (1%) 1.9 (0.1%) -0.093 (10%) 0.76 0.71 0.00040
D – I 0.21 (low) -1.11 (10%) 0.11 (low) 0.31 0.15 0.19
E – A -0.37 (low) 1.65 (1%) -0.14 (5%) 0.55 0.47 0.012
E – F 0.51 (low) -0.92 (low) -0.02 (low) 0.26 0.12 0.19
E – K 0.59 (low) -0.49 (low) -0.13 (low) 0.41 0.30 0.069
F – A -0.44 (low) 1.41 (5%) -0.08 (low) 0.40 0.30 0.058
F – G 0.56 (low) -1.11 (10%) -0.016 (low) 0.38 0.25 0.09
G – C -0.78 (5%) 1.06 (5%) -0.094 (low) 0.65 0.58 0.0054
H – I -0.53 (low) -0.25 (low) 0.20 (5%) 0.49 0.39 0.034

Table 5.23. GLM modelling results for travel times at various
site pairs for the Fishergate survey — adjusted by trimming.

Pair β0 (sig) β1 (sig) β2 (sig) R2 R2
a p-value

A – D 0.73 (5%) -1.50 (1%) 0.0062 (low) 0.60 0.51 0.017
A – J 0.74 (5%) -1.49 (1%) 0.017 (low) 0.55 0.47 0.018
C – A 0.68 (10%) -0.51 (low) 0.067 (10%) 0.47 0.38 0.030
D – I 0.21 (low) -1.45 (5%) 0.17 (5%) 0.57 0.47 0.023
E – A -0.041 (low) -0.047 (low) 0.020 (low) 0.0046 -0.18 0.97
E – F -0.30 (low) -0.43 (low) 0.17 (10%) 0.30 0.17 0.14
E – K -0.65 (5%) 1.48 (1%) -0.012(low) 0.56 0.48 0.016
F – A 0.33 (low) 0.03 (low) -0.11(low) 0.17 0.017 0.36
F – G -0.20 (low) 0.35 (low) 0.013 (low) 0.045 -0.15 0.79
G – C 0.27 (low) -1.35 (5%) 0.11 (low) 0.37 0.24 0.10
H – I -0.16 (low) 1.44 (1%) -0.19 (5%) 0.60 0.51 0.02

Table 5.24. GLM modelling results for flows at various site
pairs for the Fishergate survey — adjusted by trimming.
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5.8.3. Between Day Matches. Tables 5.25 to 5.29 show matches be-

tween different days at the same site. The term recurrence rate refers to the

percentage of traffic on day A which are seen again on day B. These tables

show recurrence rates for the two surveys. In each cell of the tables, the num-

ber represents the percentage of vehicles which are seen on the day represented

by a given row are seen again on the day represented by a given column. It

should be noted that in all tables except Table 5.27 the recurrence rate is

calculated on data between 8:00am and 9:00am on all days. Note that the

adjusted figure on the diagonal should always be close to 100%.

Table 5.25 shows matching at site L in the Lendal Bridge survey. This site

was picked because it should have been least affected by the bridge closure

and hence, apart from on the two fuel crisis days, the recurrence rates should

be unaffected by interventions on the network. The most obvious thing is that

the recurrence rate falls off rapidly with the separation between the two days

matched. For surveys within one day of each other, the adjusted recurrence

rate is between 35% and 40%. At two days this appears to have fallen to

between 30% and 35% (although the 13/9/00 data may be affected by the fuel

crisis). By the time the days are more than two months apart (27 and 28/6/00

versus 6,7 and 8/9/00) the recurrence rate has fallen to between 15% and 18%.

The recurrence rate between the 27/9/00 and 18/10/00 is unexpectedly high

(32%) considering they are three weeks apart — this could be due to the fact

that both days are a Wednesday. Indeed this hypothesis seems to be confirmed

by the Fishergate data and will be further confirmed by a GLM later in this

section.

Table 5.26 shows the recurrence rates for the data at Fishergate survey site

A. This was the site where the intervention itself took place. Again, the rapid

fall off of recurrence is notable. Adjacent days have a recurrence rate between

35% and 42%. After three weeks, this has fallen to approximately 25%. There

is, however, an exception to this. A clear effect is noted by day of the week.

Recurrence rates are significantly higher when the two surveyed days are the
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same days of the week. For example, the recurrence rate between 16/7/01 and

25/6/01 is 32% despite the fact that these are four weeks apart. The day of

the week effect is an interesting one. It shows that there are a pool of drivers

who consistently drive in rush hour only on certain days of the week. Note

also that it appears weeks are a significant unit in recurrence. Recurrence

rates between days in the same week are usually higher than recurrence rates

between days in different weeks. This pattern is visible in all the Fishergate

data. No significant reduction in recurrence rates can be seen due to the

intervention in the network.

Table 5.27 shows the effect of changing how recurrence rates are calculated.

In this case, traffic seen between 8:20am and 8:40am is matched against traffic

seen at any point in the survey (at this site, this is between 7:45am and

9:15am). As can be seen, in almost all cases, this increases the recurrence

rate greatly as might be expected (the recurrence rates also fluctuate more,

probably because the sample size has been reduced). However, the recurrence

rates still remain below 50% in all but one case and below 40% in the majority

of cases. More than half the vehicles in the rush hour will not travel during

the rush hour on any given follow up survey day at that site.

Table 5.28 shows the recurrence rates at site E. Site E is a radial entry to

the city. Interestingly, the recurrence rates seem to be higher at this site. This

is possible due to the fact that site E is harder to reroute around. Table 5.29

shows the recurrence rates at site K. The recurrence rates here are in between

those of site E and site A.

The data suggests the following GLM

E [R] = β0 + β1|d| + β2Iw + β3Id,

where R is the percentage recurrence rate, βi are the parameters of the model,

d is the difference in days between the two survey days, Iw is an indicator

variable which is one if the two days are in a different week and Id is an

indicator variable which is one if the two days are on the same day of the
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week. Note that the variable d omits weekends so a Monday is assumed to

be only one day away from the adjacent Friday. The model was run with

both assumptions and the former was found to produce a better fit in all cases

tried. Same day (d = 0) samples are removed as meaningless. To prevent

double counting, only pairs of sites in the upper diagonal of the table are

counted — that is, if the site pair (i, j) was included, the site pair (j, i) was

omitted. The modelling was only carried out for sites A and E since site K

had incomplete data.

The table below shows the parameters of the model fitted at site A. All

parameters have the expected signs and are significant at the the 1% level or

better.

Parameter β0 β1 β2 β3

Estimate 36.71 -0.54 -2.92 4.73

Std. Error 0.63 0.10 0.89 0.89

Significance 0.l% 0.1% 1% 0.1%

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.551 0.536 35.6 3 87 < 4.1 × 10−15

The table below shows the parameters of the model fitted at site E. All

parameters have the expected signs and are significant at the the 0.1% level.

Parameter β0 β1 β2 β3

Estimate 43.08 -0.62 -4.94 3.78

Std. Error 0.53 0.08 0.75 0.75

Significance 0.1% 0.1% 0.1% 0.1%

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.735 0.726 80.52 3 87 < 2.2 × 10−16

The low p-value, and relatively high R2 and R2
a values suggest that this is a

good model for recurrence rates. The model shows that, for these two sites, the

recurrence rates decay by approximately 0.5% every day and by approximately

4% if the other surveyed day is in a different week. However, surveys which are

on the same day of the week have a recurrence rate approximately 4% higher.
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A number of alterations to this model were considered but none produced

a sufficiently significant increase in the R2
a value to warrant inclusion of extra

parameters. The assumption that the recurrence rate falls off linearly with

|d| is clearly false in the longer term. However, other variants such as 1/|d|
and e−|d| produced a worse fit to the model. Whether the days surveyed were

the same type of day as regards the closure or otherwise of Fishergate made

no significant difference to the model and adding this to the model made no

difference to the results.

The amount of data collected is not sufficient to model days of the week

separately (that is, to try to separate the effect that both days were a Monday,

both were a Tuesday and so on). Only three surveys were made for each day of

the week except Tuesday which only had two surveys. However, it is interesting

to report that this model had a similar R2
a value (0.567 at site A and 0.72 at

site E) although not all of its parameters were statistically significant (this is

unsurprising given the low number of samples). It is tempting to pool the data

for all sites to increase the number of samples but this would be problematic

since the recurrence rate between two days at site A is clearly not independent

from the recurrence rate between the same two days at site B. It is important to

remember that the data was collected to investigate an intervention therefore

these results may not quite be typical.
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27/6/00 28/6/00 6/9/00 7/9/00 8/9/00

27/6/00 107.6 (99.7) 47.3 (39.0) 24.3 (17.8) 24.6 (18.1) 25.2 (18.8)
28/6/00 44.5 (36.7) 109.8 (101.5) 25.3 (18.7) 25.1 (18.6) 22.0 (15.6)
6/9/00 29.1 (21.3) 32.2 (23.9) 105.1 (98.6) 45.4 (38.9) 39.9 (33.6)
7/9/00 29.6 (21.8) 32.1 (23.7) 45.6 (39.0) 107.9 (101.4) 43.2 (36.9)
8/9/00 31.0 (23.2) 28.8 (20.5) 41.1 (34.5) 44.3 (37.8) 105.5 (99.2)
11/9/00 29.7 (21.9) 29.7 (21.4) 37.4 (30.8) 37.9 (31.4) 37.2 (30.9)
13/9/00 26.8 (19.0) 30.6 (22.3) 34.0 (27.5) 33.6 (27.1) 34.3 (27.9)
27/9/00 31.4 (23.6) 32.7 (24.4) 34.8 (28.2) 32.5 (26.0) 32.4 (26.0)
18/10/00 25.9 (18.1) 30.7 (22.3) 29.1 (22.6) 30.9 (24.4) 29.4 (23.0)

11/9/00 13/9/00 27/9/00 18/10/00

27/6/00 25.5 (18.8) 20.2 (14.3) 26.8 (20.1) 22.2 (15.5)
28/6/00 23.9 (17.2) 21.7 (15.8) 26.2 (19.6) 24.7 (18.0)
6/9/00 38.3 (31.6) 30.7 (24.8) 35.5 (28.8) 29.9 (23.2)
7/9/00 39.1 (32.4) 30.5 (24.6) 33.3 (26.6) 31.8 (25.1)
8/9/00 39.3 (32.6) 31.9 (26.0) 34.0 (27.3) 31.0 (24.3)
11/9/00 108.4 (101.6) 36.0 (30.1) 37.5 (30.8) 30.3 (23.6)
13/9/00 40.9 (34.2) 110.0 (104.1) 34.6 (27.9) 32.8 (26.1)
27/9/00 37.6 (30.9) 30.6 (24.7) 106.7 (100.0) 39.2 (32.5)
18/10/00 30.3 (23.6) 28.9 (23.0) 39.0 (32.3) 104.1 (97.4)

Table 5.25. Matches between days for site L in the Lendal
Bridge survey (8:00 – 9:00).
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25/6/01 26/6/01 27/6/01 28/6/01 29/6/01

25/6/01 116.8 (105.5) 46.1 (35.4) 45.5 (34.5) 46.1 (34.7) 43.4 (32.3)
26/6/01 48.4 (37.1) 114.9 (104.2) 52.1 (41.1) 53.4 (42.0) 44.3 (33.2)
27/6/01 46.7 (35.5) 51.1 (40.3) 118.6 (107.6) 52.8 (41.4) 45.7 (34.6)
28/6/01 45.5 (34.2) 50.3 (39.5) 50.8 (39.8) 118.3 (106.9) 47.1 (35.9)
29/6/01 43.8 (32.5) 42.7 (31.9) 44.9 (33.9) 48.0 (36.6) 115.9 (104.8)
2/7/01 48.0 (36.7) 44.0 (33.3) 44.0 (33.0) 45.9 (34.6) 43.3 (32.2)
3/7/01 44.1 (32.9) 49.9 (39.1) 46.6 (35.6) 49.1 (37.7) 43.3 (32.2)
4/7/01 40.8 (29.6) 42.5 (31.8) 49.7 (38.7) 46.5 (35.1) 43.3 (32.1)
5/7/01 42.7 (31.4) 43.1 (32.4) 44.0 (33.0) 51.1 (39.7) 40.1 (29.0)
6/7/01 38.5 (27.2) 42.1 (31.3) 41.0 (30.1) 43.6 (32.2) 44.5 (33.4)
11/7/01 39.1 (27.9) 40.6 (29.8) 46.9 (35.9) 43.4 (32.0) 37.7 (26.5)
12/7/01 37.5 (26.3) 41.1 (30.4) 41.3 (30.4) 44.7 (33.3) 38.0 (26.8)
13/7/01 35.2 (24.0) 35.3 (24.6) 37.0 (26.0) 36.7 (25.4) 40.9 (29.7)
16/7/01 43.2 (32.0) 38.8 (28.1) 41.7 (30.8) 41.0 (29.6) 37.4 (26.3)

