Lecture Five (Notes) – Final Thoughts About Pointers, Finishing With C (All the Rest of it)

What these lecture notes cover

These lecture notes should cover the following topics:

· Why use pointers?

· Arrays of pointers.

· Command line arguments.

· realloc —too much or not enough!

· What's the difference between an array and a pointer.

· Memory leaks, rogue pointers and other such horrors.

· Pointers to pointers and pointers to functions.

· The rest of C – those keywords we haven't mentioned.

· Recap of new language used in week five.

1Lecture Five (Notes) – Final Thoughts About Pointers, Finishing With C (All the Rest of it)

1What these lecture notes cover

1Why use pointers

2Arrays of pointers

2Command line arguments

3realloc – too much or not enough memory?

3What is the difference between an array and a pointer?

4Pointers to pointers and pointers to functions

5Memory leaks, rogue pointers and other such horrors

7Other keywords in C

9Variable arguments

9Other obscure bits of C

10Recap of new language used in week five

Why use pointers

You've probably noticed that in this course I've talked a lot about pointers – but pointers are almost certainly one of the most confusing things about C. At the moment, it might be quite hard for you to work out exactly why C programmers bore on so much about pointers. In this lecture, we hope to convince you that pointers are useful even if they are problematic. You can perfectly well write a substantial and efficient C program without using pointers – you can also write a novel without using the letter 'e' [for example "A Void" by Georges Perec]. You might be making things unnecessarily difficult for yourself though. Here's some advantages to pointers which we hope to explain in this lecture:

1) If you don't know how big an array is going to be at the start of the program, you can use pointers in a way that works like a variable sized array.

2) Pointers are the most efficient way to pass large chunks of information around.

3) Using pointers, structures can be made to refer to structures of the same type. This leads to some interesting and elegant data types.

4) Arrays are pretty much like very limited pointers anyway really.

Of course with these advantages are a couple of disadvantages:

1) Most humans find pointers confusing at first.

2) If you mess up with pointers you really mess up.

Once we've completed this lecture, you'll be in a position to make an informed decision of whether you want to go to the bother of including pointers in your programs.

Arrays of pointers

It was mentioned earlier that an array of pointers is more commonly used than a multi-dimensional array. We can declare an array of pointers like so:

int *ptrs[12]; /*An array of 12 pointers to int */

This example is problematic because the 12 pointers are not yet initialised. We will find out later in the course how to do this.

char *name[] = { "Dave","Bert","Alf" };

/* Creates and initialises an array of 3 strings

name [0] is Dave, name[1] is Bert and name[2] is Alf*/

Beginners are often confused about the difference between this example and a multi-dimensional array:

char name[3][6] = { "Dave","Bert","Alf" };

Both of these will behave the same in most circumstances. The difference can only be seen if we look in the memory locations:

[image: image1.wmf]Dave\0

Bert\0

Alf\0

This picture shows the first declaration char *name[] – name contains an array of 3 pointers to char. The pointers to char are initialised to point to locations which may be anywhere in memory containing the strings "Dave", "Bert" and "Alf" (all correctly /0 terminated)

[image: image2.wmf]D

a

v

e

 \0

?

B

e

r

t

 \0

 \0

?

A

l

f

?

?

This represents the second case – the \0 characters terminate the strings. The ? represent memory locations which are not initialised.

IMPORTANT RULE : char *a[] represents an array of pointers to char this can be used to contain a number of strings.

Command line arguments

You may be wondering by now why main seems to be a function called with arguments. These are known as "command line arguments". In windows we rarely come across them but in unix and other more powerful environments they can be very useful. Command line arguments are extra information given to a program when the user runs it. You can make your C programs read command line arguments by altering how you declare the main function as shown below:

int main (int argc, char *argv[])

{

 int i;

 for (i= 0; i < argc; i++)

 printf ("Argument %d is \"%s\"\n",i, argv[i]);

 return 0;

}

argc is the number of arguments (including the name of the file itself). So, if we typed

ue file.c the program above would print:

Argument 0 is "ue"

Argument 1 is "file.c"
IMPORTANT RULE: We can declare the main function to be passed arguments by the user as they call the program. We do this by declaring the main function to have arguments argc and argv. [argc stands for argument counter and argv stands for argument vector – vector is another word for an array].

