Lecture Three – Files, Structures and Memory Allocation

What these lecture notes cover

These lecture notes should cover the following topics:

· File handling in C.

· Special streams stdin, stdout and stderr.

· Defining new types of variable struct and typedef.

· Dynamic memory (the point of pointers)

· A recap of new language features from week three.

1Lecture Three – Files, Structures and Memory Allocation

1What these lecture notes cover

1File handling in C.

2Bailing out in an emergency (the exit command)

2Reading from a file fgets and fscanf

3Special streams stdin, stdout and stderr

3How we SHOULD read input from the user (fgets, atoi and atof)

4Adding new types to C typedef and struct statements

6Dynamic memory allocation

8A note about returning pointers from functions

9A recap of syntax learned in week three

File handling in C.

To read and write files in C, we use a special pointer type, FILE *. FILE * is a special pointer type which contains information about how to open, close, write to and read from files.

The first thing that we must do with any file is to open it using fopen. The fopen command has several formats. Here are three examples:

#define FILE3 "file3.txt"

FILE *fptr; /* Declare a file pointer */

char filename[]= "file2.txt"; /* String containing a file name */

fptr= fopen ("file1.txt","r"); /* Open file 1 for reading */

fptr= fopen (filename,"w"); /* Open the file in filename for writing

 This will delete the current contents of

 the file so be CAREFUL */

fptr= fopen (FILE3,"a"); /* Open the file in "file3.txt" for

 appending – that is to say that new bits

 of the file will be written after the

 current file */

Each of these examples would set fptr to point at the requested file.

IMPORTANT RULE: Use a FILE * type variable (called a file pointer) to store information about your file. Use fopen to attempt to open the file in the appropriate way. fopen returns NULL if it fails to open the file. NULL is a special pointer location which is set to indicate "this pointer is not pointing at anything".

We can check if we got the file open using:

if (fptr == NULL) {

 printf ("Problem opening the file\n");

 /* Take some appropriate action – for example, return from

 main */

 }

This is ERROR CHECKING (checking that the file was open) and is very important. I will talk more about this later in the course.

If we have opened the file for writing or appending then we can use fprintf just the same as printf but its first argument should be the name of the file pointer. For example to print "Hello World" to the file output.txt opened using fptr:

#include <stdio.h>

int main(int argc, char *argv[])

{

 FILE *fptr;

 fptr= fopen ("w", "output.txt");

 if (fptr == NULL) {

 fprintf (stderr, "Could not open output.txt\n");

 return –1;

 }

 fprintf (fptr, "Hello World!\n");

 fclose (fptr);

 return 0;

}

Of course you can't quite be sure where on your disk the file will be written. This will depend on the particular computer you run it on. [FIX ME!!!]

Bailing out in an emergency (the exit command)

What do you do if you run out of memory? Or if your program finds some other unrecoverable problem (a file you need isn't there to be read). One option is just to just print an error message and stop. But if you are deep in a function within a function then stopping itself might be a problem. The solution is the exit function which lives in <stdlib.h>

Within a function you can write:

exit(-1); /* Or whatever number you want to exit with */

This acts exactly the same as if we had returned that value from main. This is almost only ever used when you have a problem with your code. (For example a file is missing or you have run out of memory).

Reading from a file fgets and fscanf

If we have opened the file for reading then we can use fscanf in the same way as scanf but, again, its first argument should be the name of the file pointer. For example:

FILE *filepointer2; /* File pointer */

int i; /* integer to be read */

int no_read; /* Check on number of things read */

filepointer2= fopen ("myfile.dat","r"); /* Open the file for read */

/* Put in checks here to make sure it is open */

/* Use fscanf to try to get an int */

no_read= fscanf(filepointer,"%d",&i);

if (no_read == EOF) {

 printf ("End of file!\n");

 /* Do something about this error */

 }

/* We expected to read 1 integer – check this */

if (no_read != 1) {

 printf("Unable to read an int\n");

 /* Do something about this error */

 }

IMPORTANT RULE: The fscanf function, like scanf returns the number of arguments which it has successfully read. It returns the special value EOF (end of file) if it has reached the end of the file.

A better way to read from a file is the fgets function. fgets takes three arguments – a string to be read into, a number of characters to read and a FILE * pointer to read from. fgets returns a pointer to the string or, if it encounters end of file or some other reading error it returns NULL.

