C Programming Course – WorkshEET TWO

Introduction

This is the second worksheet in the C programming course. By the end of this worksheet you should be able to:

1) Use functions and prototypes.

2) break and continue.

3) Understand static variables.

4) Understand and use recursion.

5) Format output using the printf statement.

6) Get input from the user with the scanf function.

7) Use some of the functions in the math.h library (exp and log).

An example program using some of the concepts from this worksheet is given in the last two pages – if you are having difficulty with some of the concepts then this example may help you clarify your ideas. Refer to this example program if you are having trouble remembering where things go. Finally, on the last page is an alternative method for compiling your C programs if you find Visual C++ troublesome as an interface.

Getting started for Worksheet Two:

Copy the files from the week two directory to your own file space. You should still have a drive linked from last week’s worksheet. Remember you can copy files by selecting them and using right mouse to copy then moving to the directory where you want to place them and using right mouse to paste. If you, for whatever, reason have not still got this directory linked then:

1) Open “My Computer” from the desktop by double clicking.

2) Under the “Tools” menu select “Map Network Drive”
3) Under Drive, select “F:” from the pull down menu (it doesn’t really matter which letter but I will assume in these notes you used F.
4) In the “Folder” box type \\w2ksan0\StaffFS\rgc2\Cprogramming

5) Click Finish

Functions and Prototypes

Exercise 1: Let's start by writing a simple function to match a prototype.

Start up Visual C++ and do File->Open up prime.cpp.
We are going to write a bit of code which will find prime numbers. Open the file and you will see much of the work is done for you. The main routine goes through all the integers from 1 to 20 and calls a function “is_prime”. If that function returns 1 (in C this is the same as “true”) then the number is prime – if the function returns 0 (in C this means the same as “false”) then the number is not prime. The main routine prints a message accordingly. You should not have to adjust the main() section of the code. All the alterations you need are in the is_prime section.

The function is defined as:

int is_prime (int num)

Recall from the lecture that this means the function will be given one number (which will be called “num” within the function) and will return one number. In this case the function should return 1 (remember one means true) if the number is prime and should return 0 if the number is not prime. You will have to check if the number is prime by exhaustively searching all the numbers > 1 but less than “num” to see if they divide without remainder into “num”. (PTO if you need hints)

Your function will need to do the following:

1) There are no prime numbers less than 2. If “num” is less than 2 then return 0 because we already know that the number is not a prime.

2) Create a for loop which runs from 2 to num/2. (You will need to define a variable for the for loop – the name i is a good name for a loop variable). This loop will check factors for our potential prime number (think carefully why all factors must be between 2 and num/2).

3) Use the modulo operator inside the loop to check if (num%i == 0) – if this is the case then the number cannot be prime (since we have found a factor) and we should immediately return 0.

4) If none of the numbers in the loop are a divisor then the number "num" must be a prime. Therefore, after the for loop has closed "return 1" to indicate that the number is a prime.

Keep a copy of the file with your is_prime function since this function will be used again later.

The break and continue statements

break is another of C's keywords. It means exit from a for or a while loop early. Here's another test for your is_prime function – this fragment of code can be found in: pfrag.cpp
#include <stdio.h>

int main()

{

 int i;

 int min= 104;

 int max= 120;

 for (i= min; i <= max; i++) {

 if (is_prime(i)) {

 printf ("%d is the lowest prime in range\n",i);

 break;

 }
 }

 if (i > max)

 printf ("No prime numbers found in range\n",i);

 printf ("Goodbye!\n");

 return 0;

}

Exercise 2: Add your is_prime function to this code to check that it works (remember to put the function prototype in the right place). There are a number of ways you might choose to copy your code between files. One is to use notepad or wordpad to open the prime.cpp file, select the function you wrote, right mouse to Copy. Move to where you want it pasted in pfrag.cpp and right mouse to Paste. Don’t forget that you will also want a prototype for your function as discussed in lecture one – copy both the prototype (the bit at the top of the program which ended in a semi-colon) and the function including its function header – the bit just above the first curly bracket in the function which says int is_prime(int num).

Check that the program works for several values of min and max.