2/7/01 3/7/01 4/7/01 5/7/01 6/7/01

25/6/01 46.7 (35.7) 35.5 (26.4) 34.3 (24.8) 34.7 (25.5) 32.1 (22.7)
26/6/01 44.9 (34.0) 42.0 (33.0) 37.4 (28.0) 36.7 (27.6) 36.7 (27.4)
27/6/01 44.0 (33.0) 38.5 (29.4) 42.8 (33.4) 36.7 (27.6) 35.1 (25.8)
28/6/01 44.2 (33.2) 39.0 (29.9) 38.6 (29.1) 41.1 (31.9) 35.9 (26.5)
29/6/01 42.5 (31.6) 35.1 (26.1) 36.6 (27.2) 32.9 (23.8) 37.4 (28.0)
2/7/01 112.6 (101.6) 44.5 (35.4) 42.6 (33.1) 39.7 (30.5) 37.7 (28.3)
3/7/01 53.8 (42.9) 109.9 (100.9) 49.3 (39.9) 43.5 (34.3) 42.3 (32.9)
4/7/01 49.4 (38.5) 47.3 (38.2) 109.5 (100.1) 47.9 (38.7) 43.1 (33.7)
5/7/01 47.5 (36.5) 43.0 (34.0) 49.4 (39.9) 108.9 (99.8) 44.3 (34.9)
6/7/01 44.0 (33.1) 40.8 (31.7) 43.3 (33.9) 43.3 (34.1) 108.9 (99.5)
11/7/01 42.3 (31.3) 39.4 (30.3) 43.8 (34.4) 40.5 (31.3) 39.6 (30.2)
12/7/01 40.9 (29.9) 38.8 (29.8) 40.4 (31.0) 42.3 (33.1) 38.2 (28.8)
13/7/01 38.4 (27.5) 33.7 (24.7) 33.7 (24.3) 34.0 (24.8) 37.9 (28.5)
16/7/01 45.5 (34.6) 37.2 (28.1) 37.5 (28.1) 37.1 (28.0) 37.2 (27.8)

11/7/01 12/7/01 13/7/01 16/7/01

25/6/01 30.8 (21.9) 28.9 (20.3) 33.3 (22.6) 37.2 (27.5)
26/6/01 33.5 (24.6) 33.2 (24.6) 34.9 (24.3) 35.0 (25.3)
27/6/01 37.9 (29.1) 32.7 (24.1) 35.9 (25.2) 36.9 (27.2)
28/6/01 33.7 (24.9) 34.1 (25.4) 34.3 (23.6) 34.8 (25.2)
29/6/01 29.9 (21.0) 29.5 (20.9) 38.9 (28.3) 32.5 (22.8)
2/7/01 34.2 (25.3) 32.4 (23.7) 37.3 (26.6) 40.2 (30.6)
3/7/01 38.5 (29.7) 37.2 (28.6) 39.6 (29.0) 39.8 (30.1)
4/7/01 41.1 (32.2) 37.1 (28.4) 38.0 (27.3) 38.5 (28.8)
5/7/01 39.2 (30.3) 40.0 (31.4) 39.4 (28.8) 39.2 (29.6)
6/7/01 37.4 (28.5) 35.3 (26.7) 42.9 (32.3) 38.4 (28.7)
11/7/01 109.0 (100.2) 47.2 (38.6) 43.7 (33.1) 43.6 (34.0)
12/7/01 48.2 (39.4) 108.7 (100.0) 46.7 (36.1) 45.7 (36.0)
13/7/01 36.4 (27.6) 38.1 (29.4) 115.4 (104.7) 39.3 (29.6)
16/7/01 39.9 (31.1) 40.9 (32.2) 43.1 (32.5) 110.1 (100.4)

Table 5.26. Matches between days for site A in the Fishergate
survey (8:00 – 9:00).
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25/6/01 26/6/01 27/6/01 28/6/01 29/6/01

25/6/01 123.7 (107.7) 57.5 (42.2) 55.8 (40.3) 55.4 (39.1) 52.0 (36.2)
26/6/01 54.7 (38.8) 116.0 (100.7) 61.0 (45.5) 62.6 (46.3) 51.4 (35.5)
27/6/01 54.9 (38.9) 55.3 (40.0) 116.6 (101.1) 64.2 (47.9) 54.2 (38.4)
28/6/01 56.3 (40.3) 59.2 (43.8) 61.0 (45.5) 130.5 (114.2) 52.3 (36.4)
29/6/01 54.1 (38.1) 48.6 (33.2) 53.9 (38.4) 57.8 (41.5) 115.2 (99.4)
2/7/01 56.2 (40.2) 55.1 (39.8) 54.0 (38.5) 57.7 (41.4) 52.7 (36.9)
3/7/01 50.6 (34.7) 61.0 (45.7) 55.9 (40.5) 59.0 (42.7) 51.9 (36.1)
4/7/01 50.0 (34.0) 54.7 (39.4) 56.2 (40.7) 58.9 (42.6) 48.5 (32.7)
5/7/01 50.4 (34.4) 49.6 (34.3) 50.4 (34.9) 61.0 (44.7) 46.8 (30.9)
6/7/01 44.5 (28.5) 51.4 (36.1) 50.9 (35.4) 52.4 (36.1) 52.7 (36.9)
11/7/01 44.1 (28.2) 49.7 (34.4) 54.5 (39.0) 56.9 (40.6) 46.0 (30.2)
12/7/01 43.9 (27.9) 46.4 (31.0) 48.6 (33.1) 52.8 (36.5) 42.7 (26.9)
13/7/01 42.7 (26.8) 39.6 (24.3) 46.3 (30.8) 46.7 (30.4) 45.4 (29.5)
16/7/01 50.4 (34.4) 44.4 (29.1) 46.9 (31.4) 48.9 (32.6) 41.4 (25.6)

2/7/01 3/7/01 4/7/01 5/7/01 6/7/01

25/6/01 58.1 (42.2) 46.9 (33.6) 44.4 (30.8) 46.9 (33.8) 45.5 (32.1)
26/6/01 54.7 (38.8) 51.4 (38.0) 44.8 (31.3) 44.1 (31.0) 43.5 (30.1)
27/6/01 54.2 (38.3) 48.3 (34.9) 49.7 (36.1) 45.6 (32.5) 43.8 (30.4)
28/6/01 51.5 (35.6) 49.5 (36.2) 47.4 (33.8) 51.7 (38.6) 44.3 (30.9)
29/6/01 51.4 (35.5) 45.3 (31.9) 44.2 (30.6) 40.2 (27.1) 45.5 (32.1)
2/7/01 117.6 (101.6) 56.4 (43.0) 52.9 (39.4) 45.3 (32.2) 47.3 (34.0)
3/7/01 67.6 (51.7) 114.4 (101.0) 59.7 (46.2) 52.4 (39.3) 51.6 (38.3)
4/7/01 57.1 (41.2) 56.2 (42.8) 112.3 (98.7) 55.9 (42.8) 52.2 (38.9)
5/7/01 58.7 (42.8) 55.3 (41.9) 62.3 (48.8) 113.8 (100.7) 52.2 (38.9)
6/7/01 51.9 (36.0) 54.5 (41.1) 50.4 (36.8) 55.8 (42.7) 113.4 (100.0)
11/7/01 47.3 (31.4) 45.5 (32.1) 55.3 (41.8) 48.9 (35.8) 47.6 (34.3)
12/7/01 47.2 (31.3) 47.5 (34.1) 51.1 (37.5) 51.7 (38.6) 46.9 (33.6)
13/7/01 44.5 (28.5) 41.6 (28.2) 39.0 (25.4) 43.6 (30.5) 46.9 (33.6)
16/7/01 53.9 (37.9) 44.1 (30.8) 43.4 (29.8) 43.6 (30.5) 42.4 (29.1)

11/7/01 12/7/01 13/7/01 16/7/01

25/6/01 38.1 (24.9) 39.5 (26.7) 43.6 (28.4) 48.2 (34.3)
26/6/01 43.0 (29.9) 37.6 (24.8) 39.2 (24.1) 45.3 (31.4)
27/6/01 48.1 (35.0) 41.7 (28.9) 43.1 (28.0) 45.4 (31.5)
28/6/01 44.8 (31.7) 46.6 (33.8) 43.6 (28.4) 44.8 (31.0)
29/6/01 39.3 (26.2) 39.7 (26.9) 46.8 (31.7) 42.8 (29.0)
2/7/01 44.7 (31.6) 38.6 (25.8) 46.6 (31.5) 51.2 (37.3)
3/7/01 48.9 (35.7) 44.6 (31.7) 46.3 (31.2) 47.8 (34.0)
4/7/01 48.5 (35.4) 44.6 (31.7) 43.8 (28.7) 44.3 (30.5)
5/7/01 48.1 (34.9) 50.4 (37.5) 45.2 (30.1) 51.2 (37.3)
6/7/01 46.5 (33.4) 46.3 (33.4) 51.7 (36.6) 48.6 (34.7)
11/7/01 116.8 (103.6) 59.8 (47.0) 52.1 (37.0) 53.5 (39.6)
12/7/01 57.3 (44.2) 110.6 (97.8) 52.2 (37.1) 53.6 (39.8)
13/7/01 47.8 (34.7) 45.2 (32.3) 117.4 (102.3) 45.8 (32.0)
16/7/01 46.9 (33.8) 47.4 (34.5) 51.1 (36.0) 112.5 (98.6)

Table 5.27. Matches between days for site A in the Fishergate
survey (8:20 – 8:40).
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25/6/01 26/6/01 27/6/01 28/6/01 29/6/01

25/6/01 107.7 (100.6) 53.7 (46.7) 49.0 (42.4) 49.8 (42.4) 50.1 (42.4)
26/6/01 54.6 (47.5) 105.7 (98.7) 51.5 (44.9) 53.2 (45.9) 48.9 (41.2)
27/6/01 53.2 (46.1) 55.0 (48.0) 107.8 (101.3) 54.3 (46.9) 51.2 (43.6)
28/6/01 48.2 (41.1) 50.7 (43.7) 48.4 (41.9) 108.9 (101.6) 52.1 (44.5)
29/6/01 46.5 (39.3) 44.6 (37.6) 43.7 (37.2) 49.9 (42.6) 107.3 (99.6)
2/7/01 47.0 (39.9) 44.3 (37.3) 41.9 (35.4) 44.7 (37.3) 43.0 (35.3)
3/7/01 45.1 (38.0) 46.5 (39.6) 42.5 (36.0) 47.3 (40.0) 44.4 (36.7)
4/7/01 42.1 (35.0) 40.3 (33.3) 43.3 (36.8) 43.8 (36.5) 41.5 (33.9)
5/7/01 42.2 (35.1) 41.1 (34.1) 37.8 (31.2) 44.0 (36.6) 42.9 (35.2)
6/7/01 38.3 (31.2) 38.7 (31.7) 37.0 (30.5) 38.0 (30.6) 44.8 (37.1)
11/7/01 38.9 (31.8) 39.0 (32.0) 41.1 (34.5) 40.7 (33.3) 38.1 (30.5)
12/7/01 38.2 (31.1) 39.8 (32.8) 35.2 (28.6) 41.6 (34.3) 38.0 (30.3)
13/7/01 37.2 (30.1) 37.2 (30.2) 34.7 (28.2) 37.3 (29.9) 42.3 (34.6)
16/7/01 42.3 (35.2) 38.0 (31.0) 34.4 (27.9) 37.7 (30.3) 38.7 (31.0)

2/7/01 3/7/01 4/7/01 5/7/01 6/7/01

25/6/01 54.2 (46.0) 47.1 (39.7) 47.5 (39.5) 47.6 (39.6) 44.3 (36.0)
26/6/01 51.8 (43.6) 49.3 (41.9) 46.2 (38.2) 47.1 (39.1) 45.4 (37.2)
27/6/01 52.4 (44.3) 48.2 (40.8) 53.1 (45.0) 46.3 (38.3) 46.5 (38.2)
28/6/01 49.8 (41.7) 47.8 (40.4) 47.9 (39.9) 48.1 (40.1) 42.5 (34.3)
29/6/01 45.9 (37.7) 42.9 (35.5) 43.4 (35.4) 44.9 (36.9) 48.0 (39.8)
2/7/01 107.6 (99.4) 53.4 (46.0) 51.1 (43.1) 48.1 (40.1) 46.3 (38.1)
3/7/01 59.0 (50.8) 109.9 (102.5) 56.0 (48.0) 51.8 (43.8) 49.6 (41.4)
4/7/01 52.2 (44.0) 51.8 (44.4) 108.2 (100.2) 52.0 (44.0) 47.8 (39.6)
5/7/01 49.1 (40.9) 47.9 (40.4) 51.9 (43.9) 107.0 (99.0) 50.3 (42.1)
6/7/01 46.2 (38.0) 44.7 (37.3) 46.6 (38.6) 49.2 (41.1) 106.4 (98.2)
11/7/01 46.1 (38.0) 44.1 (36.7) 51.3 (43.3) 44.6 (36.5) 43.9 (35.7)
12/7/01 46.8 (38.7) 43.4 (36.0) 43.5 (35.5) 46.7 (38.7) 43.1 (34.9)
13/7/01 43.1 (35.0) 39.4 (32.0) 42.1 (34.1) 42.9 (34.8) 44.9 (36.7)
16/7/01 46.7 (38.6) 39.5 (32.0) 40.7 (32.7) 41.3 (33.3) 41.2 (32.9)

