Mixing time on random walks

陈 敏 Min Chen

mc190@york.ac.uk

Univ.of York

research.btexact.com

2004 Nov 19 13:30

Outline

- ▶ What is a random walk?
- ► How to measure a random walk?
- ► Fastest mixing problem
- Computational results
- Applications
- Future work

mixing time $\stackrel{describe}{\longrightarrow}$ convergence speed

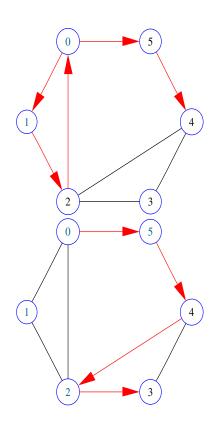
fast mixing — fast convergence of dynamical process on network

Random walk

- $ightharpoonup \Gamma(v)$: neighbors of v in G
- $x_0 \stackrel{\mathsf{random}}{\longrightarrow} x_1 \in \Gamma(x_0) \stackrel{\mathsf{random}}{\longrightarrow} x_2 \in \Gamma(x_1) \stackrel{\mathsf{random}}{\longrightarrow} \cdots \stackrel{\mathsf{random}}{\longrightarrow} x_k \in \Gamma(x_{k-1})$
- Example:

 $\{v_0v_1v_2v_0v_5v_4\}$ is one trial of a random walk

 $\{v_0v_5v_4v_2v_3\}$ is another trial of a random walk



Random walk and Markov chain

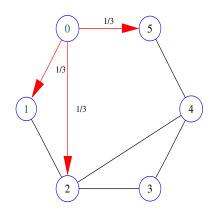
ightharpoonup Transition probability matrix P

$$P_{ij} = \begin{cases} Pr[x_{t+1} = j | x_t = i], & \text{if } ij \in E \\ 0, & \text{otherwise} \end{cases}$$

We can choose each node uniformly

$$P_{ij} = \begin{cases} 1/d(i), & \text{if } ij \in E \\ 0, & \text{otherwise} \end{cases}$$

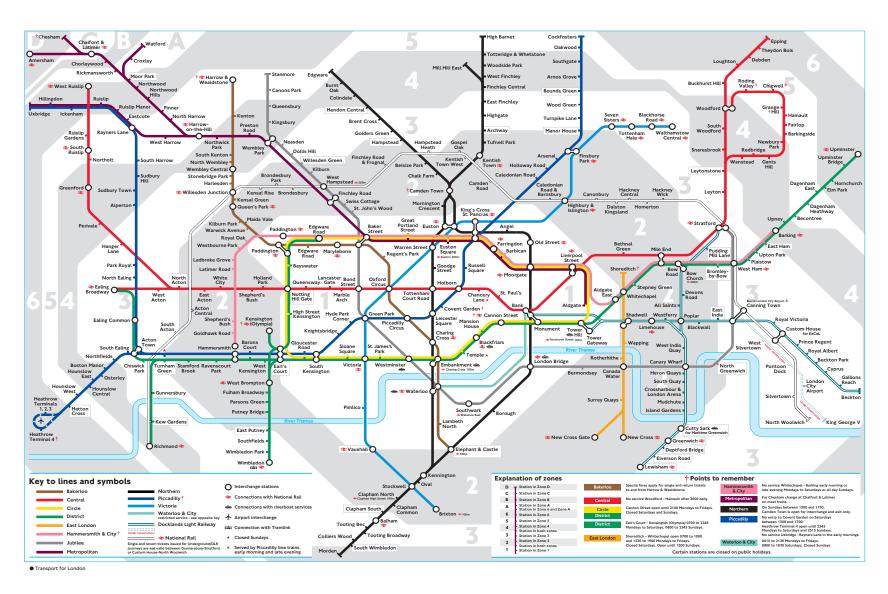
where d(i) is the degree of i



- ▶ distribution at t: $\pi(t) = \pi(0)P^t$
- equilibrium distribution: $\pi = \pi P$
- reversible Markov chain: $\pi_i P_{ij} = \pi_j P_{ji}$ $i, j \in V$
- ightharpoonup symmetric chain: $P^T = P$

