C Programming Course – Worksheet Five

Introduction

This is the fifth worksheet in the C programming course. By the end of this worksheet you should have experience of:

1) Multidimensional arrays.

2) Multiple-file programming.

3) Allocating arrays of structs using malloc.

1C Programming Course – Worksheet Five

1Introduction

2Multiple dimensional arrays

3Loops and multi-dimensional arrays

3Arrays of strings

3Multiple file programming

3malloc and structs

4The final exercise (and a little more about card play)

Multiple dimensional arrays

Recall from last lecture that we can define an array with two (or even more) dimensions. Consider the code below which is the start of a program to play chess (you can load it from chess.cpp):

#include <stdio.h>

const int BSIZE= 8;

void print_board(char [BSIZE][BSIZE]);

/* Function to print the board to screen */

int main(int argc, char* argv[])

{

/* Set up an array for the board and fill it with spaces */

char board[BSIZE][BSIZE];

int i,j;

for (i= 0; i < BSIZE; i++) {

for (j= 0; j < BSIZE; j++) {

board[i][j]=' ';

}

}

/* Position some pieces lower case is black*/

board[0][0]='r'; /* Rooks */

board[7][0]='r';

board[0][7]='R';

board[7][7]='R';

board[1][0]='n'; /* kNights */

board[6][0]='n';

board[1][7]='N';

board[6][7]='N';

board[4][0]='k'; /* Kings */

board[4][7]='K';

/* Finish off placing the pieces */

print_board(board);

return 0;

}

void print_board(char game_board[BSIZE][BSIZE])

/* Print the characters on a square game board */

{

/* Put your printing code here */

}

The idea is that the chess board is stored as an array of characters with black pieces as lower case letters (e.g. q = black queen Q = white queen). As is usual in chess, the knight is "n" not "k" so it is not confused with the king. This code only places the knights, kings and rooks.

Exercise 1: Write the routine to print the board so far to screen. It will need:

1) Two for loops which loop around both axes of the board.

2) Inside the both loops print out the appropriate character to screen.

3) Somehow print a newline after each row of the board.

A single character can be printed with printf in the usual way or putchar:

char test='x';

putchar(test);
Loops and multi-dimensional arrays

Loops and arrays are a powerful tool together as we have seen. Here is one final exercise to drive this point home.

Exercise 2: Use a loop to put the pawns on the board 'p' and 'P'.

Arrays of strings

A variant on the two dimensional array is an array of strings. Remember a string is just an array of characters terminated with a '\0'.

Exercise 3: Use a loop and fgets from stdin to input ten strings. After they are input then use another loop to print them out (yes it is cheating to simply print them after they are input).

Note: Remember that fgets includes a '\n' as well as a '\0' – how would you get rid of this? One way is to locate it (perhaps using strlen) and copy a '\0'over it.

If you are feeling confident then use a bubblesort (see worksheet three) to sort the strings themselves into alphabetical order (that is print out the strings unchanged but with the alphabetically earliest strings first).

Multiple file programming

Exercise 4: Unfortunately there is not time within classwork for you to write a multiple file program but copy and inspect the program life which is written in several files. You should work out:

i) What goes where in multiple file programs.

ii) What should be in a header file.

iii) How the files interact with each other.

The program is John Conway's "The Game of Life". A page containing more information is: http://www.bitstorm.org/gameoflife/
Multiple file programming is a technique which you may want to use in your final project for this course. You do not need to understand this program -- or even how it works. But it is useful to know how to write multiple file programs in C++. Follow these instructions carefully.

1)Download and save life.cpp, life.h, life_board.cpp from the week5 directory as usual.

2) In visual C++ select File->New->Console Application->Win32 Console Application (call your project life or something similar).

3) Select Empty Project.
4) Select Project->Add To Project->Files. Find life.cpp that you downloaded and add it.

5) Add life.h and life_files.cpp

6) Build it.

7) Save all the .txt files from the week5 directory in the same folder as the project you just created.

8) Run the program and type one of the names of the .txt files you downloaded including the .txt part (if it cannot find the file you have typed the name wrong or have the file in the wrong directory).

9) If the build doesn't work then try again with a different project name FOLLOWING THE INSTRUCTIONS CLOSELY.

