# Power Laws in Networks

Why Wikipedia is like sex, trees are like computer files and lots of things are like cauliflower.



Richard G. Clegg (richard@richardclegg.org)— University of York, March 2006 (Pictures are mostly taken from wikipedia.)

• This talk is about current internet research and in particular the topic of power laws.

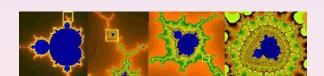
- This talk is about current internet research and in particular the topic of power laws.
- Ongoing research some questions asked have no answers yet, some answers given may be wrong.

- This talk is about current internet research and in particular the topic of power laws.
- Ongoing research some questions asked have no answers yet, some answers given may be wrong.
- A taste of what is going on in mathematical internet research now.

- This talk is about current internet research and in particular the topic of power laws.
- Ongoing research some questions asked have no answers yet, some answers given may be wrong.
- A taste of what is going on in mathematical internet research now.

#### The Main Topics

Topics considered: Statistical Self-Similarity, Heavy-Tails, Long-Range Dependence and Scale Free Networks.



### What do we mean by a Power law?

#### A Power Law Relationship

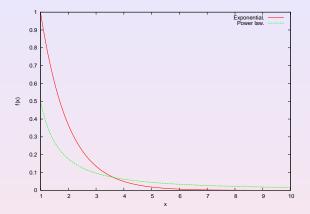
We will define a power law relationship for a function f(x) for x > 0 as

$$f(x) \sim x^{-\alpha}$$

where  $\alpha > 0$  is some constant and  $\sim$  means asymptotically proportional to as  $x \to \infty$ .

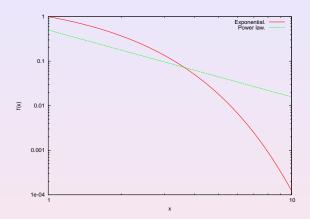
- This function falls off to zero quite slowly.
- This sort of function occurs in a surprising variety of contexts, particularly in the internet.
- Plotted on a log-log scale it will appear as a straight line gradient  $-\alpha$ .

### Power law fall off



Heavy tailed  $x^{-1.5}$  versus exponential  $e^{-x}$  decay. Both curves normalised so they have unit area in the interval  $[1,\infty)$ .

### Power law fall off



The previous graph plotted on a logscale.

### What is a Heavy-Tailed distribution?

#### Heavy-Tailed distribution

A variable X has a heavy-tailed distribution if

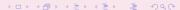
$$\mathbb{P}\left[X>x\right]\sim x^{-\beta},$$

where  $\beta \in (0,2)$  and  $\sim$  again means asymptotically proportional to as  $x \to \infty$ .

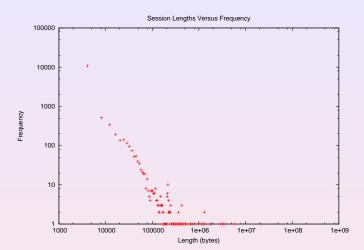
- Obviously an example of a power law.
- A distribution where extreme values are still quite common.
- Examples: Heights of trees, frequency of words, populations of towns.
- Best known example, Pareto distribution  $P(X>x)=(x/x_m)^{-\beta}$  where  $x_m>0$  is the smallest possible X

# More about heavy tails

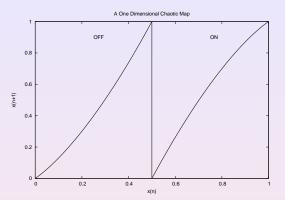
- The following internet distributions have heavy tails:
  - Files on any particular computer.
  - Files transferred via ftp.
  - Bytes transferred by single TCP connections.
  - Files downloaded by the WWW.
- This is more than just a statistical curiousity.
- Consider what this distribution would do to queuing performance (no longer Poisson).
- Non mathematicians are starting to take an interest in heavy tails.
- Some people refer to long-tails this is a process which starts slowly but continues for a long time (e.g. a slow selling book).



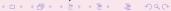
### TCP session lengths at York University



### A model for heavy-tailed traffic

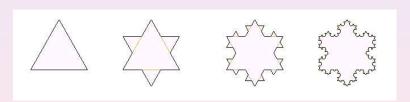


- LHS is:  $f(x) = x + kx^{-\alpha}$ , with  $\alpha \in (0,1)$ .
- Generates series of zeros and ones which have heavy tails.
- Difficult analytically (Markov approximations easier).