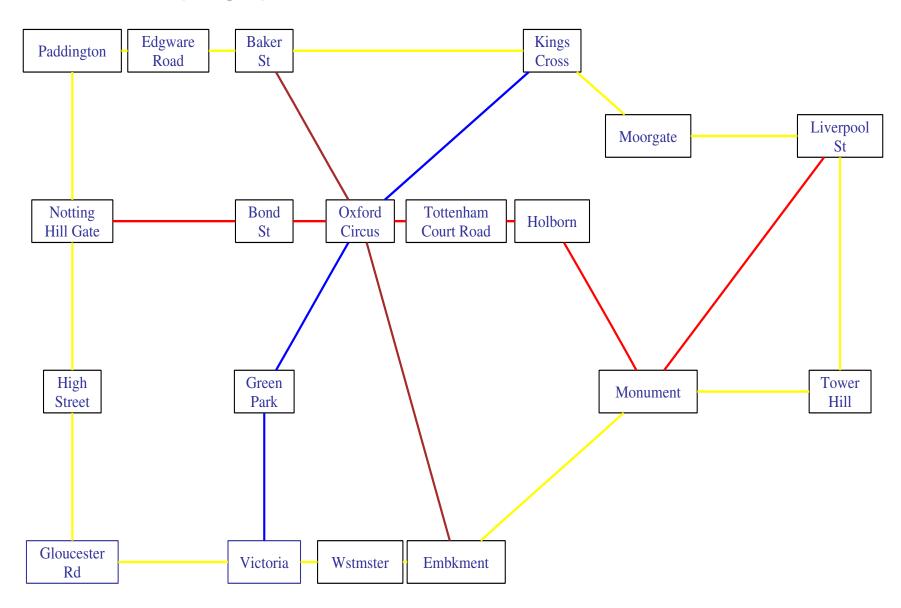
Measurements of Random walk

► Example: London tube graph



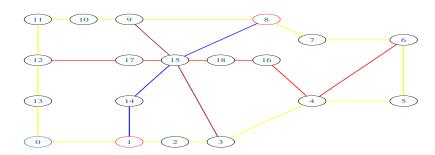
Example: London tube graph (continued)

Pick out a simple graph from it:



Example: London tube graph - Hitting time

► King's Cross $\xrightarrow{\text{random walk}}$ Victoria ? steps



► Hitting time:[LL00]

$$H_{ij} = 2m \sum_{k=2}^{n} \frac{1}{1 - \lambda_k} \left[\frac{v_{ki}^2}{d(i)} - \frac{v_{ki}v_{kj}}{\sqrt{d(i)d(j)}} \right]$$

 $\{\lambda,v\}$ is the eigensystem of $N=D^{1/2}AD^{1/2}$, A is the adjacency matrix, $D={\rm diag}(1/d(i))$, m is the number of edges in the graph