An example of use of fgets is shown below:

const int MAXLEN 1000;

FILE *fptr;

char readline [MAXLEN];

fptr= fopen ("test.dat","r");

/* Check we got the file open */

while (fgets(readline, MAXLEN, fptr) != NULL) {

 /* Do something with readline here */

 }

You might find the while loop confusing here – it is doing an awful lot of work. It is actually quite common in C to put a function within the while loop. Finally, having read from a file, it is important that we "close" the file again. We do this using fclose.

fclose(fptr);

Beginners often forget that fopen needs a file name but fclose needs a filepointer.

Special streams stdin, stdout and stderr

As mentioned in the previous worksheet there are three special streams of type FILE * which can be used with routines which take FILE * arguments. These streams are all defined in stdio.h
stdin gets input from the keyboard.

stdout puts output to the screen.

stderr puts output to an error stream (usually also the screen).

The difference between printing to stderr and stdout is subtle. Sometimes, output can be redirected into a file (often using a system called "pipes" which I will not talk about on this course). Errors often want to be handled differently. It is a good habit for a C programmer should print errors like so:

fprintf (stderr,"There is an error\n");

If a message is a critical error in your program you should print it like this rather than using printf although you will see no difference between them.

How we SHOULD read input from the user (fgets, atoi and atof)

The best way to read a line of input from the user is to use fgets with the stdin file handle.

char line[1000];

fgets (line, 1000, stdin);

/*Reads at most 1000 characters from stdin or until the user presses

return */

Having read a line of text from the keyboard into a string, we can then use various conversion utilities in stdlib.h
For example atoi takes a string and returns an integer. atof takes a string and returns a double.

int i;

double f;

char string[]= "23";

char string2[]= "12.1";

i= atoi (string); /* Sets i to 23 */

f= atof (string2); /* Sets f to 12.1 */

CAUTION: fgets from stdin puts a '\n' character on the end of the string (from where the user typed '\n' to end the line. Sometimes we need to strip this '\n' to use the string. We can do this by treating the string as a character array and moving along it until we find a '\n' then replacing the '\n' with a '\0'.

Adding new types to C typedef and struct statements

You might be wondering about that peculiar FILE thing that seems to be usable like an int or a float in functions. FILE is an example of an important part of the C language known as a structure. A structure is a built up part of the C language which behaves like a built in type. We can declare a group of associated variables which are associated as a structure.

IMPORTANT RULE: A struct statement declares a structure which can hold information of existing types (or indeed other structures). A struct should be declared at the top of the code or in a header file.

For example, if we are writing a program for a bank, we might decide that an account is a fundamental data type in such a program. Therefore we declare a structure which deals with each account:

struct account {

 char acct_holder[80]; /* Name of holder */

 char address[100]; /* Address of holder */

 double balance; /* Balance in pounds */

 int acct_type; /* type of account 1= savings 2= current */

};

We can declare variables to have this type. And we can access elements using the dot notation shown below:

struct account new_acct;

strcpy (new_acct.acct_holder, "S. Holmes");

strcpy (new_acct.address, "222B Baker St., London");

new_acct.balance= 23.50;

new_acct.type= 1;

We can use any of these variables within a struct wherever we could use a variable of the same type. So, for example, we could add this:

float interest;

float rate= 1.75;

interest= new_acct.balance * rate / 100.0;

printf ("Adding interest of %f\n",interest);

new_acct.balance+= interest;

We can make our struct look even more like a built in type such as int or float by using a typedef statement. For example:

typedef struct imaginary_number {

 double real_part;

 double imag_part;

} IMAG_NUM;

we can then use the new type IMAG_NUM pretty much wherever we can use an int. For example:

IMAG_NUM x,y;

double a= 2.0;

x.real_part= 3.0;

x.imag_part= a;

We can also use these typedef types in functions for example:

IMAG_NUM mult_imag (IMAG_NUM, IMAG_NUM);

/* Function to multiply imaginary numbers */

IMAG_NUM mult_imag (IMAG_NUM x, IMAG_NUM y)

{

 IMAG_NUM ans;

 ans.real_part= x.real_part*y.real_part – x.imag_part*y.imag_part;

 ans.imag_part= x.real_part*y.imag_part + y.real_part*x.imag_part;

 return ans;

}

IMPORTANT RULE: typedef can be used to associate a label with a structure. By convention, we put our typedef names in ALL_CAPS or at least InitialLetterCaps in order to distinguish them from built in types and variable names. Like a struct statement, typedef should be at the start of the code or in a header file.