# Self Similarity

- Most of us are familiar with the concept of self similarity.
- A curve is thought of as self-similar if parts of the curve resemble other parts (perhaps after rescaling and rotation).
- A self-similar curve is what is popularly thought of as a fractal.
- (There is a mathematically rigorous definition of fractal, which will not be discussed here.)
- A typical example is the Koch snowflake shown below.



# Fractals/Self-Similarity



Four "fractals" occurring in various areas.

### Statistical Self-Similarity

### Statistically self-similar

A stochastic process  $Y_t$  :  $t \in \mathbb{R}_+$ , is stastistically self-similar if it obeys

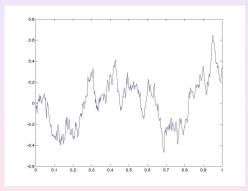
$$Y_t \stackrel{d}{=} c^{-H} Y_{ct},$$

for some constant c > 0 where  $\stackrel{d}{=}$  means equal in distribution and H is a parameter known as the Hurst parameter.

- Crudely: when stretched by some factor c in the time dimension looks "the same" if stretched by c<sup>-H</sup> in the y dimension.
- Most time series would look "flat" if stretched like this.

### Statistical Self-Similarity

- Think of Statistical Self-Similarity in terms of mountainousness perhaps. As you zoom in, the small hills look "the same" as the larger mountains did.
- Some measurements of internet traffic exhibit SSS (see later).



Fractional Brownian Motion — a statistically self-similar process



# Long-Range Dependence (LRD)

Let  $\{X_1, X_2, X_3, \dots\}$  be a weakly stationary time series.

#### The Autocorrelation Function (ACF)

$$\rho(k) = \frac{\mathsf{E}\left[(X_t - \mu)(X_{t+k} - \mu)\right]}{\sigma^2},$$

where  $\mu$  is the mean and  $\sigma^2$  is the variance.

The ACF measures the correlation between  $X_t$  and  $X_{t+k}$  and is normalised so  $\rho(k) \in [-1,1]$ . Note symmetry  $\rho(k) = \rho(-k)$ . A process exhibits LRD if  $\sum_{k=0}^{\infty} \rho(k)$  diverges (is not finite).

#### Definition of Hurst Parameter

The following functional form for the ACF is often assumed

$$\rho(k) \sim |k|^{-2(1-H)}$$

where  $\sim$  means asymptotically proportional to and  $H\in (1/2,1)$  is the Hurst Parameter.

### More about LRD

- Think of LRD as meaning that data from the distant past continue to effect the present.
- LRD was first spotted by a hydrologist (Hurst) looking at the flooding of the Nile river.
- For this reason Mandelbrot called it "the Joseph effect".
- Stock prices (once normalised) also show LRD.
- LRD can also be seen in the temperature of the earth (once the trend is removed).
- Related to self-similarity. If  $Y_t$  is self-similar with Hurst  $H \in (1/2,1)$  and stationary increments  $X_t = Y_{t+1} Y_t$  then  $X_t$  is LRD with Hurst H.

### LRD and the Internet

- In 1993 LRD (and self-similarity) was found in a time series of bytes/unit time measured on an Ethernet LAN [Leland et al '93].
- This finding has been repeated a number of times by a large number of authors (however recent evidence suggests this may not happen in the core).
- A higher Hurst parameter often increases delays in a network.
  Packet loss also suffers.
- If buffer provisioning is done using the assumption of Poisson traffic then the network will probably be underspecifed.
- The Hurst parameter is "a dominant characteristic for a number of packet traffic engineering problems".

# The horrible properties of LRD

- Computationally, LRD is a nightmare to work with.
- Consider  $\rho(k)$  the effect we are looking for is at large k we only have many samples for small k. Standard estimators for  $\rho(k)$  are biased for large k.
- The sample mean converges at a rate proportional to  $n^{2H-2}$  not  $n^{-1}$ .
- The sample variance  $S^2$  is no longer an unbiased estimate of the variance  $\sigma^2$ .
- If we take standard techniques for confidence intervals then, as  $n \to \infty$  a statistic will be outside a given confidence interval a.s. no matter how small that confidence interval.
- Only investigate LRD if you have a "large" data set (hundreds are good, thousands are better, millions are nice).