▶ the mean number of steps between King's Cross and Victoria is

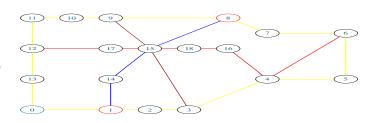
$$H_{kc-v} = H_{81} = 38.5$$

Example: London tube graph - Hitting time matrix

► Hitting time matrix

0.0	12.7	30.1	24.9	36.1	58.8	47.5	49.7	31.2	30.0	46.5	45.0]
28.1	0.0	21.3	20.1	32.6	55.4	44.4	47.4	29.6	29.8	49.6	51.4	
40.6	16.4	0.0	11.0	27.0	50.5	40.0	44.7	28.7	29.9	51.3	54.5	
51.1	30.9	26.7	0.0	19.5	43.5	33.7	40.1	25.8	28.1	50.9	55.7	
58.4	39.4	38.7	15.5	0.0	26.4	18.9	32.5	25.4	30.3	54.0	59.6	
60.3	41.5	41.4	18.8	5.7	0.0	10.5	27.8	24.4	30.8	54.8	60.7	
60.2	41.7	42.2	20.1	9.4	21.6	0.0	21.1	21.5	29.2	53.5	59.7	
58.8	41.1	43.3	23.0	19.4	35.4	17.6	0.0	11.8	23.5	48.8	55.9	
55.5	38.5	42.5	23.9	27.4	47.2	33.2	26.9	0.0	15.9	42.0	50.1	
53.3	37.7	42.7	25.2	31.4	52.6	39.9	37.7	14.9	0.0	29.8	41.6	
50.1	37.8	44.4	28.3	35.4	56.9	44.5	43.3	21.4	10.1	0.0	21.8	
45.0	36.0	44.0	29.4	37.4	59.1	47.1	46.8	25.8	18.2	18.2	0.0	
37.8	32.1	41.6	28.6	37.3	59.4	47.7	48.3	28.3	24.4	34.3	26.2	
19.9	23.4	36.8	27.7	37.7	60.1	48.6	50.0	30.7	28.2	41.4	36.6	
40.7	17.9	30.8	21.3	31.5	54.0	42.7	44.7	26.0	26.4	48.0	51.6	
51.3	33.7	38.4	20.4	28.4	50.7	39.0	40.0	20.3	21.0	44.5	49.8	
58.0	39.5	40.6	19.2	11.5	36.5	27.6	37.0	25.7	29.2	52.8	58.3	
45.6	33.9	41.0	25.5	33.9	56.0	44.3	45.2	25.3	23.7	40.4	39.0	
55.7	37.6	40.5	20.8	21.0	44.6	34.3	39.5	24.0	26.1	49.7	55.1	

Example: London tube graph - Commute time



▶ commute time [LL00]

$$k_{ij} = H_{ij} + H_{ji}$$

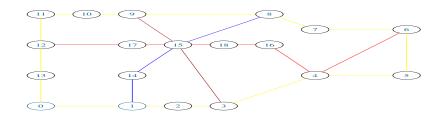
► So we know that the commute time from King's Cross to Victoria then back to King's Cross is

$$k_{k-v} = k_{81} = H_{81} + H_{18} = 38.5 + 29.6 = 68.1$$

- Symmetry
 - $H_{ij} \neq H_{ji}$ unless i and j are vertex-transitive.
 - $k_{ij} = k_{ji}$ for all i, j

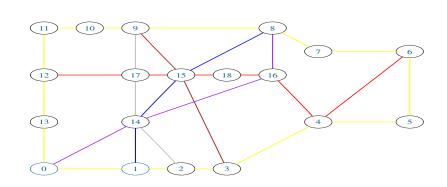
Example: London tube graph - Mixing time

$$\underbrace{\pi(0) \to \pi(1) \to \cdots \to \pi}_{\text{? steps}}$$



- $igwedge mixing \ rate = \log(1/\mu(P)) [\mathsf{SB04}]$ where $\mu(P) = \max_{i=2,\dots,n} |\lambda_i(P)| = \max\{\lambda_2(P), -\lambda_n(P)\}$
- ▶ mixing time: $\tau = 1/(\text{mixing rate}) = 1/\log(1/\mu)[\text{SB04}]$
- $mixing \ rate = 0.101568$ $mixing \ time = 9.845655$
- build new lines

 $mixing \ rate = 0.168313$ $mixing \ time = 5.941294$



Definition of random walk properties

hitting time (access time)	H_{ij} is the expected number of steps in a random walk starting from node i and before node j .	$2m\sum_{k=2}^{n}\frac{1}{1-\lambda_{k}}\left[\frac{v_{ki}^{2}}{d(i)}-\frac{v_{ki}v_{kj}}{\sqrt{d(i)d(j)}}\right]$
commute time	k_{ij} is the expected number of steps in a random walk starting at i , the first time return to i via j .	$H_{ij}\!+\!H_{ji}$
mixing rate	measure of how fast the random walk converges to its stationary distribution.	$\rho = -\log(\mu(P))$
mixing time	the time scale (in steps) for reaching the stationary distribution.	$\tau = -\frac{1}{\log(\mu)}$

Fastest mixing problem - topology

- Mixing time convergence speed
- ▶ fastest mixing smallest mixing time/different topology

change the topological structure of graphs

 \downarrow

fastest mixing chain

Optimization description

$$\min_G \quad \mu(P(G))$$
 s.t. $P_{ullet} \geqslant 0$ $P1 = 1$ $P_{ij} = \left\{ \begin{array}{ll} 1/d(i), & \text{if } ij \in E \\ 0, & \text{otherwise} \end{array} \right.$

