C Programming Course – LECTURE Three (NOTES)

What these lecture notes cover

These lecture notes should cover the following topics:

· File handling in C.

· Special streams stdin, stdout and stderr.

· Error checking in programs.

· Multi-dimensional arrays.

· Command line arguments (what are they and what can we do with them).

· The switch statement.

· A recap of new language features from week three.

File handling in C.

To read and write files in C, we use a special pointer type, FILE *. FILE * is a special pointer type which contains information about how to open, close, write to and read from files.

The first thing that we must do with any file is to open it using fopen. The fopen command has several formats. Here are three examples:

#define FILE3 "file3.txt"

FILE *fptr; /* Declare a file pointer */

char filename[]= "file2.txt"; /* String containing a file name */

fptr= fopen ("file1.txt","r"); /* Open file 1 for reading */

fptr= fopen (filename,"w"); /* Open the file in filename for writing

 This will delete the current contents of

 the file so be CAREFUL */

fptr= fopen (FILE3,"a"); /* Open the file in "file3.txt" for

 appending – that is to say that new bits

 of the file will be written after the

 current file */

Each of these examples would set fptr to point at the requested file.

IMPORTANT RULE: Use a FILE * type variable (called a file pointer) to store information about your file. Use fopen to attempt to open the file in the appropriate way. fopen returns NULL if it fails to open the file. NULL is a special pointer location which is set to indicate "this pointer is not pointing at anything".

We can check if we got the file open using:

if (fptr == NULL) {

 printf ("Problem opening the file\n");

 /* Take some appropriate action – for example, return from

 main */

 }

If we have opened the file for writing or appending then we can use fprintf just the same as printf but its first argument should be the name of the file pointer. For example:

fprintf (fptr, "Hello World!\n");

If we have opened the file for reading then we can use fscanf in the same way as scanf but, again, its first argument should be the name of the file pointer. For example:

FILE *filepointer2; /* File pointer */

int i; /* integer to be read */

int no_read; /* Check on number of things read */

filepointer2= fopen ("myfile.dat","r"); /* Open the file for read */

/* Put in checks here to make sure it is open */

/* Use fscanf to try to get an int */

no_read= fscanf(filepointer,"%d",&i);

if (no_read == EOF) {

 printf ("End of file!\n");

 /* Do something about this error */

 }

/* We expected to read 1 integer – check this */

if (no_read != 1) {

 printf("Unable to read an int\n");

 /* Do something about this error */

 }

IMPORTANT RULE: The fscanf function, like scanf returns the number of arguments which it has successfully read. It returns the special value EOF (end of file) if it has reached the end of the file.

A better way to read from a file is the fgets function. fgets takes three arguments – a string to be read into, a number of characters to read and a FILE * pointer to read from. fgets returns a pointer to the string or, if it encounters end of file or some other reading error it returns NULL.

An example of use of fgets is shown below:

#define MAXLEN 1000

FILE *fptr;

char readline [MAXLEN];

fptr= fopen ("test.dat","r");

/* Check we got the file open */

while (fgets(readline, MAXLEN, fptr) != NULL) {

 /* Do something with readline here */

 }

You might find the while loop confusing here – it is doing an awful lot of work. It is actually quite common in C to put a function within the while loop – we did something similar with our is_prime function when we tried:

if (is_prime(5))

Finally, having read from a file, it is important that we "close" the file again. We do this using fclose.

fclose(fptr);
Special streams stdin, stdout and stderr

As mentioned in the previous worksheet there are three special streams of type FILE * which can be used with routines which take FILE * arguments. These streams are all defined in stdio.h
stdin gets input from the keyboard.

stdout puts output to the screen.

stderr puts output to an error stream (usually also the screen).

The difference between printing to stderr and stdout is subtle. Recall that in unix we can redirect output using pipes. E.g.

cat filename.txt > newfile.txt

will move everything from filename.txt into a file called newfile.txt. That is the cat command prints the file and the redirect pipes it to the new file.