We can even have arrays of typedef variables. For example:

IMAG_NUM points[2];

points[0].real_part= 3.0;

points[0].imag_part= 1.0;

points[1].real_part= -3.5;

points[1].imag_part= -2.0;

You can also use typedef to create another name for a built in type. For example you could write:

typedef int Length;
the only common use for this is in defining things which are a pain in the neck to type. For example, if your program uses a lot of unsigned char values (recall that such a variable can store a number from 0 to 255) then you might want to:

typedef unsigned char uchar;

simply to save typing. (Programmers are notoriously lazy).

IMPORTANT RULE: We can build structs up from other structs. For example, we might want to define a rectangle in the imaginary plane by defining two of its corners. We could do so as follows (assuming the previous definition of IMAG_NUM has already been defined earlier in the program):

typedef struct imag_rect {

 IMAG_NUM corner1;

 IMAG_NUM corner2;

} IMAG_RECT;

We can access the bits of the rectangle as follows:

IMAG_RECT rect1;

rect1.corner1.imag_part= 3.1;

rect1.corner1.real_part= 1.2;

rect1.corner2.imag_part= -2.3;

rect2.corner2.real_part= 1.4;

You can also use typedef to create another name for a built in type. For example you could write:

typedef double Length;
This would allow you to use Length wherever you could have used double. E.g.

Length room_size=10.4;

Length room_width=12.3;

This isn't particularly useful, however. The only common use for this is in defining things which are a pain in the neck to type. For example, if your program uses a lot of unsigned char values (recall that such a variable can store a number from 0 to 255) then you might want to:

typedef unsigned char uchar;

simply to save typing. (Programmers are notoriously lazy).

Dynamic memory allocation

Let's start by talking about that first advantage: getting things which are the right size. Going back to our "Sieve of Eratosthenes" example – let's say we want to write a program which allows the user to enter a number and it prints all primes between 1 whatever number the user chooses. How can we go about this? Well, getting the number from the user isn't a problem – but how do we make sure our array can hold this many numbers? Well, one approach is to work out how large an array the computer can hold and make your array that large – but this has a couple of problems:

1) If you run the same program on a computer with smaller memory it will break.

2) Your program is using an unnecessarily vast amount of memory – your user might be puzzled why they are taking up so much space on the computer if they only want to use 12.

What you really need is what programmers call dynamic memory allocation – that is to say the ability to choose how much memory (allocate memory) to use when your program is running (dynamically). The way we do this in C is to use malloc, realloc and free. These functions are part of the stdlib.h library [Note: on most machines, they are also part of the malloc.h library so don't be surprised if you see programmers #include<malloc.h> instead of #include<stdlib.h>]. Here's a malloc statement in action:

#include <stdlib.h>

#include <stdio.h>

const int MAX_LEN=1000;

int main (int argc, char *argv[])

{

 int *array;

 int i;

 int n;

 char string[MAX_LEN];

 printf ("How many numbers shall we have in an array?\n");

 /* Get a number from the user */

 fgets(string,MAX_LEN,stdin);

 n= atoi (string);

 if (n < 1) {

 fprintf (stderr, "You must give a positive number\n");

 return –1;

 }

 array= (int *)malloc(n * sizeof(int));

 if (array == NULL) {

 fprintf (stderr,"Out of Memory!\n");

 return –1;

 }

 for (i= 0; i < n; i++)

 array[i]= i;

 for (i= 0; i < n; i++)

 printf ("Element %d is %d\n",i,array[i]);

 free (array);

 return 0;

}

This code doesn't do anything particularly special – it gets memory for an array of 'n' integers, fills them with the integers from 0 to n-1 and then prints them out – finally it frees the memory. Let's look at how it does it. The first new statement is that confusing looking:

array= (int *)malloc(n * sizeof(int));

sometimes you will also see people write:

array= malloc (n * sizeof (int));
For various reasons C++ compilers will complain about this. This statement is getting enough memory for 'n' integers. It's working in the following way:

1)sizeof(int) uses the sizeof command (remember that was one of the keywords of C) to get the size of an int in some measure which is important to the computer – call them bytes for now. Basically this means "enough memory for one integer". We could have written sizeof(double).

2) malloc(x) reserves enough memory for x bytes and returns a pointer to this reserved memory.

3) Therefore malloc(n * sizeof(int)) obviously returns a pointer to enough memory for n ints.

4) The (int *) bit: malloc returns a void * but the pointer we're setting is an int *. Recall that we can use a cast to tell the compiler "I know what I'm doing" if we want to set two things of different types to be equal. (int *) casts the pointer returned by malloc to be a pointer to int not a pointer to void.

