C Programming Course – WorkshEET Three

Introduction

This is the third worksheet in the C programming course. By the end of this worksheet you should have experience of:

1) Simple 1d arrays.

2) String handling in C and the string.h library.

3) File handling in C.

One dimensional arrays in C

As discussed in the previous lecture, a one dimensional array in C can be defined like so:

int nums[20];

or

/* Define some constants for us to use */

enum {

 MAX_LEN = 200,

 NUM_RECS = 300

};

main() {

 char string[MAX_LEN]= "Hello There";

 float income[NUM_RECS];

 int i;

 /* Set all incomes to zero initially */

 for (i= 0; i < NUM_RECS; i++) {

 income[i]= 0;

 }

 printf ("The 3rd letter of string is %c\n",

string[3]);

/*some other code to do useful things*/

 return 0;

}

It is illegal in C to write:

int length= 12;

char string[length]; /* Syntax error */

or

char my_var_size_string (int len)

{

 char string[len]; /* Syntax error */

 .

 .

 .

}

This restriction can be awkward and we will see how to circumvent it later in the course.

IMPORTANT RULE: An array in C which is declared to have n elements will have elements numbered from 0 to n-1 it will have no element numbered n. [This is worth reiterating since it is such a common, and understandable, error for beginning C writers to attempt to access the element n of an n element array. The nth element is numbered n-1. It is easy to become confused by this.]

Exercise 1: Write a program to implement the sieve of Eratosthenes example from the last lecture. Use it to print the primes in the first 100 numbers. Recall the sieve works like this:

1) Construct a table with entries for the first n numbers and cross out '1' which is special and not prime.

2) Set k to be the value of the first number on the table which is not crossed out.

3) Cross out all numbers on the table which are multiples of k except k itself.

4) If k is less than the square root of n then set k to be the next number which is not crossed out. Go to step 3.

5) All numbers which are not crossed out are prime.

A starting point for your code is found in sieve.cpp confident programmers should feel free to ignore this and strike out on their own.

Exercise 2: The Fibonacci sequence was discovered by Leonardo Fibonacci around 1200. It is given by: un+2= un + un+1
where u0=u1= 1

i) Write a program to store the first 25 Fibonacci numbers in an array and then print them out. (check the first 5 by hand).

ii) Alter your program to store and print the first 100 Fibonacci numbers – if you wrote your program correctly you should only have to change one number to do this.

iii) What goes wrong when printing the first 100 numbers and why?

String Handling in C and string.h library

Recall from the previous lecture that a string in C is an array of characters terminated by '\0'. An array of char itself need not necessarily be terminated by this character but if the array is to be printed or is to be used with certain of the string.h functions (for example strlen, strcmp, strcat, strchr etc.) then the '\0' must be present to avoid disaster. Note that, naturally, when we declare a char array it must be large enough to contain all characters including '\n' and '\0'.

CAUTION: Not all the functions in string.h will preserve '\0' termination – this can have surprising results particularly when copying a string into a character array too small to hold it.

IMPORTANT RULE: We can initialise a character array with a string to be exactly big enough to hold the string and the terminating '\0' character like so:

#include <stdio.h>

int main()

{

 char hi[]= "Hello there";

 printf ("The initial string is %s\n", hi);

 return 0;

}
[Remember from the lecture that the '\0' is automatically added in this initialisation.]

Normally you won’t have to think about the '\0' but sometimes it comes in handy to remember it.

Exercise 3: Create a program which takes the string created above and works out its length. Replace the middle character (or if the string has an even number of characters, the one to the left of the middle character) with a letter 'x'. Print out the new string using:

printf ("The new string is %s\n",hi);

[Point for experts to ponder – what is the difference between that and printf (hi); Under what circumstances will that give a different result?]
Hint 1: Remember that a string is just an array of characters. We can set element 1 with:

hi[1]='d';
Hint 2: You will need the strlen function.

char hi[]= "Hello there, I am an example string for testing length";

int n;

n= strlen(hi); /* n is now the length of the string "hi" */

sets n to the length of the string hi. You need to #include <string.h> at the start of your program to use strlen. Test your program with several starting strings.

File Handling in C

File handling functions in C are kept in the stdio.h library. The basics of file handling are:

1) A pointer (or file handle) of type FILE * is used to represent the position in the file.

2) Functions fopen, fclose, fprintf, fgets open, close, write to and read from files. You must open a file before doing anything with it and close it when you've finished.

3) Files can be opened to read, write or append (write on the end).

Exercise 4:Take a copy of the program acount.cpp
This silly program counts the number of lines beginning with the letter 'a' in a file.

 Compile and run the program and test it on a text file (preferably one with some lines beginning with 'a') by changing the name of the file being opened. (The program currently looks for a file called file.txt – see below for explanation of code). There is a file called file.txt in the week3 directory which you can test the program on.