The break statement is used to exit from deep within a complicated loop – it will only exit from one level of loop. Note that in this case, we could just have well have used return 0 to exit the loop – but then we wouldn't have been able to print Goodbye at the end.

The continue statement is similar to break but instead of exiting the loop it immediately starts another iteration of the loop. For example we might use it like this:

int i;

for (i= 1; i < 100; i++) {

 if (is_prime(i)) {

 printf ("%d is prime\n",i);

 continue;

 }

 printf ("%d is not prime\n",i);

 print_factors(i); /* Function to print out the factors of i */

}

Like break continue only applies to the inner loop if it is within multiple loops. break and continue don't tend to be used that often in C but they can be useful if you're dealing with complicated loops.

break and continue can be useful to make code more efficient since you don't have to go all the way round all the loop.

Recursion

A function is called recursive if it calls itself. To some people this idea seems confusing at first (after all, if a function calls itself, how can it STOP?). Here's an example of a recursive function which calculates factorials. fact.cpp contains the following:

int factorial (int n)

{

 if (n == 1)

 return 1;

 return (n * factorial (n-1));

}

Let's consider how this is working with the example of factorial 5.

factorial (5) is called which returns an answer which is 5 * factorial (4). This in turn calls factorial (4) so the answer to factorial (5) is then 5 * 4 * factorial (3) – and so on until eventually, factorial (1) is called which returns 1.

CAUTION: There is a significant problem with the factorial program shown. What would happen if factorial (0) were requested? Consider the fact.cpp program carefully. Make sure you fully understand what it is doing or you will not be able to do the next exercise

Exercise 3: Copy and compile pascal.cpp from the week 2 course directory. The program contains a function int pascal_num (int n, int r) which recursively calculates the number in the n'th number in the r'th row of Pascal's triangle (the first 6 rows of which are shown below to refresh your memory):

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Check you understand how the function is working. It is quite complicated to understand at first sight. The function calls itself. Check that you understand how the function ever STOPS. Can you think of values of n and r which would make the function run forever? Check by calling the function with those values from main (For example, put the line pascal_num(4,4) into main if you think that n=4 and r=4 would break the routine). (If it works then the program won’t actually run forever since it will eventually crash because it has called the function so many times – if you find values where you call the function and it crashes then you have found the problem). Fix the function so that it will always stop even if people give it bad values.

Recursion is not an easy concept to grasp – hence the programmer saying “to understand recursion one must first understand recursion”.

Formatted Output with Printf

There are lots of additional features of printf which are listed on page 244 of K & R. One which is particularly useful the ability to specify that a number MUST take up a certain number of spaces when printed.

printf ("%5d",i);

prints the integer i, padded with blanks to make it 5 wide. There are a number of other printout options which, amongst other things, allow you to specify that a sign is always printed, how many places of decimals a float should be printed to and whether a number should be padded with zeros or blanks to make it fit a column. It's not worth remembering what all these printf options are but it's worth knowing that they're there so you can look them up as and when you need them.

Exercise 4: Using these new formatted output options, print the first 7 rows of Pascal's triangle in a pretty pyramid format similar to the one above.

Hint: There are two problems here. Firstly you must ensure that the integers printed all occupy the same width. Do this using the formatted printf above. Secondly you must ensure that the right number of spaces are printed at the start of the row. You can print the right number of spaces using a for loop inserted before each row is printed and a printf (" "); the trick is working out how many spaces you will need the for loop. Hint: it will be a function of the row you are currently printing and the maximum width of the pyramid.

You will NOT have to modify the pascal_num part of the program.

[If you are an expert programmer then try printing the right number of spaces using a single printf statement – you will probably need to look in K&R for this and think VERY carefully].

Using the scanf function

scanf is another member of the stdio.h library. This time it is used to read variables rather than writing to them. Copy and run scanf.cpp. Look at the statement:

no_read= scanf ("%d",&i);
There are a number of things to notice about this statement. scanf reads information from the keyboard until it finds something which either matches or breaks the pattern it is looking for (in this case an integer). As soon as it finds that pattern it stops immediately even if all the input hasn't been read (and a subsequent scanf will start reading again from this point). Sometimes this can make scanf's behaviour downright confusing.

