C Programming Course – LECTURE FOUR (NOTES)

What these lecture notes cover

These lecture notes should cover the following topics:

· typedef and struct statements.

· Pointer arithmetic.

· Header files and what to put in them.

· How to write a clean interface.

· A recap of new language features from lecture four

typedef and struct statements

You might be wondering about that peculiar FILE thing that seems to be usable like an int or a float in functions. FILE is an example of an important part of the C language known as a structure. A structure is a built up part of the C language which behaves like a built in type. We can declare a group of associated variables which are associated as a structure.

IMPORTANT RULE: A struct statement declares a structure which can hold information of existing types (or indeed other structures). A struct should be declared at the top of the code or in a header file.

For example, if we are writing a program for a bank, we might decide that an account is a fundamental data type in such a program. Therefore we declare a structure which deals with each account:

struct account {

 char acct_holder[80]; /* Name of holder */

 char address[100]; /* Address of holder */

 float balance; /* Balance in pounds */

 int acct_type; /* type of account 1= savings 2= current */

};

We can declare variables to have this type. And we can access elements using the dot notation shown below:

struct account new_acct;

strcpy (new_acct.acct_holder, "S. Holmes");

strcpy (new_acct.address, "222B Baker St., London");

new_acct.balance= 23.50;

new_acct.type= 1;

We can use any of these variables within a struct wherever we could use a variable of the same type. So, for example, we could add this:

float interest;

float rate= 1.75;

interest= new_acct.balance * rate / 100.0;

printf ("Adding interest of %f\n",interest);

new_acct.balance+= interest;

We can make our struct look even more like a built in type such as int or float by using a typedef statement. For example:

typedef struct imaginary_number {

 float real_part;

 float imag_part;

} IMAG_NUM;

we can then use the new type IMAG_NUM pretty much wherever we can use an int. For example:

IMAG_NUM x,y;

float a= 2.0;

x.real_part= 3.0;

x.imag_part= a;

We can also use these typedef types in functions for example:

IMAG_NUM mult_imag (IMAG_NUM, IMAG_NUM);

/* Function to multiply imaginary numbers */

IMAG_NUM mult_imag (IMAG_NUM x, IMAG_NUM y)

{

 IMAG_NUM ans;

 ans.real_part= x.real_part*y.real_part – x.imag_part*y.imag_part;

 ans.imag_part= x.real_part*y.imag_part + y.real_part*x.imag_part;

 return ans;

}

IMPORTANT RULE: typedef can be used to associate a label with a structure. By convention, we put our typedef names in ALL_CAPS or at least InitialLetterCaps in order to distinguish them from built in types and variable names. Like a struct statement, typedef should be at the start of the code or in a header file.

We can even have arrays of typedef variables. For example:

IMAG_NUM points[2];

points[0].real_part= 3.0;

points[0].imag_part= 1.0;

points[1].real_part= -3.5;

points[1].imag_part= -2.0;

You can also use typedef to create another name for a built in type. For example you could write:

typedef int Length;
the only common use for this is in defining things which are a pain in the neck to type. For example, if your program uses a lot of unsigned char values (recall that such a variable can store a number from 0 to 255) then you might want to:

typedef unsigned char uchar;

simply to save typing. (Programmers are notoriously lazy).

IMPORTANT RULE: We can build structs up from other structs. For example, we might want to define a rectangle in the imaginary plane by defining two of its corners. We could do so as follows (assuming the previous definition of IMAG_NUM has already been defined earlier in the program):

typedef struct imag_rect {

 IMAG_NUM corner1;

 IMAG_NUM corner2;

} IMAG_RECT;

We can access the bits of the rectangle as follows:

IMAG_RECT rect1;

rect1.corner1.imag_part= 3.1;

rect1.corner1.real_part= 1.2;

rect1.corner2.imag_part= -2.3;

rect2.corner2.real_part= 1.4;

Pointer Arithmetic

It was hinted earlier that pointers were equivalent to arrays and can be used interchangeably in many circumstances. Recall that:

int i [7];

int *j;

declares i to be an array of 7 integers for which memory is allocated and j is a pointer to an integer. It is worth also remembering that & is the address of operator – when used on a regular variable it returns a pointer to it and also that * is the dereference operator when used on a pointer variable it returns the value it points to. However, we can write j= i; which makes j point at the first element of i (i[0]). We can then use j in the same way as i.

j[0] can be written to or read from in the same way as i[0]. We can also access j[1] through to j[6] just as we could access i.

