Lecture Two (Notes) --- Arrays, Strings And Pointers

What these lecture notes cover

These lecture notes should cover the following topics:

· Magic numbers – when we SHOULD use globals, enum and #define.
· Going from an algorithm to a program. Pass by value and pass by reference.

· Arrays in C.

· String handling in C.

· What are pointers?

· A recap of C syntax so far.

1Lecture Two (Notes) --- Arrays, Strings And Pointers

1What these lecture notes cover

2Beautiful Programs

2"Magic" numbers

4Going from algorithm to program

4Going from algorithm to program: Consider what representation of data you want (if any)

5Introducing arrays in C

6Arrays in our sieve

6Going from algorithm to program: Look for sub-tasks

7Look for obvious loops

8Check it all works

8Strings in C

10Pass by value/Pass by reference

11Introduction to pointers

13Recap of syntax and language elements learned in week two

15An example program using language features from Worksheet and Lecture Two

Beautiful Programs

Programs are easier to read if they are well laid out. Your programs will be judged not just on what they do but also on how easy they are to read. Well laid out and readable programs will get more marks than ugly hard to read programs. One important point is where you put spaces and brackets. This is known as brace style. Here's a style that can make programs easier to read:

int main()

{

 int i,x,y; /*Remember YOU should use informative names */

 float z;

 .

 .

 if (x < 7) {

 y= 3;

 z= 4.2;

 } else if (x > 23) {

 y= 5;

 z= 7.2

 }

 for (i= 1; i < 200; i++) {

 for (j= 1; j < 200; j++ {

 /* Inside both loops */

 }

 /* Inside only the first loop */

 }

 return 0;

}
"Magic" numbers

An important consideration as a programmer is making your program comprehensible to other people. A good programmer should be able to write code in such a way that anyone looking at the code quickly knows what is doing on. One thing which makes code difficult to read is what programmers call "Magic numbers". For example:

d= 2 * 3.14 * r;

f= m * 9.807;

char str [100];

int nos[128];
Now the first one of these may be easy to spot (pi) but what do the numbers in the others mean? In the second it is 'g' acceleration due to gravity, in the third, the number may be arbitrarily chosen as the maximum line length or it may be known that lines of this length are about to be read from disk. In the fourth case, 128 could represent anything really. In any case, we believe it is helpful to give these magic numbers NAMES – by convention these names are often in ALL CAPS so that they cannot be mistaken for variables. The following may take longer to write but is more helpful to a programmer:

const float PI= 3.14;

const float GRAV_CONST= 9.807;

const int MAX_LINE= 100;

const int RECORD_LEN= 128;

char str[MAX_LINE];

int nos[RECORD_LEN];

d= 2 * PI * r;

f= m * GRAV_CONST;

There are many advantages to this. Firstly, you will probably, at some point, want to loop over all values in the array nos which is easily done:

int i;

for (i= 0; i < RECORD_LEN; i++) /* zero all array */

 nos[i]= 0;

This has the added advantage that, if at some point, we decide that, in fact, we want to read records of length 140, we only have to change one line in the code. Also, the chances are that if your program uses the value of pi once, it'll use it dozens of time. Think of all the typing it'll save you – and it'll prevent you getting fumble fingered and having one equation where you multiply r by 4.13 instead. This is an exception to the usual rule that globals are bad style. (since we have declared the variables as const they cannot be modified and therefore the usual criticisms of global variables do not apply). We can also use this to define strings:

const char HELLO[]="Hello World program version 1.03\n";

printf (HELLO);
We could also use #define and enum for similar purposes. For example:

#define PI 3.14

#define GRAV_CONST 9.807

enum {MAX_LINE = 100, RECORD_LEN = 128};

#define DEFAULT_FILE_NAME "my_file.txt"

#define VERSION_NUMBER "1.01b (beta)"

which we can then use like so:

printf ("Error opening file \"%s\"\n",DEFAULT_FILE_NAME);

printf ("Current version is %s\n",VERSION_NUMBER);

IMPORTANT RULE: #define token replacement is a pre-processor command which looks through your program for any occurrence of the letters in token and replaces them with whatever you've put in replacement. It will not replace things inside quotes or in comments or partial matches ie. it won't make the following changes:

/* Define PI */ will not change to /* Define 3.14*/

printf ("Mult by PI\n"); will not change to printf ("Mult by 3.14\n");

int HAPPIEST ; will not change to int HAP3.14EST;
CAUTION: #define is a very powerful command and it's easy to get things wrong. For example, you could decide that printf was a lot of effort to type and #define p printf. This is perfectly valid and where you wrote printf ("Hello World!"); you could then write p("Hello World!"); You could do this – but people looking at the middle of your program will be baffled. Good programmers should use #define as little as possible. Preferably only for defining floating point numbers and strings.