The use the FileView tab to look at the various Source and Header files in the program. Notice what is in the header files and what is in the source files. You don't have to understand how this program works but you should try to understand what goes in the source files and what goes in header files.

malloc and structs

Get your cards example from last week's worksheet. If you didn't finish then there's one in cards.cpp in the usual place.

Exercise 5: Write a function which deals a hand of cards. The function will be passed your shuffled deck of cards, the number of cards remaining in the deck and the number of cards to deal and will return a pointer to allocated memory containing a hand of cards. The function might look something like this:

CARD *deal_hand (CARD [], int, int);

.

.

.

CARD *deal_hand (CARD deck[], int cards_left, int to_deal)

{

 CARD *hand;

 hand= (CARD *)malloc (to_deal*sizeof(CARD));

 /* Copy the right number of cards from the deck to hand */

 return hand; /* Return the pointer to the hand of cards we

 dealt */

}

Hint 1: Deal the cards from the back of the pack – if there are 52 cards left then we can deal by making hand[0]= deck[51], hand[1]= deck[50], hand[2]= deck[49] etc etc etc... you need to figure out the appropriate for loop to do this.

Hint 2: It would be good to check that there are enough cards left in the deck to deal the hand.

If we've done it right then we can put the following in main() assuming we are a bridge player:

CARD *north; /*Store hand for the north player */
CARD *east; /*Store hand for the east player */

CARD *south; /*Store hand for the south player */

CARD *west; /*Store hand for the west player */

CARD deck[52];

/* Your code to set up and shuffle here */

north= deal_hand (deck, 52, 13); /* Deal a hand to north */

printf ("North: ");

print_hand(north, 13); /* Print north's hand */

east= deal_hand (deck, 52-13, 13);

 /* Deal east's hand – remembering there are now 13 less cards

 in the deck */

print ("East: ");

print_hand (east, 13);

/* Similar code for south and west */

free(north);

free(east);

free(south);

free(west);

If poker is more your game then deal 5 or 7 cards to each player instead of 13.

The final exercise (and a little more about card play)

We could add routines to play cards from the hand – perhaps set up another structure which contains a hand of cards:

typedef struct one_hand {

 CARD *cards; /*Cards which are in the hand */

 int no_cards; /* No of cards in the hand */

 char name[100]; /* Name of player */

} HAND;
This type definition must, naturally, come after the one for the card itself. We could even have a further type definition for all the players:

typedef struct game {

 HAND *hands; /*Hands for each of the players */

 int no_players; /* No of players in the game */

 char name_of_game[100]; /* Name of game we are playing */

} GAME;
(Note, in real code we'd have an const int instead of a plain 100 in those). Of course this make things quite complex if we want to get at individual bits of information. For example, to look at the value of the first card in the first players hand we would do:

GAME *newgame;

/* Set up the game here */

printf ("Value of card is %d\n", newgame.hands[0].cards[0].value);

/* Assuming that in our typedef for CARD we had set the value of the card to be stored in the variable "int value;" */

Similarly we could print the first player's hand using the following line:

print_hand(newgame.hands[0].cards, newgame.hands[0].no_cards);

Exercise 6(quite difficult – only do this if you like a challenge): Adapt your code along the above lines to request a number of players and then deal a seven card poker hand to each player. Your program should produce an error if it runs out of cards.

Hint – this code does the right thing for just ONE player:

CARD deck[52]; /* A deck of cards */

int n; /* Number of players */

GAME poker; /* Information for a new game of cards */

/* Input the number of players here */

poker.no_players= n;

poker.hands= (HAND *)malloc (n*sizeof (HAND));

sprintf (poker.name_of_game,"Seven card stud Poker");

/* Set up and shuffle the deck */

poker.hands[0]= deal_hand(deck, 52,7);

print_hand (poker.hands[0]);

sprintf (poker.hands[0].player, "Player 0");
Will set up a game and deal a hand to the first player who is, boringly, called player 0 (you might want an input routine for him or her to enter a name). Note – it's actually quite difficult here to ensure that the memory gets freed for every hand before you exit the program. Remember, every malloc you write should find a free eventually.

Hint 2: obviously you'll want a loop in there for all the players and probably a variable to keep track of the number of cards left in the deck

CONGRATULATIONS: You have now finished the final worksheet in the C programming course. Buy yourself a drink – you've earned it.

PAGE
4