11/7/01 12/7/01 13/7/01 16/7/01

25/6/01 41.4 (33.9) 42.8 (34.8) 43.4 (35.1) 50.3 (41.9)
26/6/01 42.2 (34.6) 45.3 (37.3) 44.1 (35.8) 46.0 (37.5)
27/6/01 47.6 (40.0) 42.8 (34.8) 44.0 (35.7) 44.5 (36.0)
28/6/01 42.0 (34.4) 45.1 (37.2) 42.1 (33.8) 43.4 (34.9)
29/6/01 37.7 (30.1) 39.5 (31.5) 45.7 (37.4) 42.7 (34.2)
2/7/01 42.7 (35.1) 45.6 (37.6) 43.7 (35.4) 48.3 (39.8)
3/7/01 45.1 (37.6) 46.7 (38.7) 44.1 (35.8) 45.0 (36.6)
4/7/01 48.5 (40.9) 43.2 (35.3) 43.5 (35.2) 42.9 (34.5)
5/7/01 42.1 (34.5) 46.4 (38.4) 44.3 (36.0) 43.6 (35.1)
6/7/01 40.5 (32.9) 41.8 (33.8) 45.3 (37.0) 42.4 (33.9)
11/7/01 107.0 (99.4) 51.6 (43.7) 49.5 (41.2) 48.0 (39.6)
12/7/01 49.1 (41.6) 109.0 (101.1) 49.7 (41.5) 47.6 (39.2)
13/7/01 45.3 (37.7) 47.8 (39.8) 107.5 (99.2) 46.1 (37.7)
16/7/01 43.0 (35.5) 44.8 (36.9) 45.2 (36.9) 109.5 (101.0)

Table 5.28. Matches between days for site E in the Fishergate
survey (8:00 – 9:00).
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25/6/01 26/6/01 27/6/01 28/6/01 29/6/01

25/6/01 103.5 (100.7) 42.3 (39.4) 35.4 (32.8) 35.9 (32.9) 38.0 (34.6)
26/6/01 39.5 (36.7) 103.8 (100.8) 41.4 (38.8) 42.4 (39.4) 37.6 (34.2)
27/6/01 37.8 (35.0) 47.4 (44.4) 104.3 (101.8) 40.9 (37.8) 44.9 (41.5)
28/6/01 32.3 (29.5) 40.9 (37.9) 34.4 (31.8) 105.2 (102.1) 38.5 (35.2)
29/6/01 31.3 (28.6) 33.3 (30.3) 34.7 (32.1) 35.4 (32.3) 103.3 (100.0)
2/7/01 34.8 (32.0) 36.5 (33.5) 30.8 (28.2) 35.2 (32.2) 39.2 (35.9)
3/7/01 30.4 (27.6) 35.5 (32.5) 27.6 (25.0) 31.2 (28.1) 33.8 (30.4)
4/7/01 28.0 (25.2) 31.8 (28.9) 32.5 (29.9) 31.2 (28.1) 34.0 (30.6)
5/7/01 28.8 (26.0) 30.2 (27.2) 25.2 (22.6) 30.8 (27.7) 30.6 (27.2)
6/7/01 27.8 (25.0) 30.3 (27.3) 26.3 (23.8) 27.6 (24.5) 34.9 (31.5)
11/7/01 — — — — —
12/7/01 22.4 (19.6) 27.0 (24.0) 21.7 (19.2) 26.3 (23.2) 30.2 (26.9)
13/7/01 25.8 (23.1) 27.2 (24.2) 22.9 (20.4) 27.4 (24.3) 34.7 (31.4)
16/7/01 27.4 (24.6) 27.4 (24.4) 21.9 (19.3) 26.7 (23.7) 28.6 (25.3)

2/7/01 3/7/01 4/7/01 5/7/01 6/7/01

25/6/01 40.3 (37.1) 41.4 (37.7) 38.0 (34.2) 41.4 (37.5) 38.8 (35.0)
26/6/01 39.5 (36.3) 45.1 (41.4) 40.3 (36.5) 40.5 (36.6) 39.5 (35.6)
27/6/01 38.1 (34.9) 40.2 (36.5) 47.1 (43.3) 38.7 (34.7) 39.3 (35.5)
28/6/01 36.7 (33.5) 38.3 (34.5) 38.0 (34.3) 39.8 (35.9) 34.6 (30.8)
29/6/01 37.6 (34.4) 38.0 (34.3) 38.0 (34.3) 36.4 (32.4) 40.2 (36.3)
2/7/01 105.0 (101.8) 43.2 (39.5) 43.5 (39.8) 39.2 (35.3) 37.8 (33.9)
3/7/01 36.7 (33.5) 103.4 (99.6) 43.5 (39.8) 44.6 (40.6) 38.4 (34.6)
4/7/01 37.2 (34.0) 43.8 (40.0) 105.6 (101.8) 45.1 (41.1) 38.0 (34.2)
5/7/01 31.6 (28.4) 42.3 (38.5) 42.5 (38.7) 106.8 (102.9) 43.5 (39.6)
6/7/01 31.3 (28.1) 37.6 (33.8) 36.9 (33.2) 44.8 (40.8) 104.6 (100.7)
11/7/01 — — — — —
12/7/01 28.5 (25.3) 34.1 (30.4) 34.6 (30.8) 39.6 (35.6) 33.5 (29.6)
13/7/01 29.0 (25.8) 30.3 (26.5) 31.6 (27.9) 33.9 (29.9) 35.0 (31.1)
16/7/01 31.6 (28.4) 32.2 (28.4) 31.4 (27.6) 30.3 (26.3) 30.7 (26.9)

11/7/01 12/7/01 13/7/01 16/7/01

25/6/01 — 29.9 (26.2) 33.6 (30.0) 37.7 (33.9)
26/6/01 — 33.5 (29.8) 33.0 (29.4) 35.1 (31.3)
27/6/01 — 31.0 (27.3) 31.9 (28.3) 32.2 (28.4)
28/6/01 — 31.5 (27.8) 32.0 (28.4) 33.1 (29.3)
29/6/01 — 33.3 (29.6) 37.3 (33.7) 32.5 (28.7)
2/7/01 — 32.8 (29.1) 32.5 (28.9) 37.5 (33.7)
3/7/01 — 33.3 (29.7) 28.9 (25.3) 32.5 (28.7)
4/7/01 — 34.0 (30.3) 30.3 (26.7) 31.8 (28.0)
5/7/01 — 36.6 (32.9) 30.6 (27.0) 29.0 (25.2)
6/7/01 — 32.0 (28.3) 32.6 (29.0) 30.3 (26.5)
11/7/01 — — — —
12/7/01 — 105.7 (102.0) 34.6 (31.0) 33.7 (29.9)
13/7/01 — 35.4 (31.7) 104.9 (101.3) 33.2 (29.4)
16/7/01 — 32.6 (29.0) 31.4 (27.8) 104.6 (100.8)

Table 5.29. Matches between days for site K in the Fishergate
survey (8:00 – 9:00).
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5.9. Multiple Site Matching

Using the methods of the previous chapter, matches across more than two

sites can be examined. However, the difficulties of investigating the data in

this context are large. Consider, the issue of finding drivers who swap routes.

The number of drivers changing route to any given new route is unlikely to

be large. For example, in the Fishergate data, if 20% of the drivers travelling

from E–A rerouted to E–K and E–F this would only be approximately fifty

drivers split between those two routes. For perspective, data for the triple

match E–A–K was examined. While E–A and E–K are likely pairs, E–A–K

is an unlikely triple, it would only be taken by a driver who was lost, took a

wrong turning or had a specific reason to make the diversion. The expected

number of drivers seen at these three routes would be zero or in single figures.

However, the mean number of matches seen across all three sites in the thirteen

days where data was available was 82.8 with a standard deviation of 23.4. In

short, the noise in the experiment is almost certainly as large or larger than

the effect which is to be measured. All results on multiple site matching should

be viewed with this considerable caveat in mind.

The original hypothesis was that there was a rerouting of vehicles from

E–A to E–K or E–F. The analysis performed, therefore, is to look at data

from the four point match E–A on day one versus E–K or E–F on day two

(where day one is not equal to day two). The corrected matches for these

two experiments are presented in Tables 5.30 and 5.31. The tables should be

interpreted as follows: the figure in the column 26/6/01 and the row 25/6/01

represents an estimate of the number of drivers who were seen using E–A on

day one and E–F on day two. Any negatives should be considered as over

correction of false matches. Note that the table includes also results where

day one is after day two (those results below and to the left of the diagonal).

The data from the tables is hard to interpret directly. It is immediately

clear that the error in the correction process is extremely large. This is un-

fortunate but inevitable. To mitigate this problem, an attempt was made to



5.9. MULTIPLE SITE MATCHING 242

fit a GLM to the data. Three explanatory variables suggest themselves im-

mediately. Whether the first day considered is a “before” day, whether the

second day considered is an after day and whether both of these conditions

apply simultaneously. The latter condition is the most interesting since that

is the effect being searched for (drivers who are on route E–A in the before

but switch to one of the alternatives when the closure is in place).

The indicator variables appropriate can be designated by the following

system: Ibb (day one and day two are both before), Idd (day one and day two

are both during), Id· (day one is before day two is unspecified), I·d (day one is

unspecified, day two is during) and any one of the five other variants.

For the data from E–A switching to E–K then two models seem to have

reasonable predictive power. The first model is

E [f ] = β0 + β1Ibb + β2Ibd,

where E [f ] is the expected value of the switching flow and βi are the pa-

rameters of the model. The parameters of the fitted model are given by the

following table:

Parameter β0 β1 β2

Estimate -1.74 13.33 12.14

Significance low 1% 0.1%

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.173 0.152 8.156 2 78 0.00061

While this model might seem successful it is not as good as the simpler

model given by

E [f ] = β0 + β1Ib·,

which when fitted gives the results:
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Parameter β0 β1

Estimate -5.17 16.05

Significance 10% 0.1%

Statistic R2 R2
a F ν1 ν2 p-value

Estimate 0.254 0.244 26.9 1 79 1.61 × 10−6

This model says that approximately 16 more drivers switch route from E–

A to E–K if the first day is a before day than would be the case otherwise. No

other models were found which were a closer fit to the data than this. This

result is somewhat curious since it implies that more switching took place when

the first day was in the before scenario regardless of when the second day was.

For the data from E–A to E–F the situation was even worse. No models of

this type with significant parameters were found. The conclusion, therefore

is that this data cannot answer even simple questions which directly concern

rerouting. Table 5.32 shows the number of vehicles which are estimated to be

present at every day of weeks one and two at all the sites of the Fishergate

survey. As can be seem the number of spurious matches in the five point

data is extremely high (an extreme case being at site A where there are more

than one thousand estimated false matches). This is due to the discussed

combinatorial nature of the problem. It is hard to know to what extent these

data can be trusted. They are presented here without comment except to say

that an important priority with the work presented in the previous chapter is

to find a way to assign confidence limits to the estimates it gives.
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25/6/01 26/6/01 27/6/01 28/6/01 29/6/01 2/7/01 3/7/01
25/6/01 — -19.2 -15.8 -9.2 -27.7 -26.5 -4.2
26/6/01 -15.0 — -0.1 6.3 0.8 -15.6 -8.6
27/6/01 -2.0 -8.7 — -7.5 -3.3 1.1 9.8
28/6/01 7.3 -3.5 2.9 — 7.9 -4.0 13.8
29/6/01 -5.8 -8.9 8.7 5.7 — 17.9 2.0
2/7/01 -17.9 -17.8 -6.3 -3.6 -13.6 — 6.7
3/7/01 -0.6 -9.6 -0.5 -8.8 -6.1 -7.1 —
4/7/01 -11.7 2.8 5.1 -7.3 -7.3 -13.2 1.7
5/7/01 5.3 -5.9 0.7 -10.4 -12.5 -6.0 15.0
6/7/01 -7.7 -13.3 -5.6 -8.0 -11.5 -7.7 -0.5
11/7/01 -14.1 -13.7 -12.1 -8.9 -15.5 -7.0 -11.3
12/7/01 -12.5 -9.0 -4.1 -12.7 -17.7 -7.0 2.1
13/7/01 -5.5 -0.8 -9.1 -18.6 -19.2 6.3 -2.2
16/7/01 -14.7 -5.0 -0.3 -8.1 -7.4 -14.0 -7.4