Computational results - small regular graphs

▶ the min/max mixing time for 10 nodes regular graphs

n	deg	num	maxtime	graph	mintime	graph	avertime
10	3	17	15.5896		2.4663		6.8216
10	4	58	7.7220		1.7195		3.4093
10	5	59	7.4542		1.2427		2.2145
10	6	21	2.4663		0.9102		1.5722
10	7	5	1.1802		1.0168		1.1475

Fastest mixing problem - weights

- ► Stephen Boyd's idea, Stanford Univ.
- ► fastest mixing smallest mixing time/different weights

fix the topology, changing the weights

 \downarrow (reversible chain)

fastest mixing chain

Optimization description

$$\begin{aligned} \min_{P} \quad & \mu(P) \\ \text{s.t.} \quad & P_{\bullet} \geqslant 0 \\ & P1 = 1 \\ & \Pi P = P^{T} \Pi \\ & P_{ij} = 0, \quad i, j \not \in E \end{aligned}$$

Fastest mixing problem - combined problem

- ► Combined Boyd's idea together with ours
- ► Fastest mixing chain both on topology and weights

all different topologies reversible chain

\ change the weights

fastest mixing weights on each different topology

fastest mixing chain

Optimization description

$$\begin{aligned} \min_{G} \min_{P(G)} & & \mu(P) \\ \text{s.t.} & & P_{\bullet} \geqslant 0 \\ & & P1 = 1 \\ & & \Pi P = P^T \Pi \\ & & P_{ij} = 0, \quad i, j \not \in E \end{aligned}$$

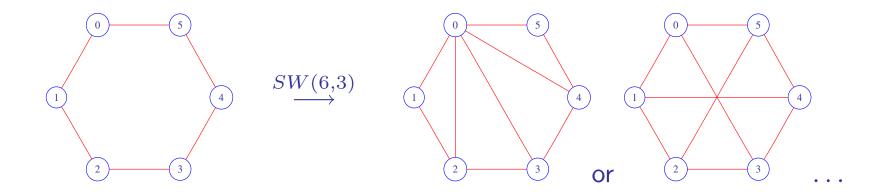
FMRMC for 10 nodes regular graphs

The mixing time for 10 nodes regular graphs

nodes	degree	max time	graph	min time	graph
10	4	4.7185		1.5767	
10	5	4.3522		1.1802	
10	6	2.4663		0.9064	
10	7	1.1802		0.7670	
10	8	0.7213		0.7213	
10	9	0.4551		0.4551	

Random graph results - small world SW(n,m)

ightharpoonup SW(n,m) model: n nodes cycle +m more cross links



- \blacktriangleright $(n,m) \Rightarrow$ topology structure \Rightarrow mixing time
- ▶ How does n affect mixing time? $n \stackrel{?}{\rightarrow} \tau$
- ▶ How does m affect mixing time? $m \stackrel{?}{\rightarrow} \tau$

Small world SW(n,m) - n and τ

For cycle: $\mu = \max\{|\lambda_2|, |\lambda_n|\}) = \left|\cos\left(\frac{(n-1)\pi}{n}\right)\right| = \cos\left(\frac{\pi}{n}\right)$ Substitute into τ :

$$\tau(\mu) = \frac{1}{\rho(\mu)} = \frac{-1}{\log(\mu)} = \frac{-1}{\log\cos\left(\frac{\pi}{n}\right)}$$

Expanded as Taylor expansion:

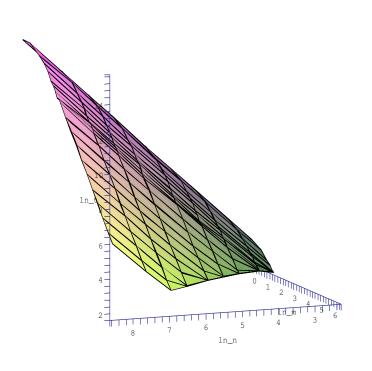
$$\tau(n) \approx \frac{2n^2}{\pi^2} - \frac{1}{3} - \frac{\pi^2}{30n^2} - \frac{5\pi^4}{756n^4} + O(n^{-6})$$