IMPORTANT RULE: fopen attempts to open a file. It returns a pointer to a file handle (FILE *) if it manages to get the file open. It returns NULL if it does not manage to get the file open. Every file which is opened must also be closed (using fclose naturally enough)!

Let's consider the lines which actually open the file:

FILE *fptr;

.

.

.

fptr= fopen ("file.txt","r");

if (fptr == NULL) {

 printf ("Unable to open file\n");

 return -1;

}

"file.txt" is obviously the name of the file to be opened. This can include subdirectories, for example:

fopen ("/usr/people/richard/file.txt","r"); /* Unix system */

fopen ("H:\\RICHARD\\CCODE\\FILE.TXT","r"); /* Windows system */

[NOTE: in Windows, the file is named "C:\WINDOWS\SYSTEM" – but recall that in C strings the \ character is "special" – it is the "escape" character used in \n for example. If we want the string to contain one \ then we must use \\ which is why the windows version of this looks so strange.]
IMPORTANT RULE: fopen takes two arguments – the first is the file name and the second is the mode of opening. In fopen "r" means open the file to read. This will fail if the file to be opened does not exist. "w" means open a file to write (and to write over the current file if there is one) – it will fail if the file name is used by a file which is write protected. It will create a new file if there is no file of that name. "a" means open a file to append. It will write on the end of a file. If no file of that name exists it will behave like "w" – again it will fail if the file is write protected. When an open attempt fails fopen returns NULL otherwise it returns a pointer of type FILE *.

CAUTION: Always remember to use fclose to shut the file again or information might not be written to the file. Remember that fclose takes the file pointer as an argument NOT the name of the file. This is a very common mistake to make.

Now consider the lines which read from the file:

while (fgets (read_line, MAX_LEN, fptr) != NULL) {

 .

 .

 .

 }

fgets takes three arguments, the first is a STRING to read into, the second is the maximum number of characters to read in and the third is a file pointer to read from. fgets reads from the file until it finds a newline or until it has read MAXLEN-1 characters (the extra character is used for the \0 at the end of the string. fgets also returns the special value NULL if it has run out of things to read. Therefore this line has the double purpose of both reading a line (up to a newline character – or until MAX_LEN characters have been read) from the file – but also of checking if we have got to the end of the file by comparing the value of fgets with NULL.

Exercise 5: Adapt the acount.cpp program so that it reads in a file and writes every line beginning with a to a different file called output.txt

You will need the fprintf function which works exactly like printf does but takes an extra first argument which is a file pointer. Consider the following example program which writes a single line of text – use the ideas in this to adapt your code:

#include <stdio.h>

int main()

{

FILE *fptr;

fptr= fopen ("output.txt", "w"); /* Open a file for output*/

if (fptr == NULL) {
/* Check it opened */

printf ("Unable to open file \"output.txt\"\n");

return –1;

}

fprintf (fptr, "Hello file world!\n"); /* Write "hello" */

fclose(fptr);

/* Close the file */

return 0;

}

Sorting in C

Exercise 6: Consider the program below which asks you to input a string of arbitrary length.

#include<stdio.h>

enum {MAX_LEN=200}; /* Maximum length of an input string */

int main()

{

 char my_text[MAX_LEN]; /* Text to be input by the user */

 fgets(my_text, MAX_LEN, stdin);

 printf ("Text entered was %s\n",my_text);

 return 0;

}

Note carefully the line beginning with fgets. This is the best way to get a line of input from the

user. Exactly why this is will be explained in one of the lectures. This reads, at most MAX_LEN

characters into the string called my_text from standard input (which is defined to be called stdin in the stdio.h header file). In this case, standard input means the keyboard (it almost always does).

Use a bubble sort algorithm to sort the string into alphabetical in place (that is to say, without creating an additional string). The bubble sort algorithm is a (relatively inefficient) sort algorithm defined below:

1) Move along the array from left to right comparing adjacent characters. Swap characters which are "the wrong way round" (that is the right character is earlier in the alphabet than the left).

2) If any swaps were made in step 1 repeat step 1 (So you will need a variable which stores if swaps are made or not).

3) You will need two loops – the inner one will walk along the string and make swaps – the outer one will simply check if any swaps had been made and continue until no swaps were made.

Test the bubblesort by sorting and printing strings of various lengths and printing out the sorted string.

Hint 1: Characters can be checked for relative position and swapped using the code fragments here:

char c[MAX_LEN]; /* A string of MAX_LEN characters */

char tmp;

/* MAX_LEN is defined by an enum earlier */

int n;

.

.

/* Check characters at n and n+1 and swap if necessary */

if (c[n] < c [n+1]) {

/* True if c[n] is earlier in the character set */

tmp= c[n]; /* Swap the two characters around */

c[n]= c[n+1]; /* using a temporary variable */

c[n+1]= tmp;

}

.

.

.

printf ("Sorted string is %s\n",c);
[Note for experts: Obviously this rule doesn't work with all character sets – but most computers use ASCII these days.]