While this looks complex the practical upshot is simple. argc tells you how many things the user has typed and you can refer to strings argv[0], argv[1], argv[2]... etc which would be the first second and third thing that the user has typed.

CAUTION: A common beginner mistake is to forget that the program name itself counts as one of the things that the user typed.

realloc – too much or not enough memory?

realloc is the function you would use if, after allocating memory, find out you need even more memory than that (or less memory). It works as follows:

int *array;

array= (int *)malloc(100*sizeof(int));

.

. /* Lots of code during which we decide array needs to be bigger */

.

array= (int *)realloc(array, 200*sizeof(int));

.

. /* Lots of code during which we do stuff with the bigger array */

.

free(array);

This starts off by allocating an array big enough for 100 ints. At some point later we decide that this array in fact needs to be 200 ints but we want to keep the first 100 which we've already calculated. Realloc does this – the first argument is the pointer to the memory we are resizing and the second argument is the new size. Note that, of course, we still need to free the realloced memory.

NOTE: Good programmers try to avoid realloc wherever possible – it can be costly! Every time you realloc, the computer might have to copy your entire array to a new memory location. If your array is large already then realloc is a bad idea from the efficiency point of view. Sometimes though, it is a necessary evil.

What is the difference between an array and a pointer?

Some of you might have been concerned by the above section – after all, some of our earlier code was quite happily passing around arrays. Were we being inefficient? No. The reason is that, as I've hinted before, an array is pretty much the same as a pointer. When we pass an array to a function we are really passing a pointer to the start of the array. This is why we can change the value of array elements within a function – because really, we were passing a pointer all along.

There are a few differences between pointers and arrays:

1) Arrays have memory initialised for them – and therefore we can start using them right away. Pointers must be initialised to be used.

int a[12];

int *b;

a[3]= 5; /*sets 4th element of a to 5 */

*a= 3; /*sets 1st element of a to 3 – same as a[0]= 3; */

b[3]= 5; /* Error - b is not initialised */

b= 3; / Error – b is not initialised */

2) We can set a pointer to point to something else – we cannot do this with an array. An array must always point to the block of memory it was initialised with.

int a[12];

int *b;

b= a; /* Fine, sets b to point to a – note that because a pointer

 is basically an array we don't need b= &a; */

a= b; /* Error – we can't make a point at something else */

3) There is no such thing as a multi-dimensional pointer.
int a[12][12];

int *b;

a[0][0]= 3; /* this is fine*/

b[0][0]= 3; /* this is always an error */

We can make a pointer behave like a multi-dimensional array by clever storage:

enum consts {ROWS= 12, COLS= 10};

int a[ROWS][COLS];

int x,y;

int *b;

b= (int *)malloc (ROWS * COLS * sizeof(int));

.

. /* Code to put things into array b */

.

printf ("Element %d, %d is %d\n",x,y,a[x][y])

printf ("Element %d, %d is %d\n",x,y,b[x*COLS+y]);

It is left as an exercise to the reader to prove that, in this example, the expression b[x*COLS+y] if used consistently, will always be equivalent to accessing a 2D array using a[x][y].

Pointers to pointers and pointers to functions

There are two more features of pointers that we must mention but which are complex to use. The first and more common is the pointer to pointer. A pointer is a type like any other and therefore, should be a valid thing to point at. Why would we want a pointer to pointer? A pointer to pointer can be used to implement a flexible multi-dimensional array in pointer's alone. We may, for example, want a muli-dimensional array of ints which has 3 elements in the 1st row, 4 in the 2nd, 5 in the 3rd etc. We can set up such an array like so:

enum consts {WIDTH = 20};

int i;

int **array; /* declare a pointer to pointer to int */

/* Allocate memory for a number of pointers, one for each row of the array */

array= malloc (WIDTH * sizeof(int *));

/* Go down the rows allocating enough memory for each row */

for (i= 0; i < WIDTH; i++)

 array[i]= (int *) malloc (i+3*sizeof(int));

We can access these elements like a normal array using array[x][y];
Note that we used sizeof(int *) not sizeof(int) in the first malloc – this is because a pointer to int takes up a different amount of memory to an int.