4/7/01 5/7/01 6/7/01 11/7/01 12/7/01 13/7/01 16/7/01
25/6/01 -12.8 -5.5 -8.1 — 15.5 -5.2 7.0
26/6/01 9.2 1.4 -10.6 — 6.8 9.7 -4.1
27/6/01 3.3 4.1 1.6 — 3.0 10.4 13.1
28/6/01 26.1 56.8 -2.9 — 29.0 14.5 26.0
29/6/01 17.3 25.7 9.3 — 12.5 5.9 33.0
2/7/01 -5.8 11.3 -5.6 — 23.3 0.8 -5.0
3/7/01 7.7 -0.4 -0.1 — 25.5 11.6 4.4
4/7/01 — 2.3 -0.5 — 13.9 16.2 6.4
5/7/01 23.6 — 4.3 — 22.8 10.3 1.4
6/7/01 -18.1 -4.5 — — 13.1 2.6 16.5
11/7/01 3.1 -2.9 -4.4 — -7.8 -5.8 16.3
12/7/01 16.3 19.2 3.7 — — 17.7 28.9
13/7/01 -4.2 12.5 0.2 — 16.4 — 53.6
16/7/01 8.7 38.9 7.7 — 16.5 1.4 —

Table 5.30. Matches for vehicles switching from sites E–A to
E–K across days for the Fishergate survey.
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25/6/01 26/6/01 27/6/01 28/6/01 29/6/01 2/7/01 3/7/01
25/6/01 — -5.2 0.1 0.4 -3.2 -11.2 13.8
26/6/01 -8.8 — -4.3 1.5 0.6 -6.6 19.3
27/6/01 0.4 -7.2 — -5.6 -9.9 -7.0 -4.6
28/6/01 -9.4 0.3 -9.3 — 0.9 -5.9 9.6
29/6/01 -8.8 -12.0 -10.7 -3.8 — -15.4 -8.1
2/7/01 -6.3 3.5 -2.3 2.2 -10.7 — 2.9
3/7/01 2.1 4.5 2.2 4.3 -1.7 -5.4 —
4/7/01 -3.4 1.5 -3.1 2.1 0.6 -11.8 15.5
5/7/01 18.8 1.1 9.5 0.8 9.0 -3.9 12.5
6/7/01 7.8 2.7 2.2 0.7 1.1 -4.7 14.0
11/7/01 1.7 -4.9 0.7 -4.8 -1.5 -7.1 5.2
12/7/01 2.7 -0.9 -4.5 -2.8 0.6 -6.7 3.8
13/7/01 5.1 -6.9 -1.6 -0.9 1.5 -8.1 6.6
16/7/01 -0.6 -5.6 0.6 -4.9 -1.5 3.8 5.2

4/7/01 5/7/01 6/7/01 11/7/01 12/7/01 13/7/01 16/7/01
25/6/01 0.8 5.3 4.0 -2.7 -4.2 15.0 -4.7
26/6/01 5.0 -5.7 0.7 -10.9 -3.5 0.8 0.7
27/6/01 8.5 -5.8 -0.4 6.4 -4.8 1.5 0.9
28/6/01 13.0 31.7 1.5 -10.7 -1.5 4.8 10.5
29/6/01 3.6 10.1 -4.4 -12.6 -2.3 13.8 12.3
2/7/01 -9.9 -5.5 0.3 -6.2 6.8 -6.1 0.6
3/7/01 -0.7 -1.8 1.9 7.4 8.0 1.7 4.8
4/7/01 — -3.8 10.5 2.7 6.2 0.2 0.4
5/7/01 11.9 — 1.1 -7.4 7.4 14.3 6.1
6/7/01 -1.3 0.5 — -3.3 5.8 8.4 0.4
11/7/01 -3.9 -7.5 -2.4 — -3.5 1.6 -2.0
12/7/01 -0.8 -3.5 -2.3 -2.0 — 10.7 9.1
13/7/01 -0.3 4.5 3.5 -4.3 6.2 — 17.7
16/7/01 6.0 -0.1 2.9 -9.2 -3.4 2.7 —

Table 5.31. Matches for vehicles switching from sites E–A to
E–F across days for the Fishergate survey.
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Site Week One Week Two

A 1302.0 (260.7) 921.0 (213.8)

B — 5.0 (4.6)

C 277.0 (94.1) 211.0 (68.1)

D — 251.0 (83.6)

E 856.0 (244.8) 1134.0 (403.5)

F 44.0 (22.1) 54.0 (21.5)

G 437.0 (166.7) —

H — 60.0 (18.4)

I 131.0 (60.3) 148.0 (63.7)

J — 74.0 (51.2)

K 131.0 (75.8) 179.0 (90.6)

Table 5.32. Vehicles seen on all surveyed days in given weeks

for the Fishergate studies — corrected estimate in brackets.

5.10. Discussion of Results

In this chapter a considerable amount of analysis has been performed on the

data collected in the two surveys. The most important results are summarised

in this section. It is clear that this data set, while problematic to analyse, is a

rich source of information and could be potentially extremely useful to anyone

interested in investigating the traffic effects of interventions.

Time plots revealed evidence about travel time during York’s rush hour

(Figures C.1 to C.18). Analysis of the Fishergate data showed that the travel

time between sites E–A tended to rise as the rush hour went on and then fall at

the end of the rush hour. This is interesting as histograms of flows reveal only

a slight reduction in flow throughout the duration of the rush hour (Figures

D.19 to D.39) — this seems, perhaps, slightly at odds with the fall off in travel

time seen in the time plots. On the first day of closure the travel time could

be clearly seen to rise continually throughout the rush hour (Figure C.15). As
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the survey continued the effects of the closure appeared to lessen. Statistical

tests showed no clear effects on flow over all the survey sites in either survey

except in the case of the fuel crisis days for Lendal Bridge survey where a

reduction in flow levels was shown as might be expected.

In the case of the Fishergate data, it was hypothesised that sites A, C

and D should show reductions in flows when the closure was in place and

sites F, G and K were potentially diversions and might be expected to show

an increase in flow during the closure. This model proved successful in that

all the parameters were significant although the R2
a value was low indicating

that there was considerable variance in the model which was not explained

by the parameters included. The reduction in flow was estimated at 6.3% on

average over sites A, C and D and the increase in flow at sites F, G and K was

estimated at 3.7%.

Work to estimate p(2) and p(3) revealed the problem that estimates from

different sets of sites provided parameter estimates which differed with sta-

tistical significance. This is extremely important to the matching and work

to understand why this should be so is vital to improving the performance of

matching correction.

For the Fishergate survey, matches between pairs of sites were investigated

to determine which pairs had the most significant flows. This was used as

a factor to determine which pairs to investigate using MLE estimation tech-

niques. Table 5.19 shows the estimated journey times for these pairs. A GLM

model was fitted to these predicted times and flows. Statistical models were

used at each site to estimate the effects of the closure on times of flows. The

results were revealing. Site pairs leading to the closure site showed increased

journey times but no observable effects on flows. Site pairs leading away from

the closure site showed no significant effect on journey time but reduced flows.

At the site pair showing the best fitting model of journey times (pair C–A)

the alteration in journey time was shown to be returning to its base level

throughout the duration of the survey with a statistical significance of 1%
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on the parameter. It is interesting to note that, as with the histogram data,

standard assumptions about cost-flow relations did not seem to be followed by

this data. No clear relationship between cost and flow could be observed.

Several sites showed a “return to normal” type effect in the data and

it seems that this data confirms the idea that initial transient responses to

an intervention are damped (both for route flow and for journey times) on

subsequent days. It was definitely of interest that the cost-flow relationship

did not appear to work as expected in this data. Indeed no clear relationship

between observed flows and travel times could be seen in the data set.

Matches between different days at the same site were performed to establish

the recurrence rate of the traffic as defined in Section 5.8.3. No significant effect

on the recurrence rate was shown due to the intervention on the network.

However, the recurrence rate was shown to be effected by the days elapsed

between the surveyed days, whether the surveyed days were in the same week

and whether the surveyed days were the same day of the week. The latter

effect was found to be particularly significant with the recurrence rate raised

by an estimated 4% for surveys which occurred on the same day of the week.

Recurrence rates were usually 50% or lower even given the most generous

measure and this fell off sharply with the passage of time. After two months

the recurrence rates on the Lendal Bridge survey were less than 20%. In the

short term (first three weeks) a decay in the recurrence rate of 0.5% per week

day was shown to be a good fit to the data.

Matching the data between multiple sites proved less successful. The high

variance in the estimates produced coupled with the small effects being sought

meant that the rerouting effects of the intervention could not be unequivocally

established. Further work is needed either to reduce the variance in the esti-

mates or to find some way to estimate it.

Overall, the data analysis revealed much of interest. No clear conclusions

could be drawn about rerouting but insights about the transient effects of a
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network intervention and about recurrence rates in surveys can be gained from

the data. It is clear that more remains to be discovered in this rich data set.



CHAPTER 6

Conclusions and Further Research

In five chapters this thesis has covered various problems in internet and

transport research with the unifying theme of statistical analysis of dynamic

networks. The first major research area studied was the study of long-range de-

pendence (LRD). A new model for generating streams of data exhibiting LRD

was introduced and proved theoretically to generate a time series exhibiting

LRD with a given mean and Hurst parameter. The model has is significant

in its simplicity both computationally and analytically. When compared with

other models, it is computationally simple and has only two parameters. The

measurements on the model showed good agreement with theory, however, the

intercept on the auto-correlation plot was incorrect. It could be that this is

due to a known bias in the standard estimator of ACF and this merits further

investigation.

It is hoped that the model will be a useful tool in studying the queuing

properties of systems since the tractability may enable progress to be made in

this area. Further research could continue in a number of directions. Firstly,

it would be interesting to study a two-sided version of this model which would

allow both ON and OFF periods to exhibit heavy tails. Initial investigation

of this has begun. Secondly, the model assumed that ON periods are heavy

tailed whereas the OFF periods are Poisson. The opposite assumption will

certainly have different effects on queuing. While the Hurst parameter and

mean of the traffic would remain unchanged it could well be that the queuing

performance would be totally different.

In chapters three, four and five, topics related to road networks were stud-

ied. In particular, the work centered around the equilibrium concepts reviewed

in chapter three. A data collection exercise was undertaken which is reported

250
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on in chapter five. In order to fully investigate this data set, the matching

framework in chapter four was developed. The matching framework in chap-

ter four has been shown (both theoretically and experimentally) to provide an

unbiased estimate of the true number of matches between a number of data

sets if certain probabilities are known correctly. Several improvements to this

method would be useful. While the estimator is unbiased, it can have high

variance. A lower variance estimator would help and failing this an estimate

of the variance would be useful. Research is actively continuing in this area.

Further, it has been emphasised throughout that the matching method here

is extremely general and not confined to licence plate data. Work is underway

to find new data sets where this method can be applied.

Finally, in chapter five, standard statistical analysis techniques were ap-

plied to a large body of licence plate data. While the analysis showed that the

uncertainties were too large to directly infer information about driver route

choice, a number of interesting results arose. There was direct statistical evi-

dence for an “effect” followed by a settling down period as a result of network

intervention. Furthermore, there was also evidence of the extremely fast fall

off of driver recurrence rates over a period of just a few weeks. Certainly,

more analysis could be done with this data and it is likely that more will be

discovered about this rich data set as more time is spent working with it.



APPENDIX A

Symbols, Functions and Notation Used in This Thesis

This chapter lists symbols and notation which are used throughout this

thesis. Occasionally, symbols are used differently in different contexts (for

example ∼ is used to mean asymptotic to in the context of functions but also

to denote an equivalence relation in the context of sets).

A.1. General Notation Used

The following notation is used throughout the thesis. If definitions are

given in the body of the thesis they are referred to here

.

• i — a positive unit imaginary number (i2 = −1).

• #(X) — the number of elements in the set or tuple X.

• µ — mean. See Definition 1.12.

• Ω — a sample space. See Definition 1.4.

• ∼ — equivalent to. See Definition 4.4. Note that this symbol is also

used in a different context (see the next section).

• -, %, ≺, �, ||, ≺≺, �� — preceeds, succeeds, strictly preceeds,

strictly succeeds, non-comparable, immediately preceeds, immediately

succeeds. These symbols are all defined for partial ordering in Defi-

nition 4.14.

• σ2 — variance. See Definition 1.13.

• σ — standard deviation. See Definition 1.13.

• B — the backshift operator. See Definition B.1.

• E [X] — the expectation value of a random variable X. See Definition

1.9.
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• i.i.d. — independent and identically distributed. Independent see

Defintion 1.8. Distribution function see Definitions 1.5 and 1.6.

• Mj — the mean return time of state j in a Markov chain. See Defi-

nition 2.10.

• P [X = x] — the probability that a random variable X has the value

x.

• πi — the equilibrium probability of a state i in a Markov chain. See

Defintion 2.11.

• S2 — the sample variance for a data set. See Definition 1.25

• var (X) — variance of a variable X. (The symbol σ2 is also used

depending on context). See Definition 1.13.

• X — the sample mean of a variable X. See equation (1.2).

A.2. Asymptotic Notation

The following definitions are those used in [71, page 7]. Suppose there

exists an integral variable n which tends to infinity and a real variable x which

tends to infinity, zero or some other limiting value (unless otherwise stated

these terms will be used with the assumption that x → ∞). Given either φ(n)

or φ(x) which is a positive function of n or x and a corresponding f(n) or f(x)

which is any other real-valued function of n or x then:

• f = O(φ) means that |f | < Aφ for some positive constant A and for

all values of n or x,

• f = o(φ) means that f/φ → 0,

• f ∼ φ means that f/φ → 1,

• f � φ means that Aφ < f < Bφ for some positive constants A and

B for all values of n or x.