We can also do the following (given the above definitions):

j= j+1; /* Makes j point at the next integer in memory – i[1] */

j= &i[5]; /* Makes j point at i[5] */

j[0]= 1; /* Sets j[0] (same as i[5]) to 1 */

printf ("%d\n",i[5]); /* Should print 1 */

j[1]= -3; /* Sets j[1] (and i[6]) to –3 */

j= i; /* j points at i[0] again */

j[3]= 5; /* Sets the value of j[3] (same as i[3]) to 5 */

j= j+3; /* j is now pointing at i[3] */

j= 10; / Sets j (same as i[3]) to 10 */

j[4]= 4; /* Error – this is off the end of the array j[4] is i[7]*/

j= i; /* Set j back to pointing at i[0] */

j= j+7; /* j is now pointing off the end of the array*/

 /* This is not an error until we try to access it*/

j= 10; / This is an error though */

IMPORTANT RULE: We can add to and subtract from pointers. Adding one to a pointer moves the pointer to point at the next space in memory available for an object of that type.

What is the point of all this? Well, it is another way to step along an array. In effect, by creating a pointer which points at the start of an array and moving that pointer along the array we can "pretend" that the start of the array is further on. This might be useful in a number of functions – for example, taking a sample mean.

Header files and what to put into them

We have talked a lot in other parts of this course about header files. A header file is a file which is included (with a #include statement) in a C program. You have already encountered a number of library header files: <stdio.h> <string.h> <math.h> <stdlib.h>. Basically, any code can be put in a header file – after all, a #include simply shoves the code into your source at that point. However, here's the rules that we recommend for what to include in header files:

1) Defined constants (enum or #define).

2) Prototypes.

3) Only those #include statements which are necessary for the prototypes (for example, if one of your prototypes includes FILE * then you must include stdio.h (otherwise FILE * won't make any sense to the compiler).

4) extern statements for global variables. (see later)

5) typedef and struct statements.

By convention, header files which you have written are included using double quotes rather than angle-brackets like so: #include "myheader.h" The reason for this rule is that it means that people reading your code can readily tell which files you have written and which are system files for the compiler you are using. This can be important, for example, the first few lines of a program are:

#include <stdio.h>

#include <Xlib.h>

#include <sys/types.h>

#include "protos.h"

#include "defs.h"

without the <> and "" notation it would be hard for all but the most experienced programmers to know which files were part of the program and which were part of the operating system. It is conventional to put system header files before user header files.

Writing programs in multiple file

Writing header files is just part of writing C code in multiple files. While you will not need to write C programs in multiple files (indeed most of the programs that you write during this course will be easily small enough that a single file is the best way to go) it is a good technique to know – your project will probably be large enough to be spread across multiple files. Individual .c files are often called modules. Why write C programs where the source code is spread across more than one module? There are a number of reasons:

1) Code which is related can be kept together making routines easier to find.

2) Two programmers can work on the same program by editing different files.

3) On a very large program we can save time by only recompiling part of the program.

4) If, for some reason, we need to rewrite part of a program, the bits being rewritten may be in one file.

The how to of writing programs in multiple modules is fairly straightforward. Remember that you should never have more than one main (indeed you should never have two functions with the same name). If you use a struct or a typedef a #define or an enum in a module then that module should include the header file containing the appropriate bit of code for the struct, typedef, #define or enum. If you are following the rules we set up above, then you're including all these things in header files anyway.

IMPORTANT RULE: Any module that calls a function should have access to the prototype for that function. (That is, in fact, what you've been doing all the time you've been #include ing headers – making sure that the prototype for printf, or whatever, was available). The best way to do that is to put the prototype into a header file and #include the header in any module which wishes to use the function.