### Where does LRD come from?

Where do we get LRD from? The research literature suggests four possibilities for the origin of LRD in the internet.

- Data is LRD at Source
  - Claim arises from measurements on video traffic.
  - Pictures are updated by sending changes.
  - A still scene is few changes, a cut or pan is a lot of changes.
- Data arise from aggregation of heavy tailed ON-OFF sources.
  - It can be shown that ON/OFF sources with heavy-tailed train lengths leads to self-similarity.
  - It has been observed that the sizes of files transferred on the internet follow a heavy-tailed distribution.

# Where does LRD come from? (2)

- Strain LRD arises from feedback mechanisms in the TCP protocol.
  - This claim comes from Markov models of TCP timeout and retransmission.
  - A Markov model is used to show that the doubling of timeouts can cause correlations in timeseries of transmitted data.
  - Modelling shows that this can lead to LRD over certain timescales ("local" LRD).
- LRD arises from network topology or routing.
  - Consider a simulation on a Manhattan network with randomly distributed sources and sinks
  - The sources produce Poisson traffic.
  - Packets find their shortest route to the sink (accounting for the traffic on the next hop).
  - In this simple situation the aggregated traffic shows LRD.



### Node Degree Distributions

### Degree of a node

In an undirected graph, the degree of a node is the number of arcs incident to that node.

#### A scale free network

Let X be the degree of a node in a network. A network is said to be scale free if

$$\mathbb{P}\left[X=k\right]\sim k^{-\alpha},$$

where  $\alpha \in (0,2)$ .



### Scale-free networks

- A scale free network is a network where there are a significant number of highly connected nodes.
- What sort of networks (graphs) are scale free?
  - The internet if a node is a computer/router and an arc is a connection between them.
  - The web if a node is a web page and an arc is a hyperlink to (or from) that page.
  - Oitations if a node is an academic and an arc is when an author cites another.
  - Wikipedia if a node is an article and an arc is when that article references another.
  - Sexual relations if a node is a person and an arc is... um... a connection between them.
  - Many many more networks.
- For some reason scale-free networks seem very common but why?



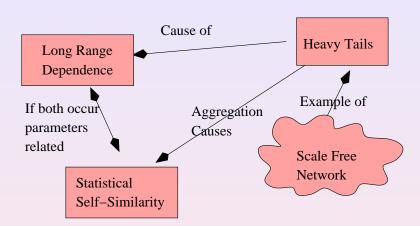
### How might Scale Free Networks be formed?

- We might want to think about how a Scale free network forms (see [Albert and Barabassi 1999]).
- Consider a network where new arcs attach to nodes with a probability related to the number of links it has already.
- Let the probability a new node connects to a given existing node be proportional to k the degree of the node. In this model the network becomes scale free.
- But if the probability is proportional to  $k^{1.0001}$  or  $k^{0.9999}$  the network is not scale free.
- How such exact proportionality could be achieved is a mystery.

# Random Walks and local formation of Scale Free Networks?

- Consider taking a random walk on a network.
- Leave any node down an arc completely at random.
- Consider the process as a Markov chain where the transition probability  $p_{ij} = 1/k_i$  where  $k_i$  is the degree of node i.
- It can be easily shown that if the networks is ergodic, the equilibrium probabilities of the state  $\pi_i = Kk_i$  for some constant K. (Left as an exercise for the student).
- This is exactly the probability required for our connection model.

#### Connections



#### Conclusions

- Power laws seem to appear in a huge number of places in the natural world.
- They are particularly common on the internet.
- There are some known interconnections but perhaps more remain to be discovered.
- Could it be that there is some underlying principle which explains why they are so ubiquitous?
- This area of research is rapidly developing with new discoveries every month.

#### References

- 1) Leland, W. E., Taqqu, M. S., Willinger, W., and Wilson, D. V. (1993). *On the self-similar nature of Ethernet traffic*. In Proc. ACM SIGCOMM, pages 183-193, San Francisco, California.
- 2) Barabsi, A.-L. and Albert, R. (1999), *Emergence of scaling in random networks*, Science 286, 509–512
- 3) Peitgen, H. O., Jrgens, H. and Saupe, D. (2005) *Chaos and Fractals: New Frontiers of Science*