The drawbacks of #defines are (amongst others):

1) Substitutions are made before the compiler starts so you may find error messages from your compiler are confusing.

2) There's no type checking with a #define so you could be assigning an int to a float and the compiler won't warn you.

enum is safer but can only be used for ints and chars. The format of enum was shown earlier. Here are some more examples:

enum months {JAN= 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC};

enum logical {FALSE, TRUE};

enum {NEWLINE = '\n', NULL = '\0', TAB = '\t');

Note that the name in the enum statement before the { isn't actually necessary and also that an enum statement, unless told otherwise, assumes that the first item is numbered 0 and subsequent items are numbered incrementally. (So the months will be numbered from 1-12 whereas FALSE will be given the number 0 and TRUE will be given the number 1). The reason for the label before the enum is that we might want to declare variables of this type. For example:

enum months {JAN= 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,

NOV, DEC};

int main()

{

 enum months this_month; /* works like an integer but only accepts months of the year */

 this_month= FEB;

 .

 .

 .

 return 0;

}

Usually, however, you will use the enum in the same way you use a #define.

It is good style to use enum to define integer or character constants in preference to #define.

[Note for experts: Some programmers might be confused by this advice. It’s common sense really – a # define is not typesafe and also is more confusing in error messages.]

The correct place for #defines and enum is in a header file or, if you aren't using header files, then at the start of your code, before main() (it's up whether you put them before or after function names).

Going from algorithm to program
One of the main skills of a programmer is knowing the best way to get from the definition of a problem to a plan for the program which solves the problem. While this skill cannot easily be taught (it will come with practice) we can offer some pointers. A lot of the time you will be presented with an algorithm. For an example, we will take an historical algorithm, "The sieve of Eratosthenes" which finds all prime numbers in a given range. As this algorithm has been around for more than 2000 years we can have reasonable confidence in its accuracy. More info on Eratosthenes (and a rather pretty graphical sieve) can be found on the web site http://www.math.utah.edu/~alfeld/Eratosthenes.html. The sieve can be described as follows:

In order to find all prime numbers up to n do the following:

1) Construct a table with entries for the first n numbers (an array with n elements) and cross out '1' which is special and not prime.

2) Set k to be the value of the next number on the table which is not crossed out.

3) Cross out all numbers on the table which are multiples of k – apart from k itself.

4) If k is less than the square root of n then go to step 2.

5) All numbers which are not crossed out are prime.

This is a fairly straight-forward algorithm but there are a number of subtleties. The worst thing that you can possibly do at this point is to sit down and start programming immediately with point 1. For a start, even if you get that far, by the time you get to point 4 you'll be considering the dreaded goto statement when really you should have been using a while loop all along. Here's some steps that we suggest you go through when confronted with a new algorithm.

Going from algorithm to program: Consider what representation of data you want (if any)

One of the first things to consider is how you want to represent any data you might want to store. Always consider the option that you won't store any data at all – for example, when we wrote our is_prime function, it didn't really store any data. In this case, an obvious storage plan presents itself. We need a lot of ints – preferably with the same name. This is known as an array.

Introducing arrays in C

An array is a group of similar variables which are stored together. In C, we can declare arrays of any variable type like so:

int a[24]; /* An array of 24 integers */

float b[6]; /* An array of 6 floats */

char c[2]; /* An array of 2 characters */

a[0]= 3;

a[1]= 5;

b[0]= 2.1;

b[1]= 2.4e6;

c[0]= 'H';

c[1]= 'i';

printf ("a[0] is %d, b[1] is %f, c[1] is %c\n",a[0], b[1], c[1]);

We must specify the size of the array before we start – so we can't have code which works out what size an array should be and then sets it up to be that size. (Yes, this can be annoying).

IMPORTANT RULE: int a[100]; initialises an array of 100 integers. They can be referred to by the array index inside the square brackets. For example a[n] refers to the nth element of the array. You can use an array element with an index anywhere inside a function where you could use a normal integer.

CAUTION: It inevitably confuses new C programmers that, in C, array offsets start from 0. If we declare an array of ints as int a[100]; then its first element is a[0] and its last element is a[99] attempts to access element a[100] are an error.

We can pass arrays to functions like so:

void set_array(int [], int); /* Prototype for function to set array to zero */

void set_array(int array[], int length)

/* Sets an array of "length" integers all to zero */

{

 int i;

 for (i= 0; i < length; i++)

 array[i]= 0;

}

This code fragment shows another important thing about arrays.

IMPORTANT RULE: The values of array elements can be changed within a function. [This is because an array is really a special type of pointer – but don't worry about that for now].