[Note that while we can have a pointer to a pointer to a pointer, we never need to do so since a pointer to pointer to pointer is itself a pointer to pointer. We never need to declare int *** and it is illegal to do so.]

A pointer to function is rarely used. It declares a pointer to hold the memory address of a callable function of a certain type. This pointer can then be accessed to call that function:

/* comp is a pointer to function returning int and taking 2 ints */

int (* comp)(int, int);

/* fred is a pointer to function returning int * taking no args */

int *(* fred) (void);

/* dave is a pointer to function returning void * and taking an array of int */

void *(*dave) (int []);

We call these with (respectively):

int x,y,z;

int a[20];

int *ptr;

void *ptr2;

.

.

.

z= (*comp) (x,y);

ptr= (*fred) ();

ptr2= (*dave) (a);
They are quite rare and are included here so that you recognise them when and if you encounter them. A use of them might be, for example, to tell the program to use a certain routine to deal with a particular situation but allow which routine to be selectable by the user.

Memory leaks, rogue pointers and other such horrors

We've hinted before now that pointers can lead to really bad things happening to your program. Well here's a gallery of some of those horrors.

1) Writing to unassigned memory. This is about the worst thing that can go wrong with pointers. It's also extremely easy to do by mistake. All these examples write to unassigned memory:

int *a;

a= 3; / Writes to a random bit of memory */

int *a;

a= (int *)malloc (100*sizeof(int)); /* malloc memory for 100 ints */

a[100]= 3; /* Writes to memory off the end of the array */

int *a;

a= (int *)malloc (100*sizeof(int)); /* malloc memory for 100 ints*/

.

. /* Do some stuff with a*/

.

free (a); /* free it again */

.

. /* Do some other stuff during which we forget a is freed */

.

a= 3; / Writes to memory which has been freed – very bad*/

It is extremely easy to make any of these mistakes – especially in a large bit of code. The worst thing about these type of errors is that they can be so unpredictable. Writing to unassigned memory is a sure way to cause bizarre things to happen in your program. It is a little like removing a random bit of a car engine: it might break immediately, it might break 100 metres down the road, it might run for an hour and then explode, it might even continue working. You simply can't tell what a bug like that will do. If your code is behaving really oddly then the chances are you have written to some unassigned memory. One of the authors had some code which would work fine until he added the lines:

float x= 5;

x= x+1;

to a function. After adding these lines it would always crash. This sort of problem is typical of the hair-tearing frustration and strangeness of this type of pointer bug.

2) Memory leaks are another rather hideous thing that can happen. Let's say we write a function like this:

void my_function (void)

{

 int *a;

 a= malloc(100*sizeof(int));

 /* Do something with a*/

 /* Oops – forgot to free a */

}

Now – we've written this function, tested it and it will do everything it's meant to. Great! The only problem is that every time we call this function it allocates a small bit of memory and never gives it back. If we call this function just a few times, all will be fine and we'll never notice the difference. On the other hand, if we call it a lot then it will gradually eat all the memory in the computer. Even if this routine is only called rarely but the program runs for a long time then it will eventually crash the computer. This can also be an extremely frustrating sort of problem to debug.

Sometimes we can do things which make a memory leak inevitable. For example, if we have a linked list and head_of_list points to the first item, then simply writing:

head_of_list= head_of_list->next;
can be enough to make that first item in the list lost forever unless we were careful to keep something else pointed at it.

