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Shi Zhou and Raul Mondragon

* Accurately modeling the internet topology
Phys. Rev. E 70 066108 (2004) 1

* Network parameters: I

> number of nodes, humber of links. tiverage degree, xponent of power law,
kich-club connectivity, lnaximum degree, Eegree distribution, i
characteristic path length, average triangle coefficient, i
maximum triangle coefficient, verage quadrangle coefficient, i
maximum quadrangle coefficient, Gverage kmn,%zverage betweenness, I
maximum betweenness. . . |

> girth, spectrum, ... |
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Motivation

* we use many random graph models in network
applications. . .

* but rarely specify the statistical ensemble precisely
* SO even the averages we compute are suspect

+» and even the famous Barabasi-Albert scale-free model has
known problems

we need a unified, rigorous framework

+ related ideas in earlier literature:

> Markov random fields

p* models of social networks
Ising-type models in physics
agricultural field trials
image processing

v VvV VvV VvV V
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Dependency graphs (Frank, Strauss, Besag, .. .)

* consider a random vector X = (X1, Xo,..., X)) 1
* P(x) =exp(Q(x))/ > expQ(z) & Q(x) = log P(x)+const

> only restriction P(x) >0 Vzl

» let D be the dependency graph of X; i.e. 1 ~ 7 < x; not
independent of z; 1

> e.g. all z; independent: empty graph i
> e.g. Markov chain: line graph
> e.g. multivariate Gaussian: complete graph (generically) i

» inclusion-exclusion principle Q(z) = 1oy As(s) !

> x, = components of x corresponding to elements of sl

1<J

» Hammersley-Clifford theorem: A, =0 unless s is a clique of D

> a clique is a complete subgraph
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Markov graphs

* to apply to a graph g with edge dependencies, let X be the
edge indicator functions

* this defines the dependency graph D(g) of g: D(g) contains
and edge (¢,75) if X; and X, (i # j) are dependent

* definition: ¢ is Markov if D(g) contains no edge between
edges which are disjoint in E(g)

* in other words, edges can only ‘interact’ if they share a
common end-point

Keith Briggs Exponential random graphs 5 of [I§]



Markov graph example (n =4, m = 5)

1 a 1-2
AN D
2 b 4 b: 1-3
N A \.

3 c.1-4

g D(9)

d: 2-3

e 34

& cliques: {{a}, {b}, {c}, {d}, {e}, {a, b}, {b,c}, {a, ), {d. e}, {a,b,c} ) n

* thus
Q(xz) = Aa(ma)+Ap(2p)+Ac(we) FAa(20)+Ae(e)
+ )\ab(xaa ij) _I_)\bc(xba CUc) +)\ac(xaa xc) +)\de(ajd7 xe)
+ )\abc(xmxbaxc)
Keith Briggs Exponential random graphs 6 of [1g]



Homogeneous Markov graphs 1

» if we require all isomorphic graphs to have the same proba-
bility, then a further simplification results:

* let t(g) be the number of triangles in g
* let si(g) be the number of k-stars in g

* then P(g) can only depend on t(g) and si(g), in the form

Ps(g) = Z(l 3 P 50t(9)+2—: Br sk(9)
_ k=1 i

where (3, are fixed parameters

* here Z(3) = Zg exp [5075(9)+ZZ;11 Bk Sk(g)}
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Homogeneous Markov graphs 2

* alternatively, we may use d;, the number of nodes of degree

J (sk(9) =2k (1) 45(9))
% and let Ox(g9) =3, . (7) Bk then

Py(g) = Z%@) exp Hot(g)JrZ 0;d;(g)

* in other words, the Hamiltonian can only be a linear function
of the number of triangles and k-stars

* hote: if A if the adjacency matrix of g, then m(g) = di(g) =
tr (A%) /2 is the number of edges and t(g) = tr (A%) /6
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Exponential random graphs

+ fix a number of nodes n

* consider the set G(n) of all graphs on n nodes
* we will assign to each g € G(n) a probability P(g)

* let x = {xq,z9,...} be a set of functions on G(n) representing
properties we are interested in, for example

> x1(g)=number of edges
> x2(g)=number of nodes of degree 3
> x3(g)=number of triangles

* we then assign the probabilities P by

eXPp ((912131—|—(92£E2—|—. .. )
where Z(@) — ZgEG(n) exXp ((91331+(92£132—|—. .. )
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Statistical mechanics
» Hamiltonian: H(6,g) = >". 0;x:(g)
* probability of g: Py(g) =exp(H(0,9))/Z(0)
* partition function: Z(0) =" exp (H(0,9))
* entropy S(0) = —>_ . Py(g)log(Fa(g))

* S is maximized by our choice of P
* free energy: F'(0) =log(Z(0))

Keith Briggs
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Exactly soluble example - Bernoulli model G{n,p}

* g € G{n,p} has n nodes and each possible edge appears
independently with fixed probability p

* let x(g) = number of edges in graph g
* H(0,g9) =0m(g)

x Z(8) = (1+exp(—6)))

* p=1/(1+exp(0))

* F(0) = (%) log(14exp(—0))

» which gives P,(g) = ( " ))pm<9)(1—p)<2)_m(g) as expected

n

* Elz]=m=(3)p
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Example - exact likelihood for all 5-node graphs

Likelihood of parameters, given a
graph: L(6|g) < Py(g). (Loglikeli-
hood: 1(A|g) = log Py(g)+const.)

Each figure shows the likelihood for
one of the 34 graphs, the param-
eters corresponding to the number
of nodes of degrees one and two.

i.e. Hy(g) = 01d1(g)+602d2(g)
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Metropolis simulation

* works by defining a random walk in G which has equilibrium
distribution equal to our desired P

» typically we choose a pair of nodes, and then flip its state
depending on whether the flip is energetically favourable

(1) choose a proposal dyad i,j € N(g) uniformly at random

(2) compute the energy change 6 H that would occur if the
dyad (i,7) were flipped

(3) if 0H or u < exp(dH), uw~ U(0,1), then accept the proposal;
i.e. flip the edge

(4) go to (1)

» estimate loglikelihood by (where x is the vector of graph
statistics, Oes a reference value of graph parameters (hopefully
close to the true ones) and z4st; the statistics from the data):

[(6) = 1(Oref) = —log (exp[(I(6) —(Oref) ) (2(t) = Tdata)])
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Metropolis simulation example

* 18 nodes; graph shows fluctuations in m(g)
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Metropolised independence sampling (MIS) 1
* consider the target distribution my(j) = exp(jlogh)/Z(0),
Z(0)=(1-0")/(1—0) on the set {0,1,2,...,n—1}1

+ an MIS scheme is 1|
(0) start at t =n—11

(1) choose a proposal y € X uniformly at random i

(2) if y<axoru<6* u~U(0,1), then accept the proposal;
i.e. set t =yl

(3) go to (1)K

* hote that this scheme ignores the current position x and
assumes no knowledge of w. In general, we can do better
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Metropolised independence sampling 2

» for this example, it can be proven [Diaconis & Saloff-Coste
1998] that

. i . i . i . i .
0) 200 400 600 800 100C
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What next?

» directed graphs
* perturbation theory (around Bernoulli model?)
* more rapidly converging sampling schemes

* parameter estimation for real examples by maximum likelihood
(e.g. internet AS graph)

O ¢
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Metropolis algorithm? J Comp Sys Sci 57, 20-36 (1998)

L Burda & J Correia & A Krzywicki Statistical ensemble of
scale-free random graphs
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J Berg & M Lassig Correlated random networks
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K M Briggs graphlib-1.0
http://keithbriggs.info/graphlib.html
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