However, we would be disappointed if filename.txt didn't exist and when we looked at newfile.txt it just contained:

No such file: filename.txt
or some similar error message. If, instead of sending error messages to stdout we send them to stderr then they will not be redirected using > or ¦ in unix. This is very useful since the error message will be printed to screen immediately. Therefore, on a unix system, a C programmer should print errors like so:

fprintf (stderr,"There is an error\n");

How we SHOULD read input from the user

The best way to read a line of input from the user is to use fgets with the stdin file handle.

char line[1000];

fgets (line, 1000, stdin);

/*Reads at most 1000 characters from stdin or until the user presses

return */

Having read a line of text from the keyboard into a string, we can then use various conversion utilities in stdlib.h
For example atoi takes a string and returns an integer. atof takes a string and returns a float.

int i;

float f;

char string[]= "23";

char string2[]= "12.1";

i= atoi (string); /* Sets i to 23 */

f= atof (string2); /* Sets f to 12.1 */

CAUTION: fgets from stdin puts a '\n' character on the end of the string (from where the user typed '\n' to end the line. Sometimes we need to strip this '\n' to use the string. We can do this by treating the string as a character array and moving along it until we find a '\n' then replacing the '\n' with a '\0'.

Error checking in programs

In the last worksheet we saw how files could be opened and closed using the fopen and fclose functions. These functions rely on the FILE * pointer type which is defined in stdio.h. To recap:

#include <stdio.h>

#define F_NAME "my_file.txt"

int main()

{

 FILE *fptr; /* Set up a file pointer */

 fptr= fopen (F_NAME,"w"); /* Try to open the file */

 if (fptr == NULL) { /* Check the file is opened */

 fprintf (stderr,"Unable to open file\n");

 return –1;

 }

 fprintf (fptr,"Hello file\n");

 fclose (fptr);

 return 0;

}

This tiny program shows an important aspect for the programmer: error checking. It would be easy for a novice programmer to forget this check and, many times, the program would work perfectly well without it. A virtuous programmer makes sure that a program checks for errors whenever it calls a function with a chance of failing. Functions which are likely to fail include:

1) Opening files.

2) Getting user input.

3) Allocating memory (see next lecture).

Of course there's always the chance of an obscure failure – for example, if someone deleted a file between the time you create it for writing and the time you write to it. You can't check for every contingency so, unless you have reason to suspect that files might be deleted while open, (for example, if you're writing a filing system used by multiple users at once) then ignore the more obscure possibilities. However, we are left with an important principle:

IMPORTANT RULE: Your program should always exit gracefully even if the user types the wrong thing or the files which are expected to be there aren't.

There's little that's more likely to convince a user that the programmer is an idiot than a program which crashes because they typed –3 instead of 3.

Sometimes we might find a problem opening or reading from a file deep within a function. If we want to immediately stop a program then we can use the exit function.
IMPORTANT RULE: exit is part of the stdlib.h library. It takes one argument which is an integer which is the return status from main. When we use exit the program behaves exactly as if we had returned from main. It stops instantly.

For example, in the file reading examples above, we could use:

#include <stdlib.h>

.

.

.

FILE *fptr;

fptr= fopen ("file.txt","r");

if (fptr == NULL) {

 printf ("Unable to open file.txt\n");

 exit (-1);

}
Recap of single dimensional arrays (from worksheet)

Recall from the worksheet that, in C, we can specify arrays by giving a number after a variable name in square brackets.

int my_array[100]; /* 100 integers numbered from 0 to 99 */

Note that the length of the array must be FIXED when the array is declared. It can be #define d or an enum constant. However, a function can accept an array of variable length.

Recall also that a function which takes an array as an argument can be prototyped like so:

void calc_array (int, int[]);

/* Function takes one integer and one integer array argument */

Declared like so:

void calc_array (int length, int array[])

/* Function to perform calculations on the array */

{

 /* Write the function here */

}
and called like so:

enum {ARRAY_LEN = 5};

int my_array[ARRAY_LEN];

.

.