3) Rogue pointers

Sometimes, we can write a program which leaves a pointer pointed to somewhere it shouldn't be. For example we might write a function which returns a pointer like so:

int *calc_array (void)

{

 int *a;

 int b[100];

 /* Calculate stuff to go in b */

 a= b; /* Make a point to the start of b*/

 return a; /* Ooops – this isn't good */

}

What's gone wrong here? Everything looks legitimate. However, b is a local array to the function and it will be deleted when the function is over. When we return a we have returned a pointer which points at some memory which will immediately be released. a is now a rogue pointer – pointing at things it has no business pointing to. If we write to a we will be writing to unallocated memory and if we read from a we are likely to get gibberish.

A similar problem can be caused by following NULL pointers. If, for example, we use the linked list defined above with head_of_list pointing at the top then we could access the second element using:

LIST_ITEM *tmpptr;

tmpptr= head_of_list->nextptr; /* tmpptr points at item 2 */
and the third element using:

LIST_ITEM *tmpptr;
tmpptr= head_of_list->nextptr->nextptr; /* point at item 3 */

However, the second expression would cause an error if there were only one item in the list. Why is this? Well, if there were only one item on the list then the first bit of code would set tmpptr to NULL – not a problem unless we try to read or write from it. The second bit of code, however, would crash. It would try to access the nextptr element in the struct at memory location NULL. However, NULL isn't a proper memory location and our program will crash when it tries to read from it.

Other keywords in C

Here, to remind you, is the list of 32 C keywords.

Flow control (6) – if, else, return, switch, case, default
Loops (5) – for, do, while, break, continue
Common types (5) – int, float, double, char, void
For dealing with structures (3) – struct, typedef, union
Counting and sizing things (2) – enum, sizeof

Rare but still useful types (7) – extern, signed, unsigned, long, short, static, const
Keywords which are pure and unadulterated evil and which we NEVER use (1) – goto

Wierdies that we don't use unless we're doing something strange (3) – auto, register, volatile

You should now be familiar with if, else, return, switch, case, default, for, while, int, float, double, char, void, struct, typedef, enum, extern, static and sizeof. You should have heard of (and perhaps be able to recall) break, continue, signed, unsigned, long, short and const (which are rarely used and were covered back in weeks one and two of the course). This leaves us with union, do, goto, auto, register and volatile.

Let's deal with the three "weirdies" first. auto is straightforward. It doesn't do anything whatsoever. You may find that puzzling. In fact auto is a hangover from the early days of C when it was used to indicate a variable which was not static. Now, of course, that's the default – but auto is left in the language in case very old code uses it. register hints to the compiler that a variable will be used a lot. [For people familiar with assembler, it hints that the variable should be stored in a register, naturally.] Nowadays, compilers are almost always better than people at working out which variables are used most and you should never use register in your code. Finally volatile tells the compiler that a certain variable might be subject to change without notice and should always be looked up from memory [rather than optimised away in a register]. It might, for example, mean that a pointer is pointing to a bit of memory to read the position of the mouse.

union is a way of making one variable hold a number of different types of information. For example, if we were writing communication software we might declare a union of all the different types of message we might sent:

typedef struct mess_1 {

 int mess_type;

 char greeting[80];

} MESS_1;

typedef struct mess_2 {

 int mess_type;

 float mess_num;

 float mess_num2;

} MESS_2;

.

.

.

union generic_message {

 int m0;

 MESS_1 m1;

 MESS_2 m2;

 .

 .

 .

} message;

This declares message to be a variable which can hold either a single int (m0) or a structure of type MESS_1 or MESS_2 etc. For more information about unions consult K&R page 147.

do is pretty simple – it's like a while but all the code is executed at least once and the condition is checked at the end of the loop. A do loop looks like this:

do {

 commands;

} while (condition);

It is not unreasonable to use do indeed there are situations where it can be handy. However, there is a good reason to avoid using do if you possibly can. If you have a loop of any size and somebody comes to look at the end of the loop then they may well be very puzzled. For example, I once spent 10 minutes puzzling over the following bit of code which someone else had written:

some_confusing_code;

}

while (1);

more_confusing_code;

Unless you realise that somewhere up there is a do statement (with a break statement in it), you can be forgiven for thinking that the while (1) statement will prevent the second bit of code from ever being reached. If the loop had been written as an ordinary while loop, this confusion would not have happened.