In addition, the notion of a slowly varying function will sometimes be used.

A slowly varying function L(x) is one where, for any t ∈ R, then L(tx) ∼ L(x)

as x → ∞ (or, depending on circumstances, as x → 0 — this will be made

clear in context as the function is used).
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A.3. Euler’s Gamma Function

Euler’s Gamma function Γ(x) is a generalisation of the well-known factorial

n! from the domain of the natural numbers to the domain of the reals.

Γ(x) =

∫ ∞

0

e−ttx−1dt (A.1)

It is clear that Γ(1) = −e−∞ + e0 = 1 which, in turn, is equal to 1!.

Integrating Γ(x + 1) for x > 0 by parts gives

Γ(x + 1) =
[
−e−ttx

]∞
0

+ x

∫ ∞

0

e−ttx−1dt = xΓ(x)

Thus, given that Γ(1) = 1, for any n ∈ N then Γ(n + 1) = n!.



APPENDIX B

Basic Time Series Analysis

This appendix provides a quick introduction to a few basic time-series mod-

els: Auto-Regressive (AR), Moving Average (MA), Auto-Regressive Moving

Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA) and

some simple variants. These models all have in common the idea that they

are processes for generating the nth point in a time series given all previous

points.

The AR model is the simplest to state. An AR(1) model is given by

Xi = a1Xi−1 + εi, (B.1)

where a1 ∈ (−1, 1) and the sequence of εi are normally distributed independent

increments with zero mean and a constant variance σ2
ε . An AR(2) model is

the obvious extension of this.

Xi = a1Xi−1 + a2Xi−2 + εi,

with a1, a2 ∈ (−1, 1) and εi as before. The backshift operator is an important

notational convenience here.

Definition B.1. The backshift operator B operates on an element of a

time series and returns the previous element. For example B(Xn) = Xn−1 and

Bk(Xn) = Xn−k.

Using that notation gives

(1 − a1B − a2B
2)Xi = εi.

From this, the obvious generalisation is the AR(p) model.

(1 −
p∑

j=1

ajB
j)Xi = εi, (B.2)
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with aj ∈ (−1, 1).

An MA(1) model, by contrast is

Xi = εi − θ1εi−1,

where εi is as before and θ1 is a parameter of the model. The generalised

MA(q) model is, therefore, given by

Xi = (1 −
q∑

j=1

θjB
j)εi,

where the θj terms are parameters of the model.

The AR and MA models can be combined to form an ARMA(p, q) model.

(1 −
p∑

j=1

ajB
j)Xi = (1 −

q∑

j=1

θjB
j)εi.

The ARMA model can be differenced d times to form an ARIMA(p, d, q)

model.

(1 −
p∑

j=1

ajB
j)(1 − B)dXi = (1 −

q∑

j=1

θjB
j)εi, (B.3)

where d ∈ Z+.



APPENDIX C

Plots of Licence Plate Matches Between Sites

This appendix contains plots of matches between plates at sites. The

method and the plots are described in Section 5.5.
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Figure C.1. Matches between vehicles observed at Lendal
Bridge sites L and M on 28/6/00.
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Figure C.2. Matches between vehicles at Lendal Bridge site
M observed on 6/9/00 and 7/9/00.
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Figure C.3. Matches between vehicles at Lendal Bridge site
M observed on 28/6/00 and 18/10/00.
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Figure C.4. Matches between vehicles at Lendal Bridge sites
I and J on 28/6/00.
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Figure C.5. Matches between vehicles at Lendal Bridge sites
I and J on 28/6/00 showing time difference.
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Figure C.6. Matches between vehicles at Lendal Bridge sites
I and J on 28/6/00 showing time difference. (Detail of previous
figure).
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Figure C.7. Matches between vehicles at Lendal Bridge sites I
and J on 8/9/00 showing time difference. (Last day before bridge
closure).
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Figure C.8. Matches between vehicles at Lendal Bridge sites
I and J on 11/9/00 showing time difference. (First day after
bridge closure).
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Figure C.9. Matches between vehicles at Fishergate sites E
and A on 25/6/01.
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Figure C.10. Matches between vehicles at Fishergate sites E
and A on 26/6/01.
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Figure C.11. Matches between vehicles at Fishergate sites E
and A on 27/6/01.
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Figure C.12. Matches between vehicles at Fishergate sites E
and A on 28/6/01.
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Figure C.13. Matches between vehicles at Fishergate sites E
and A on 29/6/01.
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Figure C.14. Matches between vehicles at Fishergate sites E
and A on 2/7/01.

-10

-5

 0

 5

 10

 15

 20

 25

 30

 460  470  480  490  500  510  520  530  540  550  560

T
im

e 
D

if
fe

re
nc

e 
(m

in
ut

es
)

Minutes past midnight

Figure C.15. Matches between vehicles at Fishergate sites E
and A on 3/7/01. (First day of partial closure.)
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Figure C.16. Matches between vehicles at Fishergate sites E
and A on 4/7/01.
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Figure C.17. Matches between vehicles at Fishergate sites E
and A on 5/7/01.
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Figure C.18. Matches between vehicles at Fishergate sites E
and A on 12/7/01.



APPENDIX D

Histograms of Travel Times

This chapter contains historgrams of travel time data for the Lendal Bridge

and Fishergate surveys. Refer to Section 5.7.1 for details and analysis.

Figure D.1. Lendal Bridge survey arrival times at site A 8/9/00
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Figure D.2. Lendal Bridge survey arrival times at site B 8/9/00

Figure D.3. Lendal Bridge survey arrival times at site C 8/9/00
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Figure D.4. Lendal Bridge survey arrival times at site D 8/9/00

Figure D.5. Lendal Bridge survey arrival times at site E 8/9/00
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Figure D.6. Lendal Bridge survey arrival times at site F 8/9/00

Figure D.7. Lendal Bridge survey arrival times at site G 8/9/00
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Figure D.8. Lendal Bridge survey arrival times at site H 8/9/00

Figure D.9. Lendal Bridge survey arrival times at site I 8/9/00
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Figure D.10. Lendal Bridge survey arrival times at site J 8/9/00

Figure D.11. Lendal Bridge survey arrival times at site K 8/9/00



D. HISTOGRAMS OF TRAVEL TIMES 273

Figure D.12. Lendal Bridge survey arrival times at site L 8/9/00

Figure D.13. Lendal Bridge survey arrival times at site M 8/9/00
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Figure D.14. Lendal Bridge survey arrival times at site F 7/9/00

Figure D.15. Lendal Bridge survey arrival times at site F 11/9/00
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Figure D.16. Lendal Bridge survey arrival times at site F 13/9/00

Figure D.17. Lendal Bridge survey arrival times at site F 27/9/00
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Figure D.18. Lendal Bridge survey arrival times at site F 18/10/00

Figure D.19. Fishergate survey arrival times at site A 2/7/01.
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Figure D.20. Fishergate survey arrival times at site B 2/7/01.

Figure D.21. Fishergate survey arrival times at site C 2/7/01.
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Figure D.22. Fishergate survey arrival times at site D 2/7/01.

Figure D.23. Fishergate survey arrival times at site E 2/7/01.



D. HISTOGRAMS OF TRAVEL TIMES 279

Figure D.24. Fishergate survey arrival times at site F 2/7/01.

Figure D.25. Fishergate survey arrival times at site G 2/7/01.
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Figure D.26. Fishergate survey arrival times at site H 2/7/01.

Figure D.27. Fishergate survey arrival times at site I 2/7/01.
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Figure D.28. Fishergate survey arrival times at site J 2/7/01.

Figure D.29. Fishergate survey arrival times at site K 2/7/01.
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Figure D.30. Fishergate survey arrival times at site A 28/6/01.

Figure D.31. Fishergate survey arrival times at site A 29/6/01.
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Figure D.32. Fishergate survey arrival times at site A 3/7/01.

Figure D.33. Fishergate survey arrival times at site A 4/7/01.
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Figure D.34. Fishergate survey arrival times at site A 16/7/01.

Figure D.35. Fishergate survey arrival times at site D 27/6/01.
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Figure D.36. Fishergate survey arrival times at site D 28/6/01.

Figure D.37. Fishergate survey arrival times at site D 3/7/01.
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Figure D.38. Fishergate survey arrival times at site D 4/7/01.

Figure D.39. Fishergate survey arrival times at site D 16/7/01.



APPENDIX E

Source Code For Licence Plate Matching

The following source code is used to execute the matching algorithm de-

scribed in Chapter 4.

Header files:

• match.h

• combine.h

• evaluate.h

• hoursmins.h

• matchdraw.h

• parsestring.h

• poly.h

• readplates.h

Source code:

• match.cpp

• combine.cpp

• evaluate.cpp

• hoursmins.cpp

• matchdraw.cpp

• matchimpl.cpp

• parsestring.cpp

• poly.cpp

• readplates.cpp
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E.1. match.h

#ifndef MATCH_H

#define MATCH_H

#include <vector>

#include <iostream>

using namespace std;

// Class for types of match and transversal of all types

// Definitions for matchClass and matchTrans

// Implementations are in matchimpl.cpp

// Template based implementations are in this header (necessary

// as of gcc 2.95 and earlier)

class matchClass

{ // See papers on the subject for full description

// Class represents a type of match

public:

matchClass ():n (0), x (0), height (0)

{

}

// Default constructor - empty - no sites

matchClass (int width):n (width), x (width, 1), height (1)

{

}

// Constructor of (1, 1, .... 1) True match for "n" sites

matchClass (const matchClass & match, int add);

// Add one onto existing class

bool isValid (void); // Check if this is a valid match class

bool lexLT (const matchClass &) const; // Lexicographical less than.

const int getWidth () const

{

return n;

}

const int getHeight () const

{

return height;

}

const int getElement (const int j) const

{

return x[j];

}

private:

int n; // Number of elements in this match

vector < int >x; // Parts of our match

int height; // Height of match (no of distinct elements)

int calcHeight (void); // Calculate height of matching class

friend ostream & operator << (ostream & os,

const matchClass & right);
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friend bool operator == (const matchClass & left,

const matchClass & right);

friend bool operator != (const matchClass & left,

const matchClass & right)

{

return !(left == right);

}

friend bool operator > (const matchClass & left,

const matchClass & right);

friend bool operator < (const matchClass & left,

const matchClass & right);

};

template < class T > class matchTrans

{

// Transversal of all possible matches for n sites

public:

matchTrans (int n);

// Construct the n’th transversal

matchTrans (int n, int classes, vector < T > xnew):sites (n),

noClasses (classes), x (xnew)

{

};

T & getElement (int i) // Return i’th element

{

return (x[i]);

}

static int Stirling (int n, int k); // Stirling no S(n,k)

static int calcClasses (int n); // No of classes in n’th transversal

int getSites () const

{

return sites;

}

int getNoClasses () const

{

return noClasses;

}

matchTrans nextMatch (); // Return the next transveral up

int countHeight (int h); // Return the number of transversal

// Elements with height h

void drawTrans (bool swapAxes = false, int xWid = 140, int yWid = 180); // Draw a transversal

// Including arrows - using psfig. Only defined for

// matchDraw type transversals.

private:

int sites; // Number of sites for this transversal

int noClasses; // Number of matching classes in transversal

vector < T > x; // Classes in transversal

template < class C > friend ostream & operator <<

(ostream & os, matchTrans < C > right);

};
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template < class T > matchTrans < T >::matchTrans (int n)

{

if (n < 1)

{

noClasses = 0;

sites = 0;

x = vector < T > (0);

return;

}

if (n == 1)

{

noClasses = 1;

sites = 1;

x = vector < T > (1, 1); // Set up a vector with 1 match

return; // The (1) Class

}

matchTrans Mprev = matchTrans < T > (n - 1);

// This duplicates code in nextMatch - horrible (but seemingly

// unavoidable in C++)

sites = n;

noClasses = calcClasses (n);

x = vector < T > (noClasses);

int k = 0;

for (int i = 0; i < Mprev.getNoClasses (); i++)

{

T z = Mprev.getElement (i);

for (int j = 1; j <= z.getHeight () + 1; j++)

{

x[k] = T (z, j);

k++;

}

}

}

template < class T > matchTrans < T > matchTrans < T >::nextMatch ()

{

int newnoSites = getSites () + 1;

int newnoClasses = calcClasses (newnoSites);

vector < T > newx (newnoClasses, 0);

int k = 0;

for (int i = 0; i < getNoClasses (); i++)

{

T z = getElement (i);

for (int j = 1; j <= z.getHeight () + 1; j++)

{

newx[k] = T (z, j);

k++;

}
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}

return matchTrans < T > (newnoSites, newnoClasses, newx);

}

template < class T > int matchTrans < T >::calcClasses (int n)