Finally, we must tell the compiler about any global variables which you wish to use in more than one module. The way to do this is by using an extern statement.

IMPORTANT RULE: Use extern to declare a global variable that is defined in one module and is to be used in another module.

(Note that in the following files are described as ending in .c – in Visual C++ we use the ending .cpp instead since it is a C++ compiler – however the principle remains exactly the same).

For example:

module1.c:

module2.c

float fiddle_factor= 3.1;

extern float fiddle_factor;

int main()

float my_func (float f)

{ {

. f *= fiddle_factor;

. return f;

. }

}

It is a mistake to declare the same global variable twice – which is what we would have done if we had missed out the extern in module2.c. As stated earlier, the best place for an extern statement is in a header file. It does not matter at all if a variable is declared as extern in the same module it is declared. Therefore, in the previous example, it would be best to move the extern line out of module2.c and into a header file included by both modules.

On unix we can compile multiple module programs quite simply by listing all the .c files where we used to just list one like so:

cc –o my_prog file1.c file2.c

In Visual C++ and similar, we simply add extra .cpp or .h files to our project (we saw the example of adding a .h file in worksheet four). Later we will talk briefly about Makefiles which are another way of achieving this.

The problem with talking about this topic is that any program which is large enough to require multiple files is probably too large to consider in detail. Instead let's consider an abstract example of how we might split up functions between files. Our imaginary program might be a program to deal with the pay packets of university lecturers. The program would need (amongst other things) the following features:

1) Input info for a new lecturer.

2) Delete a lecturer who leaves.

3) Promote a lecturer who gets an individual pay-rise.

4) Read and write this information to disk.

5) Inspect an individual lecturer's record.

6) Print off a months wage packets for all lecturers.

We might therefore decide to split the functions up between files like so:

[image: image1.wmf]pay.c

Main bit of program.

Gets input from user.

Calls appropriate routine

depending on user input.

fileio.c

Reads records for

lecturers.

Writes updated records.

Makes back-up copies of

files so that nothing is

lost.

printout.c

Prints a "cheque run" on

pay days.

Prints records of

individual lectures for

inspection.

update.c

Input file for new

lecturer.

Change file for existing

lecturer (for example

pay rise or name

change).

pay.h

Prototypes and definition

of constants for the

program.

Note that all the .c files would include the file pay.h. This is quite normal, small C programs in only two or three files will typically only have one or two header files. Larger programs in more files may need more header files.

One common question is "how many functions should be in each module?" Really, it is up to the programmer. Too many is a pain because each module is long, it's hard to remember where in the file you put the code and each module takes a long time to compile. It also may be harder for another programmer looking at your code to know which functions are the most important if they're all together. Too few functions in a module is a pain because you have a large number of modules to maintain. Generally, somewhere between 1 and 100 functions is the right number but it is up to the preference of the individual programmer.

The extern statement
· the extern statement.

The extern statement is used in multiple file programming. It is used to say "the global variable used in this file is initialised in another file". Put extern in front of a global variable when it is declared in another file. In the following example we declare three variables (two arrays and one char) in testprog1.c and use them in testprog2.c

Every file (module) in the program which uses the global variables, except for the one where they are declared, must have them declared as extern to say to the compiler "don't worry about this variable, you will find out about it from another file." If we had forgotten to declare the variables as extern in testprog2.c this would be equivalent to having two global variables with the same name in the program (confusing and probably will stop your program working). If we had not declared them at all in testprog2.c then the compiler would flag an error because it wouldn't know what farray, iarray and c were.

How to write a clean interface
Talking about programs in multiple files leads us naturally onto the topic of the clean interface – one of the many things that separates a programmer from a good programmer. By interface in this sense we don't mean how the user inputs information into the computer but how the we access the code in each of the modules. Let's imagine that we are writing the fileio.c part of the pay packet program described above and other programmers are working on different parts of the program. We need to decide what functions we will let those other programmers use for our file access part of the program.

That is, we need to provide those other programmers with an interface to our code. When we design this interface we need to write one or more functions that will allow access to this section of the code. In this case, for example, we might decide to provide four functions: write_record, read_record, add_record and delete_record. (Where write_record would over-write an old file but add_record would create a new one).