Finally we are left with the much reviled goto statement. goto is used to move control of a program from one point to another. For example:

int i= 1;

loopstart: /* This is a label – the name used is arbitrary*/

printf ("%d bean(s)\n",i);

i++;

if (i <= 5)

 goto loopstart; /* This sends control to the label "loopstart"*/

printf ("make five\n");

Is a version of one of our first programs using goto. We hope you will agree that it is already more confusing than the versions using while or for.

Variable arguments

Another obscure corner of the C language is variable argument lists. You may (or may not) have wondered how the printf statement manages to take different numbers of arguments. The key is variable argument lists. You will find a full explanation of these on page 155 of K&R. In short, a function which takes a variable number of arguments is declared using:

int printf (char *, ...); /* Prototype for printf */

[Note: yes, printf returns int – it returns the number of arguments read. This return argument is rarely if ever used].

A function declared with a ... in the argument list must have all the arguments specified before the ... but may have any number of arguments after these. The functions included in <stdarg.h> called va_start, va_arg and va_end are used to obtain the arguments in the list.

Other obscure bits of C

There are various other obscure corners of C that we haven't covered in these lecture notes. You will almost certainly never need to use these, but in case you come across them here they are.

The bit-wise operators perform operations on the binary representations of data. You can find them on page 48 of K&R. The operators are:

& bitwise and

| bitwise inclusive or

^ bitwise exclusive or

<< bitwise left shift

>> bitwise right shift

~ one's complement

The conditional expression can be used to return different values according to a condition:

if (condition)

 x= a;

else

 x= b;

is exactly equivalent to:

x= (expression) ? a : b;

See page 51 of K&R for more info.

Finally, there are various "tricks" we can do with the preprocessor including conditional compilation. For example:

#define DEBUG

#ifdef DEBUG

printf ("The value of x at this point is %d\n",x);

#endif
we can then include lots of debugging code in the program and turn it on or off by removing the #define. The advantage of this is that if we use this method to turn off debugging code then, when we recompile, the debugging code will not be included in the program at all and therefore will not slow it down. For further examples consult K&R page 90.

We can also define "macros" which work like functions using #define. For example:

#define PRINT_ERROR(a) fprintf (stderr,a)

would replace all occurrences of PRINT_ERROR followed by a single parameter with the replacement string. For example:

PRINT_ERROR ("There is a problem\n");

would become

fprintf (stderr, "There is a problem\n");

Macros are almost always a terrible idea and should be avoided in almost all cases for technical reasons. They are described further in K&R page 89.

That's it. You have now learned all of the C language. There are some functions in libraries that we haven't taught you but these work the same as functions you might write yourself. The difficulty now is to learn how to use the language well. Subsequent lectures will teach you useful programming techniques, how to be efficient, how to document your code and how to do simple searching and sorting tasks efficiently.

Recap of new language used in week five

The commands in the last three sections are all new but should not be necessary.

An array of pointers can be used with declarations such as:

int *lists[100];

which creates an array of 100 pointers to integers. One thing you might do is allocate these using a loop.

int *lists[100];

int i;

for (i= 0; i< 100; i++) {

lists[i]= (int *)malloc (23*sizeof(int));

}

which would create 100 blocks of memory big enough for 23 ints (a 23 by 100 array). Of course these blocks would have to be freed:

for (i= 0; i < 100; i++) {

 free(lists[i]);

}
realloc changes the size of a memory block which a malloc ed pointer points at. It takes as an argument, a pointer to some previously malloc ed memory and a new size for the block. It returns a pointer to a new block of memory which has the new size and the same contents as the previous block.

PAGE
1

_1000063157.doc

Dave\0

Bert\0

Alf\0

_1000063078.doc

a

D

v

e

 \0

?

B

e

r

t

 \0

 \0

?

A

l

f

?

?