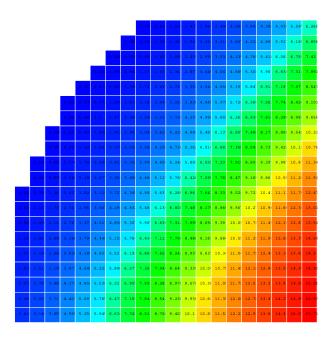
mixing time τ is in direct proportion to n^2 as $n \to \infty$:

$$\sqrt{\frac{\tau}{2}}\pi \approx n$$

Topology $\stackrel{?}{\rightarrow}$ mixing time (SW(n,m))

▶ Colour plot of $\log(\tau)$ against $\log(m)$ and $\log(n)$

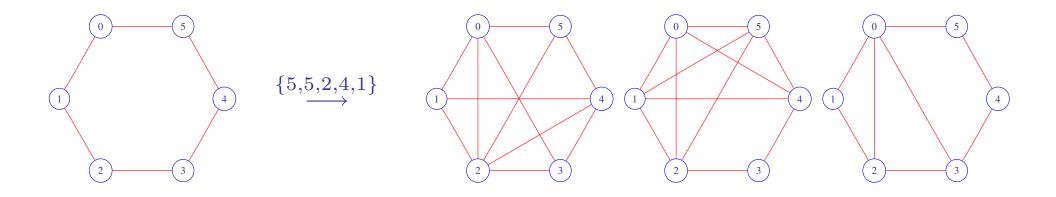




Computational results - small world $SW\{n,p\}$

 $ightharpoonup SW\{n,p\}$ model:

$$n \text{ node cycle} \Rightarrow \{m_0, m_1, \dots, m_k\} \in B(\binom{n}{2} - n, p) \Rightarrow SW(n, m_0), \dots, SW(n, m_k)$$

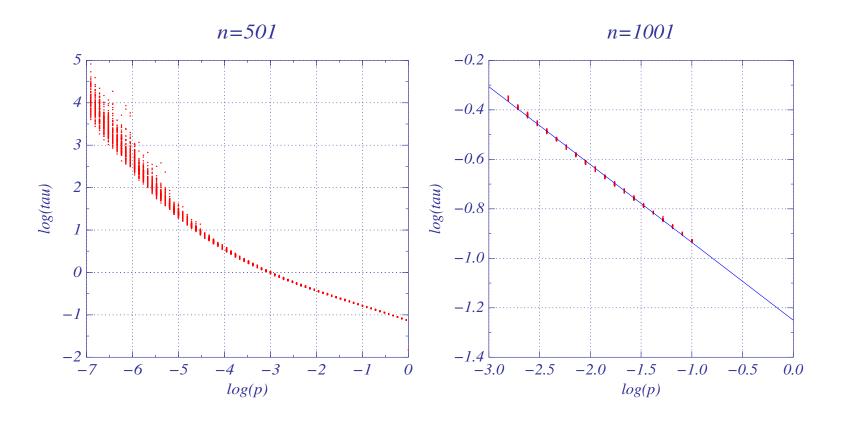


$$SW\{6,0.2\} \Rightarrow SW(6,5), SW(6,5), SW(6,2), \dots$$

 \blacktriangleright What's the relation between p and mixing time?

Topology $\stackrel{?}{\rightarrow}$ mixing time $(SW\{n,p\})$

▶ Mixing time of $SW\{n,p\}$ graphs for n=501 and n=1001



Applications

- ► Information exchange
 - —bounds of the transformation time
- ► Search engine (Google)
 - —How fast can google rank the pages?
- ▶ Sampling problem
 - —rapid simulation with good results

Future work

▶ different graph model

```
 \begin{cases} & \text{Scale-free graph} \\ & \text{Geometric random graph } G(n,r) \\ & \text{Grid (mesh) graph} \end{cases}
```

- ▶ directed graph
- ightharpoonup relation between $average\ hitting\ time\ and\ mixing\ time$

References

- ▶ R. Diestel, Graph Theory, Springer 2000
- B. Bollobás, Random Graphs, CUP 2001
- ▶ S. Boyd, P. Diaconis & L. Xiao, Fastest Mixing Markov Chain on A Graph
- ▶ L. Lovász, Random walks on graphs: a survey
- ► Fan Chung & S-T Yau 2000 Discrete Green's functions
- ▶ N. Biggs, Algebraic graph theory, CUP 1993
- B. Bollobás, Modern graph theory, Springer-Verlag 2002