[You might be worried a little by the idea of a pointer to void – after all, you learned earlier that void meant "nothing". A function returning void cannot return anything and a function which is prototyped as taking void as an argument takes no arguments. A pointer to void simply means a pointer which we don't really know the type of yet. C++ is picky about such things and insist you immediately cast this to something.]

The syntax of "free" is simple – it says "free the memory that was saved by malloc".

IMPORTANT RULE: We can use malloc to grab memory and free to free it again.

(type *)malloc (sizeof(type)) gets enough memory for 1 variable of type type

(type *)malloc (n*sizeof(type)) gets enough memory for n of them.

A virtuous programmer free s all memory that they malloc ed.

Of course a computer only has a finite amount of memory. If the computer has run out of memory then the malloc command returns the special value NULL to mean "Help, I have no more memory left". A good programmer always checks that malloc did not return NULL. (As I did in the example).

A note about returning pointers from functions

Sometimes you will want to return a pointer from a function. One good reason to do this is because you might allocate memory in the function. Here is an example:

#include<stdio.h>

#include<stdlib.h>

double *set_up_accounts(int);

/* Prototype for function to set up bank accounts */

int main(int argc, char *argv[])

{

 int no_accounts;

 double *accounts;

 int i;

 /* Code to be added here gets user to input no_accounts */

 .

 .

 .

 accounts= set_up_accounts(no_accounts);

 /* Code here does some processing with the accounts*/

 .

 .

 .

 free(accounts);

}

double *set_up_accounts(int n)

/* Code to process n new accounts */

{

 double *array;

 array= (double *)malloc(n*sizeof(double));

 if (array == NULL) {

 fprintf (stderr,"Out of memory!\n");

 /* Yipe – do something here */

 }

 /* Do some set up things here for accounts*/

 .

 .

 .

 return array;

}

A recap of syntax learned in week three

Files in C can be opened and closed using fopen and fclose which use file handles of the type FILE *. fopen returns NULL if it fails to open a file.

We can write to a file using fprintf (file_ptr,"Hello World\n"); just like using a printf statement.

We can read a line from a file using fgets which reads a certain numbers of characters into a string from a file. For example:

char line[MAX_LEN];

FILE *fptr;

.

. (code to open file)
.

fgets (line, MAX_LEN, fptr);

stdin, stdout, stderr: are three special file handles which deal with, respectively, input from the user, output to the screen and output to an error recording device (usually also the screen).

We can use fgets to read input from the user.

char line[1000];

fgets (line, 1000, stdin);

We can use atoi and atof from stdlib.h to read int and float from strings. This can be combined with fgets from stdin.

int i;

float f;

i= atoi ("42"); /* Sets i to 42 */

f= atof ("3.14"); /* Sets f to 3.14 */

 struct and typedef can be used in C to create a user defined type which acts like built in types such as int and float. A structure can contain data of any already defined type including other structures. An example is shown below:

typedef struct animal {

 char name[80];

 int no_legs;

 char colour[80];

 int no_ears;

} ANIMAL;

This defines ANIMAL to be a data type which can be used like int, float or char. We have already seen FILE which was defined like this. A structure defined with a typedef like this can be used like so:

ANIMAL tiger;

tiger is now a variable like any other. It can be passed to functions and returned from them. Individual parts of a structure can be accessed using the . notation as follows:

tiger.no_legs= 4;

tiger.no_ears= 2;

sprintf (tiger.name,"Tigger the tiger");

sprintf (tiger.colour,"mainly stripey");

by tradition, typedef names (that is the ANIMAL part not the name of the variable, tiger) are ALL CAPS or at least InitialLetterCaps.

stdlib.h includes malloc and free which are used as follows:

malloc is passed a size – usually calculated using the sizeof function – and returns a pointer to that much free memory. While not necessary (except in C++ - see note above), it is programmers often cast the malloc to the type of the pointer it is being assigned to. Some malloc examples are:

int *sieve;

double *bank_accounts;

char *user_name;

sieve= (int *)malloc(100*sizeof (int));

bank_accounts= (double *) malloc (10 * sizeof (double));

user_name= (char *) malloc (24 * sizeof (char));

malloc returns NULL if it cannot find any free memory to allocate. This should always be checked.

Anything malloc ed must be free d. A free statement takes as its argument a pointer to a memory location which was returned by malloc.

PAGE
1