The basic rules of an interface is that it should be simple, consistent and predictable.

In this case, simple means that the functions should be as easy as possible to use with as little possible knowledge of how they work. A good example of this is the FILE *functions in C which you can normally use without knowing anything about what is actually in the FILE structure. One possible write_record function would be:

void write_record (FILE *fptr, char name[], int wage, int hire_date);

however, we might have to add arguments to this function, for example if we decide we need to know the date of birth or some tax code information – also we have to open the file before calling it and close it afterwards – not too much of a problem if we only call the function at one place in the program but irritating if we have to call this function from a lot of places. A final problem is that there is no way for this function to tell us if there's a problem writing. A simpler interface might be provided by:

int write_record (char fname[], LECTURER *lect)

/* Returns 0, for success –1 for failure */

where fname is the name of the file to write to and the LECTURER structure represents all the arguments of the previous function. The return value of the function is an int which is 0 for success and non-zero for failure.

By consistent we mean that our functions all tend to have the same style where possible. For example, if we wrote write_record as above it would be peculiar to write add_record as:

/* This is a bit perverse*/

int add_record (LECTURER *lect, char fname[])

/* Returns –1 for success, 0 for failure */

If you write code like this then other programmers will be justified in doing you injury since every time they call one of your routines they will have to remember which way round you do things this time! Of course consistency can only be taken so far. It might make sense to write the read function differently:

LECTURER *read_record(char fname[])

/* Returns a pointer to the record stored in fname or NULL if there's an error */

Finally, predictability – in this case, by predictability, we mean that your functions don't change things unnecessarily. For example, when writing the write_record function we would want to be sure that we didn't change the string stored in fname without very good reason. Your users might be quite startled if you do because they would expect code like this to work:

char fname[80]= "new_file.dat";

if (write_record (fname, lecturer) == -1) {

 printf ("Failure to open file %s\n",fname);

}

Now if you've changed the information stored in fname then this seemingly innocent bit of code would print out nonsense.

A recap of syntax learned in week four

struct and typedef can be used in C to create a user defined type which acts like built in types such as int and float. A structure can contain data of any already defined type including other structures. An example is shown below:

typedef struct animal {

 char name[80];

 int no_legs;

 char colour[80];

 int no_ears;

} ANIMAL;

This defines ANIMAL to be a data type which can be used like int, float or char. We have already seen FILE which was defined like this. A structure defined with a typedef like this can be used like so:

ANIMAL tiger;

Individual parts of a structure can be accessed using the . notation as follows:

tiger.no_legs= 4;

tiger.no_ears= 2;

sprintf (tiger.name,"Tigger the tiger");

sprintf (tiger.colour,"mainly stripey");

by tradition, typedef names are ALL CAPS or at least InitialLetterCaps.

testprog.h

/* function prototypes */

void testfunc(void);

testprog2.c

#include "testprog.h"

/* Globals from testprog1.c must be defined as extern here*/

extern float farray[1000];

extern int iarray[500];

extern char c;

void testfunc (void)

{

 printf ("farray[0] is %f\n",

 farray[0]);

 printf ("c is %c\n",c);

 printf ("iarray[0] is %d\n",

 iarray[0]);

 /* Rest of code*/

}

testprog1.c

#include "testprog.h"

/* Define some global variables */

float farray[1000];

int iarray[500];

char c;

int main()

{

 c= '\n';

 farray[0]= 1.2;

 iarray[0]= 3;

 testfunc();

 /* Rest of code*/

 return 0;

}

_1000042753.doc

pay.c

Main bit of program.

Gets input from user.

Calls appropriate routine depending on user input.

fileio.c

Reads records for lecturers.

Writes updated records.

Makes back-up copies of files so that nothing is lost.

printout.c

Prints a "cheque run" on pay days.

Prints records of individual lectures for inspection.

update.c

Input file for new lecturer.

Change file for existing lecturer (for example pay rise or name change).

pay.h

Prototypes and definition of constants for the program.