.

calc_array (ARRAY_LEN, my_array);

We can access individual elements of an array and use a for loop to go around them all. For example:

int i;

for (i= 0; i < ARRAY_LEN; i++)

 my_array[i]= 0;

We can also initialise them when they are declared:

int days_of_year [12]= {31,28,31,30,31,30,31,31,30,31,30,31};

Multi-dimensional arrays in C

We can declare arrays with more than one dimension in C. For example:

int array [3][6];

int array2[3][6] = {

 {4,5,6,7,8,9},

 {1,5,6,8,2,4},

 {0,4,4,3,1,1}

};

Such arrays are accessed like so:

array[1][4]= -2;

if (array[2][1] > 0) {

 printf ("Element [2][1] is %d", array[2][1]);

}

Remember that, like ordinary arrays, multi-dimensional arrays are numbered from 0. Therefore, the array above has elements from array[0][0] to array[2][5].

CAUTION: A common beginner mistake is to attempt to access array elements using the syntax array[1,4]= -2;

When we pass multi-dimensional arrays to functions or use a prototye, we must include the size of the array in the prototype. E.g.

void process_array (int [3][6]);

void process_array (int array[3][6])

{

.

.

.

}

CAUTION: It's easy to become confused here. The above function body defines a function which takes as an argument a 3 by 6 array of int. However, if we call it with:

process_array (array[3][6]);

Then we will cause a problem as this will not pass the array – this will attempt to pass the element [3][6] of the array – which is out of range anyway if the array is [3][6].

Multi-dimensional arrays are actually quite rare in C – an array of pointers is more common and more useful.

It is worth mentioning that char [3][10]; declares 3 strings 10 characters long not 10 strings 3 characters long.

NOTE: Technically, we only really need to specify the first of the dimensions of the array for reasons which will become clear later.

Arrays of pointers

It was mentioned earlier that an array of pointers is more commonly used than a multi-dimensional array. We can declare an array of pointers like so:

int *ptrs[12]; /*An array of 12 pointers to int */

This example is problematic because the 12 pointers are not yet initialised. We will find out later in the course how to do this.

char *name[] = { "Dave","Bert","Alf" };

/* Creates and initialises an array of 3 strings

name [0] is Dave, name[1] is Bert and name[2] is Alf*/

Beginners are often confused about the difference between this example and a multi-dimensional array:

char name[3][6] = { "Dave","Bert","Alf" };

Both of these will behave the same in most circumstances. The difference can only be seen if we look in the memory locations:

[image: image1.wmf]Dave\0

Bert\0

Alf\0

This picture shows the first declaration char *name[] – name contains an array of 3 pointers to char. The pointers to char are initialised to point to locations which may be anywhere in memory containing the strings "Dave", "Bert" and "Alf" (all correctly /0 terminated)

[image: image2.wmf]D

a

v

e

 \0

?

B

e

r

t

 \0

 \0

?

A

l

f

?

?

This represents the second case – the \0 characters terminate the strings. The ? represent memory locations which are not initialised.

IMPORTANT RULE : char *a[] represents an array of pointers to char this can be used to contain a number of strings.

Command line arguments

Most programs you have used within unix take what are known as command line arguments that is to say, you don't just type the name of the program to run it you also type some additional information – for example, when you run the editor program microemacs you will usually give it the name of a file to edit. For example: ue file.c. You can make your C programs read command line arguments by altering how you declare the main function as shown below:

int main (int argc, char *argv[])

{

 int i;

 for (i= 0; i < argc; i++)

 printf ("Argument %d is \"%s\"\n",i, argv[i]);

 return 0;

}

argc is the number of arguments (including the name of the file itself). So, if we typed

ue file.c the program above would print:

Argument 0 is "ue"

Argument 1 is "file.c"
IMPORTANT RULE: We can declare the main function to be passed arguments by the user as they call the program. We do this by declaring the main function to have arguments argc and argv. [argc stands for argument counter and argv stands for argument vector – vector is another word for an array].

While this looks complex the practical upshot is simple. argc tells you how many things the user has typed and you can refer to strings argv[0], argv[1], argv[2]... etc which would be the first second and third thing that the user has typed.