// Count the number of classes in a particular type of match

// Currently done with Stirling nos - replace when I find a

// more efficient method

{

int classCount = 0;

for (int k = 1; k <= n; k++)

{

classCount += Stirling (n, k);

}

return classCount;

}

template < class T > int matchTrans < T >::Stirling (int n, int k)

{

if (k <= 1 || k >= n)

return 1;

if (n <= 1)

return 1;

return (Stirling (n - 1, k - 1) + k * Stirling (n - 1, k));

}

template < class T > ostream & operator << (ostream & os,

matchTrans < T > right)

// Output for match class

{

for (int i = 0; i < right.noClasses; i++)

{

cout << right.x[i] << endl;

}

return os;

}

#endif
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E.2. combine.h

#ifndef _COMBINE_H

#define _COMBINE_H

#include "readplates.h"

#include "match.h"

#include <vector>

#include <string>

#include <map>

// Class for manipulating combinations of platelists

// implementations are in combine.cpp

namespace licencePlates

{

class allMatches

{ // Get all matches for a particular plate in a list

public:

void addMatch (const int &j)

{

matches.push_back (j);

}

const int noMatches () const

{

return matches.size ();

}

const int getElement (int i) const

{

return matches[i];

}

private:

vector < int >matches;

};

class matchList

{ // Represents matches between two lists

public:

matchList ():noMatches (0), matches (0)

{

}

// Construct a list of matches from two plate lists

matchList (const plateList & list1, const plateList & list2);

void addMatch (const int &i, const int &j)

{

matches[i].addMatch (j);

noMatches++;

}

const int getNoMatchesAt (const int &i) const

{

return (matches[i].noMatches ());

}

const int getMatchAt (const int &i, const int &j) const
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{

return (matches[i].getElement (j));

}

const allMatches & getElement (const int &i) const

{

return matches[i];

}

const int getNoMatches () const

{

return noMatches;

}

const int getSize () const

{

return matches.size ();

}

private:

int noMatches;

vector < allMatches > matches;

};

class lexLT // Lexicographical less than functor for matchClass

{

public:

bool operator () (const matchClass & lhs,

const matchClass & rhs) const

{

return lhs.lexLT (rhs);

};

};

class combinePlates

{ // Represents all possible matches in a class

public:

void addList (const plateList & newList)

{

lists.push_back (newList);

}

void addFile (string fileName);

plateList & getElement (int i)

{

return lists[i];

}

const matchList & getComboElement (const int i, const int j) const

{

return combos[which_match (i, j)];

}

const matchList & getMatches (int i, int j) const

{

return combos[which_match (i, j)];

}

// Number of Observations at site n
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int noObs (int n)

{

return lists[n].size ();

}

int noLists ()

{

return lists.size ();

}

double cartesianProd (vector < int >&whichSites) const;

void makeMatches (); // Make all matches for this list

int countMatchAll (); // Count matches across all lists

int countMatch (vector < int >&sites);

// Count matches across sites on this list of sites.

private:

vector < plateList > lists;

vector < matchList > combos;

map < matchClass, int, lexLT > noRelaxedMatches;

map < vector < int >, int >noSetMatches;

const int which_match (int i, int j) const

{

return lists.size () * i + j;

}

};

} // end of namespace licencePlates

#endif
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E.3. evaluate.h

#ifndef _EVALUATE_H

#define _EVALUATE_H

#include "match.h"

#include "poly.h"

#include "combine.h"

#include <vector>

#include <map>

double evaluate (licencePlates::combinePlates & obsList);

double evaluateSites (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites);

double matchProb (int n);

#endif
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E.4. hoursmins.h

#ifndef _HOURS_MINS_H

#define _HOURS_MINS_H

#include <iostream>

#include <string>

#include <sstream>

#include "parsestring.h"

// Class to represent times in hours and minutes

namespace hoursMins

{

class timeError

{

public:

timeError (const string & error):err (error)

{

}

const string & getError ()

{

return err;

}

private:

string err;

};

class basicTime

{

public:

basicTime (int initHrs = 0, int initMins =

0):hrs (initHrs), mins (initMins)

{

}

basicTime (const string & str);

int timeDiff (const basicTime & t2);

const int getHrs () const

{

return hrs;

}

const int getMins () const

{

return mins;

}

const string getTimeStr () const;

private:

int hrs;

int mins;

friend ostream & operator << (ostream & os,

const basicTime & tm);

};
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} // end of namespace hoursMins

#endif
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E.5. matchdraw.h

#ifndef MATCHDRAW_H

#define MATCHDRAW_H

#include "match.h"

#include <vector>

// Class for matching classes which are to be drawn

// Implementation of functions is in matchdraw.cpp

class matchDraw

{

public:

matchDraw ():x (0), y (0), match ()

{

};

matchDraw (int n):x (0), y (0), match (n), nodeId (nodeIdCount++)

{

}

matchDraw (matchDraw & currMatch, int add):x (currMatch.getX ()),

y (currMatch.getY ()), match (currMatch.getMatch (), add),

nodeId (nodeIdCount++)

{

}

void setXY (int x1, int y1)

{

x = x1;

y = y1;

}

bool swapedAxes () const

{

return swapAxes;

}

int getX () const

{

return x;

}

int getY () const

{

return y;

}

int getId () const

{

return nodeId;

}

const int getWidth () const

{

return match.getWidth ();

}

const int getHeight () const

{

return match.getHeight ();
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}

const int getElement (int i) const

{

return match.getElement (i);

}

const matchClass & getMatch () const

{

return match;

}

private:

int x, y; // Co-ords when drawn

matchClass match; // Details of match type

static bool swapAxes; // Swap axes when printing

int nodeId; // Unique node identifier

static int nodeIdCount; // Node Identifier counter

friend ostream & operator << (ostream & os, matchDraw & right);

friend void setAxisRotation (bool swap)

{

swapAxes = swap;

}

friend bool operator == (const matchDraw & left,

const matchDraw & right);

friend bool operator > (const matchDraw & left,

const matchDraw & right);

friend bool operator < (const matchDraw & left,

const matchDraw & right);

};

#endif
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E.6. parsestring.h

#ifndef _PARSESTRING_H

#define _PARSESTRING_H

#include <string>

#include <vector>

using namespace std;

namespace parseString

{

class stringTokeniser

{

// Sort of like the Java version - give it a string and a split thingy

public:

stringTokeniser (const string & input, const string & split =

" \t\n\r");

const int getNoTokens () const

{

return tokens.size ();

}

const string & getElement (int i) const

{

return tokens[i];

}

const int getPos (int i) const

{

return strpos[i];

}

private:

vector < string > tokens;

vector < int >strpos;

};

} // End of namespace parseString

#endif
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E.7. poly.h

#ifndef _POLY_H

#define _POLY_H

#include <vector>

#include "match.h"

#include "combine.h"

class polynomial; //forward declaration - class declaration later in file

class polyElement

{

public:

virtual ~ polyElement ()

{

};

virtual void putTo (ostream & os) const;

virtual bool isExpansible () = 0;

virtual vector < polyElement * >getExpansion (matchTrans <

matchClass > &Mn,

vector <

polyElement * >elems)

{

vector < polyElement * >pv (0);

return pv;

}

int getFactor () const

{

return mult;

}

void addFactor (int f)

{

mult += f;

}

void setFactor (int f)

{

mult = f;

}

int getNoSites () const

{

return noSites;

}

int getProb () const

{

return prob;

}

virtual bool equals (polyElement * pe)

{

return false;

}

virtual double lhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const = 0;
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virtual double rhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const = 0;

protected:

int prob; // Probability multiplier

int noSites; // Number of sites in match

int mult; // Multiplier

bool polyAddTo (vector < polyElement * >elems, polyElement * match);

private:

friend ostream & operator << (ostream & os, const polyElement & pe);

};

// This match is a true match on censored data - observable

// X(M(T),C(S))

class matchTrue:public polyElement

{

public:

matchTrue (int n, int p = 1, int fact = 1)

{

noSites = n;

prob = p;

mult = fact;

}

~matchTrue ()

{

}

bool isExpansible ()

{

return false;

}

void putTo (ostream & os) const;

bool equals (polyElement * pe);

double lhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const;

double rhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const;

private:

friend ostream & operator << (ostream & os, const matchTrue & pe);

};

// This match is an exact match of a particular type

// It expands into real matches of all lower types

class exactMatch:public polyElement

{

public:
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exactMatch (int n, matchClass & match, int p = 1, int fact =

1):mc (match)

{

noSites = n;

prob = p;

mult = fact;

}

~exactMatch ()

{

}

bool isExpansible ()

{

return true;

}

vector < polyElement * >getExpansion (matchTrans < matchClass > &Mn,

vector <

polyElement * >elems);

void putTo (ostream & os) const;

bool equals (polyElement * pe);

matchClass & getMatchClass ()

{

return mc;

}

double lhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const

{

cout << "ERROR! This should never be called!\n";

return 0;

}

double rhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const

{

cout << "ERROR! This should never be called!\n";

return 0;

}

private:

matchClass mc;

friend ostream & operator << (ostream & os, const exactMatch & pe);

};

class matchByParts:public polyElement

{

public:

matchByParts (int n, matchClass & match, int p = 1,

int fact = 1):mc (match)

{

noSites = n;

prob = p;
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mult = fact;

}

~matchByParts ()

{

}

bool isExpansible ()

{

return false;

}

void putTo (ostream & os) const;

bool equals (polyElement * pe);

matchClass & getMatchClass ()

{

return mc;

}

double lhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const;

double rhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const;

private:

matchClass mc;

friend ostream & operator << (ostream & os,

const matchByParts & pe);

};

class polynomial

{

public:

polynomial ():elements (0), noSites (0), Mn (1)

{

};

polynomial (int n);

~polynomial ();

void putTo (ostream & os) const;

int getNoSites () const

{

return noSites;

}

int length () const

{

return elements.size ();

}

int noTrans () const

{

return Mn.getNoClasses ();

}
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const polyElement *getElement (int i) const

{

return elements[i];

}

private:

vector < polyElement * >elements;

int noSites;

matchTrans < matchClass > Mn;

polynomial (const polynomial &);

const polynomial & operator= (const polynomial &);

void expandPoly (); // Expand terms of polynomial

void gatherPoly (); // Gather like terms

void deleteElement (polyElement * e);

void gatherElement (polyElement * e);

friend ostream & operator << (ostream & os, const polynomial & p);

};

#endif
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E.8. readplates.h

#ifndef _READPLATES_H

#define _READPLATES_H

#include <iostream>

#include <string>

#include <vector>

#include <ctime>

//#include <strstream>

#include <sstream>

#include "hoursmins.h"

// Implementations of functions are found in readplates.cpp

namespace licencePlates

{

class plateReadError

{

public:

plateReadError (const string & err, int line =

noLineNo):errName (err), lineNo (line)

{

}

const string & getError () const

{

return errName;

}

const int getLineNo () const

{

return lineNo;

}

const bool validLineNo () const

{

return (lineNo != noLineNo);

}

private:

static const int noLineNo = -1;

string errName;

int lineNo;

friend ostream & operator << (ostream & os,

const plateReadError & err);

};

class plate

{ // Class for a single licence plate observation

public:

//plate(): reg(0), myTime(0), comment(0) {}

plate (string const &raw); // Construct a plate from a string

const string & getReg () const

{

return reg;
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}

const string & getComment () const

{

return comment;

}

const int getHrs () const

{

return myTime.getHrs ();

}

const int getMins () const

{

return myTime.getMins ();

}

const string getTimeStr () const

{

return myTime.getTimeStr ();

}

private:

string reg; // Registration part

hoursMins::basicTime myTime;

string comment; // Extra notes on this plate (if any)

friend ostream & operator << (ostream & os,

const plate & thisPlate);

friend bool operator == (const plate & left,

const plate & right);

};

class plateList

{ // List of information from licence plates

public:

plateList ():noVehicles (0)

{

}

plateList (string const &fname); // Construct a list from a file

static const int maxLineLen = 1000;

static const int lineTypeInfo = 1;

static const int lineTypeComment = 2;

static const int lineTypeData = 3;

const string & getName () const

{

return name;

}

const int getNoVehicles () const

{

return noVehicles;

}

const int size () const

{

return list.size ();

}

plate & getElement (int &i)
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{

return list[i];

}

const plate & getElement (int i) const

{

return list[i];

}

void clearList ()

{

list.clear ();

}

private: // Data first

vector < plate > list; // All vehicle plates

int noVehicles; // No. of vehicles (from #INFO line)

string name; // Name of list used

// Private functions

void tidyup (); // Deal with a failed constructor

static int parseInfoLine (string); // Parse a #INFO line

static int typeOfLine (string); // Parses a data line to determine type

friend ostream & operator << (ostream & os,

const plateList & plates);

};

} //End of licenceplate namespace

#endif
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E.9. match.cpp

#include "match.h"

#include "matchdraw.h"

#include "readplates.h"

#include "hoursmins.h"

#include "combine.h"

#include "poly.h"

#include "evaluate.h"

#include <iostream>

using namespace licencePlates;

int

main (int argc, char **argv)

{

combinePlates combos;

if (argc < 2)