IMPORTANT RULE: In the line above, no_read is the number of items read by scanf – NOT the number which scanf has read. i contains the number that scanf has read in the above line.

scanf returns the number of arguments which it has successfully read. It is always worth checking if scanf has read the right number of arguments.

The & in front of i means that the variable i can be changed by the function – if you remember from the previous lecture, this is not normally possible. It is extremely important when using scanf to remember the &. So, to read into an integer i we could do:

#include <stdio.h>

int main()

{

 int i;

 if (scanf ("%d",&i) == 1) {

 printf ("The number you chose was %d\n",i);

 } else {

 printf ("No number input\n");

 }

 /* Do something else with our number here */

 return 0;

}

IMPORTANT RULE: When we put & in front of a variable name in a function call, the function can change the value of the variable. This is called pass by reference (normally we pass arguments by value). We will cover this in more detail in subsequent lectures and explain how you can write your own functions which can receive arguments passed by reference. For now just remember that scanf needs the &. (It is a very common mistake to forget this).

CAUTION: It should be noted that scanf isn't often a very GOOD way to get input off the user (as you might have suspected). It sometimes acts in very peculiar ways as you will see if you experiment with it further. I will show you better ways to read input later in the course but it is certainly good enough for now.

Exercise 5: Use scanf to get a user to input a number. If the number is a positive number greater than 1 then use your is_prime function to check if it is a prime number and print either that the number is prime or that the number is not prime. If the number is less than or equal to one print an error message.

The math.h library

A useful library is math.h. As usual, this is included using #include<math.h>

Exercise 6: sin takes a value in radians and returns the sin of it. Use the sin function to plot a sin wave vertically using stars (it should look something like this):

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

Hint: Obviously, sin returns a number between -1 and 1. Convert this to a number between 0 and 60 and print that many spaces before printing the * - then print a '\n'
More debugging

Exercise 7: Copy and fix the program bugger3.cpp
Another (more difficult) example function using primes (only do this and the next exercise if you have time).

Exercise 8: Goldbach's conjecture (1742) is unproved and without counter example as yet. It states that any even number greater than 4 is the sum of two odd primes. Use your is_prime function again in a function which checks Goldbach's conjecture for a particular even number and prints out the results in the form shown below:

6 = 3 + 3

8 = 5 + 3

10 = 7 + 3

12 = 7 + 5
Copy the program skeleton from goldbach.cpp
Your program should only print only ONE sum for each even number (even when there are several ways of making the sum). It should be capable of printing an error if you find an even number which ISN'T the sum of two odd primes (if you do find one then it's fairly safe to assume that your program is broken of course).

The way to do this is as follows. The function goldbach takes one argument which is an even number which is called “num”.

i) Write a for loop which goes from 3 up to num in steps of 2 (don’t forget to define the variable) this variable will be the left hand side of your sum.

ii) Calculate the right hand side of your sum and store it in another integer variable.

iii) Use your is_prime function to check that both numbers are prime (remember you can use if and &&). If they are both prime then you have found the right numbers. Print them out (in a tidy format) and return;

If you get to the end of your loop then you have failed to find numbers (either num wasn’t even or wasn’t > 4 or you’ve disproved goldbach’s conjecture) print an error message.

Once you have got this working then without changing your goldbach routine or your is_prime routine, put a loop in main which calls goldbach for every even number from 6 to 100.

This is actually quite a bad way to check Goldbach's conjecture since we're having to do a lot of work recalculating whether each number is prime every time. If you are an experienced programmer then try writing a more efficient check on Goldbach's conjecture.

Static Variables

We can declare any variable in a function to be a static, this variable will only be initialised the first time the function is called and will retain its value after the function exits. An ordinary variable (sometimes known as an automatic variable) within a function is created when the function starts and destroyed at the end of the function. For example, we can declare a function counter like so:

void counter (void)

{

 static int ctr= 1;

 printf ("Function counter has been called %d times\n",ctr);

 ctr++;

}

Will print:

Function counter has been called 1 times

Function counter has been called 2 times

etc etc – one line every time it is run.