CAUTION: A common beginner mistake is to forget that the program name itself counts as one of the things that the user typed.

The switch statement

switch is a C control statement which can in certain circumstances replace very complex if...else groupings. A typical switch statement looks something like this:

char c;

int acount,bcount,ccount;

.

.

.

switch (c) {

 case 'a':

 printf ("Letter is a\n");

 acount++;

 break;

 case 'b':

 printf ("Letter is b\n");

 bcount++;

 break;

 case 'c':

 printf ("Letter is c\n");

 ccount++;

 break;

 default;

 printf ("Unknown letter\n");

 /* Executed if c has another value */

}

The switch statement must contain a variable to switch on – usually a char or int. The cases of the statement must be constants. If none of the constants match then the default is used. (if no default is provided and no case statements match then nothing is done). Note that the break statement sends control out of the switch as we might expect.

CAUTION: A common beginner mistake is to omit the break statement. This is called switch fallthrough and can be useful. If we omitted all the break statements in the above example, it would execute all four set of commands for a character 'a', the lower three for 'b' and so on. This can sometimes be what the programmer intends but usually it is not.

Note that if two or more cases should execute the same command we can write code like this:

int i;

.

.

.

switch (i) {

 case 1: case 2: case 3:

 commands; /* Executed if i is 1 2 or 3 */

 break;

 case 4: case 5: case 6:

 commands; /* Executed if i is 4,5 or 6 */

 case 7: case 8: case 9: /* Note – switch fall-through here */

 commands; /* Executed if i is between 4 and 9 */

 break;

 default:

 commands; /* Executed if i is not in range 1-9 */

}
A recap of syntax learned in week three

Files in C can be opened and closed using fopen and fclose which use file handles of the type FILE *. fopen returns NULL if it fails to open a file.

We can write to a file using fprintf (file_ptr,"Hello World\n"); just like using a printf statement.

We can read a line from a file using fgets which reads a certain numbers of characters into a string from a file. For example:

char line[MAX_LEN];

FILE *fptr;

.

. (code to open file)
.

fgets (line, MAX_LEN, fptr);

To print a single character to a file we can use putc:

char c;

putc (c, fptr);
stdin, stdout, stderr: are three special file handles which deal with, respectively, input from the user, output to the screen and output to an error recording device (usually also the screen).

The exit function is part of stdlib.h and returns from main with a certain value. For example exit(-1). The function is almost always used in error checking code to exit the program when a file has failed to open or some similar error.

We can use fgets to read input from the user.

char line[1000];

fgets (line, 1000, stdin);

We can use atoi and atof from stdlib.h to read int and float from strings. This can be combined with fgets from stdin.

int i;

float f;

i= atoi ("42"); /* Sets i to 42 */

f= atof ("3.14"); /* Sets f to 3.14 */

A switch statement is used to decide between a number of options which depend on the value of a single variable. Its format is shown below:

char c;

.

.

.

switch (c) {

 case 'a':

 commands;

 break;

 case 'b':

 commands;

 break;

 case 'c':

 commands;

 break;

 default:

 commands;

}

We can define multi-dimensional arrays and initialise them:

int array1[2][5];

int array2[2][5]= {

 {1,2,3,4,5},

 {0,5,6,1,2}

};

When using a multi-dimensional array as a function argument the dimensions of the array must be included. For example:

int process_matrix (int [7][7]);

int process_matrix (int mat[7][7])

{

.

.

.

}

An array of pointers works similarly to a two dimensional array and is declared as followed:

int *ptrs[12];

We can take arguments from the command line in a program by declaring the main function as:

int main (int argc, char *argv[])

argc is the number of arguments (argument counter) and argv is the argument “vector” containing the strings which the user typed into the command line. argv[0] is always the name of the program which was run.

_1000063157.doc

Dave\0

Bert\0

Alf\0

_1000063078.doc

a

D

v

e

 \0

?

B

e

r

t

 \0

 \0

?

A

l

f

?

?