{

cout << "Usage match [files]" << endl;

return -1;

}

try

{

for (int i = 1; i < argc; i++)

{

combos.addFile (argv[i]);

}

}

catch (plateReadError e1)

{

cerr << e1;

return -1;

}

//cerr << "Making matches" << endl;

combos.makeMatches ();

cout << combos.countMatchAll () << " ";

//cout << "Counted " << combos.countMatchAll() << " Matches " << endl;

//cout << combos.getElement(2);

//cout << list << endl;

//polynomial poly(5);

//cout << poly << endl;

cout << evaluate (combos) << endl;

return 0;

}
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E.10. combine.cpp

#include "combine.h"

// Implementations from class combine

namespace licencePlates

{

void combinePlates::addFile (string fileName)

{

plateList list;

try

{

plateList tmpList (fileName);

list = tmpList;

}

catch (plateReadError e1)

{

throw (e1);

}

addList (list);

}

double combinePlates::cartesianProd (vector < int >&whichSites) const

{

double product = 1.0;

//cout << "Cart prod" << endl;

for (unsigned int i = 0; i < whichSites.size (); i++)

{

product *= lists[whichSites[i]].size ();

//cout << lists[whichSites[i]].size() << endl;

}

//cout << product << endl;

return product;

}

void combinePlates::makeMatches ()

// make all matches for a set of lists

{

int noLists = lists.size ();

combos = vector < matchList > (noLists * noLists);

for (int i = 0; i < noLists; i++)

{

for (int j = i + 1; j < noLists; j++)

{

//cout << "Matching " << i << " and " << j << endl;

matchList newList (lists[i], lists[j]);

combos[which_match (i, j)] = newList;

//cout << "Match " << i << " " << j << " " <<

// combos[which_match(i,j)].getNoMatches() << endl;

}

}
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}

int combinePlates::countMatchAll ()

// Count the matches across all lists in the set

{

vector < int >list (noLists ());

for (int i = 0; i < noLists (); i++)

list[i] = i;

return countMatch (list);

}

int combinePlates::countMatch (vector < int >&sites)

// Count the number of matches across the sites listed in the vector

{

map < vector < int >, int >::iterator findPlate;

findPlate = noSetMatches.find (sites);

if (findPlate != noSetMatches.end ())

{

//cout << "Matches for ";

//for (unsigned int i= 0; i < sites.size(); i++) {

// cout << sites[i] << " ";

//}

//cout << noSetMatches[sites] << endl;

return noSetMatches[sites];

}

int count = 0;

int noSites = sites.size ();

if (noSites < 2)

{

cerr << "Problem in countMatch" << endl;

return 0;

}

vector < const matchList *>matches (noSites - 1);

for (int i = 0; i < noSites - 1; i++)

{

matches[i] = &getComboElement (sites[i], sites[i + 1]);

} //matches[i] is the list of all matches between the i’th and the

// i+1 th site

vector < int >level (noSites - 1, 0);

vector < int >part (noSites - 1, 0);

int depth = 0; // Depth at which we are travesing the match tree

//Insanely complex traverse of web of matches --- efficient

// More so than nicer recursive code would be

for (int i = 0; i < matches[0]->getSize (); i++)

{

if (matches[0]->getNoMatchesAt (i) == 0)

continue;

level[0] = i;

part[0] = 0;

depth = 0;
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while (1)

{

if (depth == noSites - 2)

{

count +=

matches[depth]->

getNoMatchesAt (level[depth]);

level[depth] = 0;

part[depth] = 0;

depth--;

if (depth < 0)

break;

continue;

}

if (matches[depth]->getNoMatchesAt (level[depth])

> part[depth])

{

level[depth + 1] = matches[depth]->getMatchAt

(level[depth], part[depth]);

part[depth + 1] = 0;

part[depth]++;

depth++;

continue;

}

part[depth] = 0;

level[depth] = 0;

depth--;

if (depth < 0)

break;

}

}

noSetMatches[sites] = count;

return count;

}

matchList::matchList (const plateList & list1,

const plateList & list2)

// Find all the matches between list one and list two

{

noMatches = 0;

//cout << "Matching" << endl;

matches = vector < allMatches > (list1.size ());

for (int i = 0; i < list1.size (); i++)

{

for (int j = 0; j < list2.size (); j++)

{

if (list1.getElement (i) == list2.getElement (j))

{

addMatch (i, j);

//cout << "Plate " << list1.getElement(i)

// << " matches " << list2.getElement(j) << endl;
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}

}

}

//cout << list1.getName() << " + " << list2.getName () << " " <<

// noMatches << endl;

}

} // end of namespace
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E.11. evaluate.cpp

#include "evaluate.h"

#include <math.h>

using namespace licencePlates;

double

evaluate (combinePlates & obslist)

// Evaluate matches on this list

{

vector < polynomial * >plist (obslist.noLists ());

vector < int >whichSites (obslist.noLists ());

//cerr << "Generating equations" << endl;

for (int i = 0; i < obslist.noLists (); i++)

{

plist[i] = new polynomial (i + 1);

whichSites[i] = i;

}

//cout << (*plist[obslist.noLists()-1]) << endl;

//cerr << "Generating matches" << endl;

double count = evaluateSites (plist, obslist, whichSites);

for (int i = 0; i < obslist.noLists (); i++)

{

delete (plist[i]);

}

return count;

}

double

evaluateSites (vector < polynomial * >&plist,

combinePlates & obslist, vector < int >&whichSites)

{

double lhsCount = 1;

double rhsCount = 0;

int noSites = whichSites.size ();

if (noSites < 1)

{

cerr << "Problem in evaluateSites" << endl;

return 0;

}

if (noSites == 1)

{

double noObs = obslist.noObs (whichSites[0]);

return noObs;

}

for (int i = 0; i < plist[noSites - 1]->length (); i++)

{
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const polyElement *pe;

pe = plist[noSites - 1]->getElement (i);

//pe->putTo(cout);

//cout << endl;

double lhsAdd = pe->lhsEvaluate (plist, obslist, whichSites);

lhsCount -= lhsAdd;

//cout << "lhs count " << lhsAdd << endl;

double rhsAdd = pe->rhsEvaluate (plist, obslist, whichSites);

rhsCount += rhsAdd;

//cout << "rhs count " << rhsAdd << endl;

}

//cout << "rhs " << rhsCount << " lhs " << lhsCount << endl;

//cout << "Sites: ";

// for (int i= 0; i < noSites; i++) {

//cout << whichSites[i] << " ";

//}

//cout << rhsCount/lhsCount << endl;

return rhsCount / lhsCount;

}

double

matchProb (int n)

// Function to calculate p(n)

{

if (n <= 1)

return 1;

return pow (0.0001, (n - 1));

}
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E.12. hoursmins.cpp

#include "hoursmins.h"

#include "parsestring.h"

using namespace std;

namespace hoursMins

{

basicTime::basicTime (const string & str)

{

parseString::stringTokeniser strtok (str, ": \n\r\t");

if (strtok.getNoTokens () != 2)

throw timeError ("Unable to parse time " + str);

string hourstr = strtok.getElement (0);

string minstr = strtok.getElement (1);

hrs = atoi (hourstr.c_str ());

mins = atoi (minstr.c_str ());

}

const string basicTime::getTimeStr () const

// Return time as a string

{

std::ostringstream ost;

ost.width (2);

ost.fill (’0’);

ost << hrs << ":";

ost.width (2);

ost.fill (’0’);

ost << mins << std::ends;

string timestr = ost.str ();

return timestr;

}

ostream & operator << (ostream & os, const basicTime & tm)

{

string out = tm.getTimeStr ();

os << out;

return os;

}

} // end of namespace hoursMins
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E.13. matchdraw.cpp

#include <iostream>

#include "matchdraw.h"

bool

matchDraw::swapAxes =

false;

int

matchDraw::nodeIdCount =

1;

ostream & operator << (ostream & os, matchDraw & right)

// Output for match class

{

os << "\\rput";

if (right.swapedAxes ())

os << "{90}";

os << "(" << right.getX () << "," << right.getY () << ")";

os << "{\\Rnode{N" << right.getId () << "}{(";

for (int i = 0; i < right.getWidth (); i++)

{

os << right.getElement (i);

if (i != right.getWidth () - 1)

os << ",";

}

os << ")}}";

return os;

}

bool

operator == (const matchDraw & left, const matchDraw & right)

{

return (left.getMatch () == right.getMatch ());

}

bool

operator < (const matchDraw & left, const matchDraw & right)

{

return (left.getMatch () < right.getMatch ());

}

bool

operator > (const matchDraw & left, const matchDraw & right)

{

return (left.getMatch () > right.getMatch ());

}



E.14. MATCHIMPL.CPP 318

E.14. matchimpl.cpp

#include <iostream>

#include "match.h"

#include "matchdraw.h"

bool

matchClass::isValid (void)

// Checks if this meets criterion for matching classes

{

int h = 1;

if (n == 0)

return true;

if (x[0] != 1)

return false;

for (int i = 1; i < n; i++)

{

if (x[i] < 1 || x[i] > h + 1)

return false;

if (x[i] > h)

h++;

}

return true;

}

bool

matchClass::lexLT (const matchClass & rhs) const

{

int rWidth = rhs.getWidth ();

int lWidth = getWidth ();

for (int i = 0; i < rWidth; i++)

{

if (i == lWidth)

return true;

if (getElement (i) < rhs.getElement (i))

return true;

if (getElement (i) > rhs.getElement (i))

return false;

}

return false;

}

matchClass::matchClass (const matchClass & match, int add)

// Add one element on the end of a match class vector

{

n = match.getWidth () + 1;

x = vector < int >(n, 1);

for (int i = 0; i < n - 1; i++)

x[i] = match.getElement (i);

x[n - 1] = add;

height = calcHeight ();
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}

int

matchClass::calcHeight (void)

{

int h = 1;

for (int i = 0; i < n; i++)

{

if (x[i] > h)

h = x[i];

}

return h;

}

ostream & operator << (ostream & os, const matchClass & right)

// Output for match class

{

cout << "(";

for (int i = 0; i < right.n; i++)

{

cout << right.x[i];

if (i != right.n - 1)

cout << ",";

}

cout << ")";

return os;

}

bool

operator == (const matchClass & left, const matchClass & right)

{

int w;

if ((w = left.getWidth ()) != right.getWidth ())

{

//cout << left << "!=" << right << endl;

return false;

}

for (int i = 0; i < w; i++)

{

if (left.getElement (i) != right.getElement (i))

{

//cout << left << "!=" << right << endl;

return false;

}

}

// cout << left << "==" << right << endl;

return true;

}

bool
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operator > (const matchClass & left, const matchClass & right)

{

int w;

if ((w = left.getWidth ()) != right.getWidth ())

return false;

if (left == right)

return false;

for (int i = 0; i < w; i++)

{

for (int j = 0; j < w; j++)

{

if (i == j)

continue;

if (left.getElement (i) == left.getElement (j) &&

right.getElement (i) != right.getElement (j))

return false;

}

}

return true;

}

bool

operator < (const matchClass & left, const matchClass & right)

{

return (right > left);

}

template <> void matchTrans < matchDraw >::drawTrans

(bool swap, int xWid, int yWid)

// Draw out the Transversal including arrows.