The variable ctr is created and initialised to 1 the first time the function is run. At the end of the function it is incremented to 2. The second time the function is called the variable ctr keeps the value 2 and is incremented to 3 at the end of the function.

Exercise 9: Using static, convert your program which check's Goldbach's conjecture from 6-100 so that instead of printing the various sums it simply counts how many times the is_prime function is used and each time prints the number of times the routine has been called so far.

/* **An example program to show where everthing goes in a C Program

 **This program has MORE comments than usual - but otherwise should

 **be a good example of how to write code - Comments with ** in them

 **have been added to make points and are not good commenting practice */

/* ** This header file is sometimes required by Microsoft Visual C++

 ** it is not really part of the C language*/

#include "stdafx.h"

/* ** stdio.h is used to include standard Input and Output functions */

#include <stdio.h>

#include <math.h>

/* ** This program does not have any GLOBAL variables but if it were to

 ** then here is where they would go */

/* ** Now list function prototypes */

void plot_point (double, int);

/* Plots a '*' part way across a screen of a given width */

double plotting_function (double);

/* A function mapping [0,1]->[0,1] to plot*/

/* ** main means START HERE - your program will start at this point */

int main(int argc, char* argv[])

{

int i;

int width= 80;
/* Width of the screen */

int height= 24; /* Height of the screen */

double x_pos, y_pos; /* x value and y value on our graph */

/* First print the "y-axis" of our graph */

for (i= 0; i < width-1; i++) {

printf ("*");

}

printf ("\n");

/* Now loop round for all our possible x positions */

 for (i= 1; i < height; i++) {

x_pos= (double)i/(double)height; /* Calculate our x posn */

y_pos= plotting_function(x_pos);

plot_point(y_pos, width);

}

return 0;

/* ** Return 0 means "we have successfully completed our program" */

}

/* ** This function goes with the prototype above - remember a void

 ** function is one that doesn't return anything */

void plot_point (double y_pos, int screen_width)

/* Plot the point at "y_pos" */

{

int i;

int y_int; /* The y_position as an integer position on the screen */

printf ("*"); /* Print the "x-axis"*/

y_int= (int) (y_pos * screen_width);

/* If we cannot print this point then just return */

if (y_int <= 0 || y_int >= screen_width -1) {

printf ("\n");

 return;

}

/* Print a * in the correct place */

for (i= 1; i < y_int; i++) {

printf (" ");

}

printf ("*\n");

/* ** Don't need a return at the end of a void function -

 ** "Falling off the end" works just the same */

}

/* ** The next line is the "function header" it is subtly different to the

 ** prototype in that it doesn't require a semi-colon but it MUST give

 ** names to all its variables. The names of arguments in the function

 ** header are used throughout that function */

double plotting_function (double x)

/* Replace this with any function - but remember that only x and y

values in the range [0,1] will be plotted */

{

double y;

y= 0.2 + x + 2*x*x - 3*x*x*x; /* Calculate a third order polynomial*/

return y;

/* ** A function other than a void function MUST end with a return */

}

An alternative way to Compile C programs

Some of you might be perplexed by the Visual C++ compiler itself and have “mysterious” problems with it failing to compile things. An alternative way to compile programs is as follows:

Select Start->Programs->Accessories->Command Prompt

You are now in a command shell from windows 2000. The following are some commands

copy file1 file2

Copy one file to another

mkdir directory

Make a directory (folder)

cd directory

Change to a new directory

del file1

Delete a file

You can edit a file using notepad (not a very good editor I know – but don't be tempted to use something like microsoft word – it doesn't produce the right type of files).

So you can write your program source code with:

notepad program.cpp
You can then compile it with

bcc32 –oprogram.exe program.cpp
and run it by typing

program

For example, you might compile our “hello world” code with:

bcc32 –ohello.exe hello.cpp

hello

A disadvantage of doing things this way is that notepad does not colour the program (syntax colouring) to give you hints as to where you might have gone wrong. You might even try a combination of these methods by using the command prompt and bcc32 to compile programs and visual C++ to write the source code. Feel free to experiment with these if you think it would be easier for you than using visual C++.