{

double redval = 0;

double blueval = 0;

double greenval = 0;

setAxisRotation (swap);

cout << "\\documentclass{article}" << endl;

cout << "\\usepackage{epsfig}" << endl;

cout << "\\usepackage{pstricks}" << endl;

cout << "\\usepackage{pst-node}" << endl;

cout << "\\begin{document}" << endl;

cout << "%Latex Figure created by matching program" << endl;

cout << "\\begin{figure}" << endl;

cout << "\\begin{center}" << endl;

cout << "\\unitlength=1mm" << endl;

cout << "\\psset{unit=1mm}" << endl;

cout << "\\psset{linewidth=0.5pt}" << endl;

if (swap)

{

cout << "\\psset{swapaxes=true}" << endl;
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cout << "\\begin{picture}(" << yWid << "," << xWid << ")" <<

endl;

}

else

{

cout << "\\begin{picture}(" << xWid << "," << yWid << ")" <<

endl;

}

for (int i = sites; i > 0; i--)

{

int no = countHeight (i);

int xMult = 1;

for (int j = 0; j < noClasses; j++)

{

if (x[j].getHeight () != i)

continue;

x[j].setXY ((xMult) * xWid / (no + 1),

(sites - i) * yWid / (sites - 1));

xMult++;

}

}

for (int i = 0; i < noClasses; i++)

{

cout << x[i] << endl;

}

cout.precision (2);

cout.setf (ios::fixed, ios::floatfield);

for (int i = 0; i < noClasses; i++)

{

redval += 1.0;

if (redval > 1.0)

{

redval = 0.0;

greenval += 1.0;

if (greenval > 1.0)

{

greenval = 0.0;

blueval += 1.0;

if (blueval > 1.0)

{

blueval = 0.0;

}

}

}

if (blueval == 1.0 && redval == 1.0 && greenval == 1.0)

{

blueval = 0.0;

redval = 0.0;

greenval = 0.0;

}

//cerr << "RGB: " << redval << " " << greenval << " " << blueval

// << endl;
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for (int j = 0; j < noClasses; j++)

{

if (j == i)

continue;

if (x[i].getHeight () == x[j].getHeight () + 1

&& x[i] > x[j])

{

cout << "\\newrgbcolor{tmpcolor}{" <<

redval << " " << greenval << " " <<

blueval << "}" << endl;

cout << "\\psset{linecolor=tmpcolor}" << endl;

cout << "\\ncdiag[arm= 5pt, angleA=";

if (swap == true)

cout << "90";

else

cout << "0";

cout << ", angleB=";

if (swap == true)

cout << "270";

else

cout << "180";

cout << "]{->}{N" << x[i].getId ()

<< "}{N" << x[j].getId () << "}" << endl;

}

}

}

cout << "\\psset{linecolor=black}" << endl;

cout << "\\end{picture}" << endl;

cout << "\\end{center}" << endl;

cout << "\\end{figure}" << endl;

cout << "\\end{document}" << endl;

}

template < class T > int matchTrans < T >::countHeight (int h)

{

int no = 0;

for (int i = 0; i < noClasses; i++)

{

if (x[i].getHeight () == h)

no++;

}

return no;

}
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E.15. parsestring.cpp

#include "parsestring.h"

namespace parseString

{

stringTokeniser::stringTokeniser (const string & input,

const string & split)

{

string tmp = "";

bool intoken = false;

int startpos = 0;

for (unsigned int i = 0; i < input.size (); i++)

{

unsigned int j;

for (j = 0; j < split.size (); j++)

{

if (input[i] == split[j])

{

if (intoken == true)

{

intoken = false;

if (tmp.size () > 0)

{

tokens.push_back (tmp);

strpos.push_back (startpos);

}

tmp = "";

}

break;

}

}

if (j == split.size ())

{

if (intoken == false)

startpos = i;

intoken = true;

tmp += input[i];

}

}

if (tmp.size () > 0)

{

tokens.push_back (tmp);

strpos.push_back (startpos);

}

}

} // End of namespace parseString
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E.16. poly.cpp

#include "poly.h"

#include "evaluate.h"

#include <iostream>

ostream & operator << (ostream & os, const polyElement & p)

// printout operator for polyElement class;

{

p.putTo (os);

return os;

}

void

polyElement::putTo (ostream & os) const

{

os << "Illegal Call to Base Class element " << endl;

}

bool

polyElement::polyAddTo (vector < polyElement * >elems,

polyElement * match)

{

for (vector < polyElement * >::iterator i = elems.begin ();

i != elems.end (); i++)

{

if (match->equals (*i))

{

(*i)->addFactor (match->getFactor ());

return true;

}

}

return false;

}

void

matchTrue::putTo (ostream & os) const

{

if (mult == -1)

{

os << "-";

}

else if (mult != 1)

{

os << mult << ".";

}

if (prob != 1)

os << "p(" << prob << ") ";

os << "X(M" << getNoSites () << "(T),C(S" << getNoSites () << "))";

}

bool
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matchTrue::equals (polyElement * mt)

{

matchTrue *mtr = dynamic_cast < matchTrue * >(mt);

if (mtr == NULL)

{

return false;

}

if (getProb () != mtr->getProb ())

return false;

return true;

}

double

matchTrue::lhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const

{

return 0;

}

double

matchTrue::rhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const

{

double noMatches = obslist.countMatch (whichSites);

return noMatches * matchProb (getProb ()) * getFactor ();

}

void

exactMatch::putTo (ostream & os) const

{

if (mult == -1)

{

os << "-";

}

else if (mult != 1)

{

os << mult << ".";

}

if (prob != 1)

os << "p(" << prob << ") ";

os << "X(" << static_cast < const matchClass > (mc) <<

",S" << getNoSites () << ")";

}

bool

exactMatch::equals (polyElement * mt)

{

exactMatch *em = dynamic_cast < exactMatch * >(mt);

if (em == NULL)
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{

return false;

}

if (getProb () != em->getProb ())

return false;

if (getMatchClass () != em->getMatchClass ())

return false;

return true;

}

void

matchByParts::putTo (ostream & os) const

{

if (mult == -1)

{

os << "-";

}

else if (mult != 1)

{

os << mult << ".";

}

if (prob != 1)

os << "p(" << prob << ") ";

os << "R(" << mc << ",S" << getNoSites () << ")";

//os << "match class is " << mc;

}

bool

matchByParts::equals (polyElement * mt)

{

matchByParts *mbp = dynamic_cast < matchByParts * >(mt);

if (mbp == NULL)

{

return false;

}

if (getProb () != mbp->getProb ())

return false;

if (getMatchClass () != mbp->getMatchClass ())

return false;

return true;

}

double

matchByParts::lhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const

{

if (mc.getHeight () == 1)

{ // height 1 is true match

return matchProb (getProb ()) * getFactor ();

}

return 0;
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}

double

matchByParts::rhsEvaluate (vector < polynomial * >&plist,

licencePlates::combinePlates & obslist,

vector < int >&whichSites) const

{

//cout << "MBP height " << mc.getHeight() << " sites size " <<

// whichSites.size() << endl;

if (mc.getHeight () == 1)

{

return 0;

}

int noSites = whichSites.size ();

if (noSites == mc.getHeight ())

{

return matchProb (getProb ()) * getFactor () *

obslist.cartesianProd (whichSites);

}

double mbp = 1;

//putTo(cout);

//cout << endl;

for (int i = 1; i <= mc.getHeight (); i++)

{

vector < int >siteList;

//cout << " at level " << i << " matches elements ";

for (int j = 0; j < mc.getWidth (); j++)

{

if (mc.getElement (j) == i)

{

//cout << j << " ";

siteList.push_back (whichSites[j]);

}

}

double mult = evaluateSites (plist, obslist, siteList);

mbp *= mult;

//cout << " and has " << mult << " estimated matches" << endl;

}

return matchProb (getProb ()) * getFactor () * mbp;

}

vector < polyElement * >exactMatch::getExpansion (matchTrans <

matchClass > &Mn,

vector <

polyElement * >elems)

// exact match of a particular type expands into a relaxed match

// of a particular type

{

vector < polyElement * >pv;

matchByParts *
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mbp =

new

matchByParts (getNoSites (), getMatchClass (),

getProb (), getFactor ());

pv.push_back (mbp);

int

nc =

Mn.

getNoClasses ();

for (int i = 0; i < nc; i++)

{

//cout << "n = " << i << " out of " << nc << endl;

matchClass & mClass = Mn.getElement (i);

if (!(mClass < mc))

continue;

//cout << "Adding match of class " << mClass << endl;

exactMatch *

xmat =

new

exactMatch (getNoSites (), mClass, getProb (),

-getFactor ());

if (polyAddTo (elems, xmat))

{

delete (xmat);

}

else

{

pv.push_back (xmat);

}

//cout << "Added match: ";

//xmat->putTo(cout);

//cout << endl;

}

return pv;

}

polynomial::polynomial (int n):

noSites (n), Mn (n)

// Construct the polynomial for match transversal M_n

{

matchTrue *mt = new matchTrue (n);

elements.push_back (mt);

int nc = Mn.getNoClasses ();

exactMatch *me;

matchClass *mc;

for (int i = 0; i < nc; i++)

{

mc = &(Mn.getElement (i));

if (mc->getHeight () == 1) // Don’t add the "true match" class

continue;
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me = new exactMatch (n, (*mc), mc->getHeight (), -1);

elements.push_back (me);

}

//putTo(cout);

//cout << endl;

expandPoly ();

}

polynomial::~polynomial ()

{

int nel = length ();

for (int i = 0; i < nel; i++)

{

//cout << "Deleted element " << i << endl;

delete (elements[i]);

}

}

void

polynomial::expandPoly ()

// Expand terms of polynomial

{

//cout << "EXPANDING ONCE" << endl;

//putTo(cout);

//cout << endl;

vector < polyElement * >addvect;

for (vector < polyElement * >::iterator i = elements.begin ();

i != elements.end (); i++)

{

if ((*i)->isExpansible ())

{

//cout << "Expanding: ";

//(*i)->putTo(cout);

//cout << endl;

addvect = (*i)->getExpansion (Mn, elements); // Add expansion onto the end

delete (*i); // Delete the memory saved for the vector

elements.erase (i); // And remove it from the vector

for (size_t j = 0; j < addvect.size (); j++)

{

elements.push_back (addvect[j]);

}

expandPoly (); // Restart the expansion and leave this

return; // function

}

}

//cout << "FINISHED EXPANSION" << endl;

}

void

polynomial::putTo (ostream & os) const

{

os << "M" << getNoSites () << "(T,S" << getNoSites () << ") = ";



E.16. POLY.CPP 330

for (int i = 0; i < length (); i++)

{

const polyElement *pe = getElement (i);

if (i != 0)

{

if (pe->getFactor () > 0)

os << " +";

else

os << " ";

}

os << (*pe);

}

}

ostream & operator << (ostream & os, const polynomial & p)

//

{

p.putTo (os);

return os;

}
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E.17. readplates.cpp

#include "readplates.h"

#include "parsestring.h"

#include <fstream>

#include <stdlib.h>

using namespace parseString;

namespace licencePlates

{

ostream & operator << (ostream & os, const plateReadError & err)

// Output operator for plate errors - print error and line no.

{

os << err.getError ();

if (err.validLineNo ())

{

os << " at line " << err.getLineNo ();

}

return os;

}

plate::plate (string const &raw)

// Construct licence plate information from raw string

{

stringTokeniser strtok (raw);

if (strtok.getNoTokens () < 2)

throw plateReadError ("Unable to read plate line " + raw);

reg = strtok.getElement (0);

//cout << "Read plate " << reg << endl;

if (strtok.getNoTokens () >= 3)

{

//cout << "Comment starts at " << strtok.getPos(2) << endl;

comment = raw.substr (strtok.getPos (2));

//cout << "Read comment " << comment << endl;

}

else

{

comment = "";

}

string timestr = strtok.getElement (1);

try

{

hoursMins::basicTime tm (timestr);

myTime = tm;

}

catch (hoursMins::timeError e1)

{

throw plateReadError (e1.getError ());

}

// cout << "Read Time " << myTime.getTimeStr() << endl;
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}

ostream & operator << (ostream & os, const plate & thisPlate)

{

string plateTime = thisPlate.getTimeStr ();

os << thisPlate.getReg () << " " << plateTime << " " <<

thisPlate.getComment ();

return os;

}

ostream & operator << (ostream & os, const plateList & plates)

{

for (int i = 0; i < plates.size (); i++)

{

os << plates.getElement (i) << endl;

}

return os;

}

bool operator == (const plate & left, const plate & right)

{

if (left.getReg () == right.getReg ())

return true;

return false;

}

plateList::plateList (string const &fname)

// Construct a list of plates from a file

{

name = fname;

ifstream readFile (fname.c_str ());

if (!readFile)

{

throw plateReadError ("Unable to open file " + fname);

}

string readLine;

bool infoSet = false;

int lineNo = 1;

while (getline (readFile, readLine))

{

//cout << lineNo << endl;

//cout << typeOfLine(readLine) << endl;

switch (typeOfLine (readLine))

{

case (plateList::lineTypeInfo):

if (infoSet == true)

{

tidyup ();

throw

plateReadError

("Second #INFO line found in file " +
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fname, lineNo);

}

infoSet = true;

noVehicles = parseInfoLine (readLine);

if (noVehicles <= 0)

{

tidyup ();

throw

plateReadError

("Incorrect #INFO line found in file " +

fname, lineNo);

}

break;

case (plateList::lineTypeComment):

// Ignore comments

break;

case (plateList::lineTypeData):

try

{

plate newplate (readLine);

list.push_back (newplate);

}

catch (plateReadError e1)

{

tidyup ();

throw plateReadError (e1.getError () +

" in file " + fname,

lineNo);

}

break;

default:

cout << "Error" << endl;

tidyup ();

throw plateReadError ("Unrecognised line in file " +

fname, lineNo);

}

lineNo++;

}

if (infoSet == false)

{

tidyup ();

throw plateReadError ("No #INFO line in file " + fname);

}

}

void plateList::tidyup ()

// Clear anything necessary after constructor fails

{

clearList ();

}
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int plateList::parseInfoLine (string input)

// Given that we have an input line, return the no of vehicles.

{

string::size_type i1 = input.find_first_of ("0123456789");

if (i1 == string::npos) // Return 0 if there are no digits

return 0;

string num = input.substr (i1);

int infonum = atoi (num.c_str ());

return infonum;

}

int plateList::typeOfLine (string input)

// Returns lineTypeInfo, lineTypeComment or lineTypeData

{

if (input.size () == 0)

return plateList::lineTypeComment;

if ("#INFO" == input.substr (0, 5))

return plateList::lineTypeInfo;

if (input[0] == ’#’)

return plateList::lineTypeComment;

return plateList::lineTypeData;

}

} // End of namespace licencePlates
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