Note also that you can't have a function which returns an array. Since a function can change array values you will never need to do this anyway.

We can also initialise arrays like so:

int a[5]= {1,5,10,15,20};

[But note that you can't set arrays all in one like that in the middle of a function – so it is an error to write.]

int a[5];

a= {1,5,10,15,20}; /*This line should not compile */
Arrays in our sieve

Our table of potential prime numbers is surely best stored as an array. We might also consider what we want to store. We could store the number in the appropriate place in the array – but this is not really necessary – after all, we only really need to know if the number at a particular place in the array should be crossed out or not.

Because of this, we could make it an array of char to save memory or an array of int to keep things simple (char takes up less memory than int) – we've gone for the int solution this time since we're not using that much memory here – if we wanted a larger sieve then we might be forced to reconsider this. We'll also take some advice from the former section about magic numbers and create some enum statements to make things clearer. So, we might then have a starting bit of code which looks like this:

const int UN_CROSSED= 0;

const int CROSSED= 1;

const int MAX_NUM = 100;

int main()

{

 int i;

 int sieve[MAX_NUM + 1]; /* Array to hold sieve */

 /* Everything should start out uncrossed out */

 for (i= 0; i < MAX_NUM + 1; i++)

 sieve[i]= UN_CROSSED;

 sieve[0]= CROSSED;

 sieve[1]= CROSSED;

 .

 .

 .

 return 0;

}

Note that the array has a size of MAX_NUM + 1. Remember that an array of n elements in C has elements numbered from 0 to n-1. We could decide to use an array of MAX_NUM elements with the table entry for 1 stored in 0 and 2 stored in 1 – but this would get awfully confusing awfully quickly. Instead of this, we've elected to include element 0 in our table – but cross it out as a special case – as we have with element 1.

Going from algorithm to program: Look for sub-tasks

Another obvious thing to do is look for sub-tasks which might make good functions. It's hard to say by what criteria something makes a good function – again this is something which will be revealed with practice. In this algorithm, we might have made step 1 a function – but it's actually quite small but since we want the table to be accessible from our main function it is as well to create it there. We could have had a function called blank_table which just made all elements of the array UN_CROSSED – in this case we have chosen not to.

Step 2 and step 3, however, are obvious sub-tasks which are weighty enough to merit their own functions. For now, we don't actually write the functions but we define what each is passed and returns.

int next_k (int sieve[])

/* Returns the 1st uncrossed no in the array after k*/

This function will be passed the array and return the number of the first array element which has the value UN_CROSSED after the current value of k. Note that we don't need to pass k into the function – we can make it static within the function. Since we know that k will always increase and will start at 2 then next_k should look like this.

static int k= 1;

k++;

/* Loop to find the next uncrossed element starting at k */

return k;

void cross_k (int sieve[], int k)

/* Cross out multiples of k in the array sieve*/

This function will be passed the array and the value of k – it will set the value of all multiples of k (except the first) in the array to be CROSSED.

It's important to note that what you decide should be a function is rather arbitrary. We could have written this code with more functions (for example blank_table) or with none at all. Generally speaking, there is a compromise between too many functions and too few. Too few functions and you will find too much code is crammed into each and far too many levels of indentation. If you find yourself starting a line of code and you're already half way across the screen then, perhaps, a few more functions are necessary. On the other hand, too many functions and you'll make your code unnecessarily verbose (and slightly slower – calling a function takes a bit of time after all). To take a straw man example, if we decided to create a function to make a single element of the array UN_CROSSED then we would write a function like this:

void blank_element (int n, int sieve [])

/* Blank single element of array

{

 sieve[n]= UN_CROSSED;

}

We would be replacing one line of code with 4 or 5 (and a prototype) – enough reason on its own to reconsider making this a function. We would also be making the code more difficult to read since our potential reader looking at main might want to check what the blank_element function did whereas they would not have to bother if we hadn't used the function.

Look for obvious loops

One early task when you're looking at any algorithm is to consider what loops to use. In this case, the most obvious loop is the one between steps 2 and 4 which changes the value of k. In all cases it is arbitrary whether a for or a while loop is chosen – the two are always interchangeable:

for (initialiser ; condition ; increment) {

 code;

 }

is exactly equivalent to:

initialiser;

while (condition) {

 code;

 increment;
 }

Generally speaking, if your for statement looks too "busy" then try rewriting it as a while loop which might make it clearer. In this case, we can put it into a relatively tidy for loop like so:

for (k= 2; k <= sqrt(MAX_NUM); k= next_k(sieve,k))

Another obvious loop is in the cross_k function. Again a for loop seems the best solution:

int i;

/* Cross out all multiples of k but the first */

for (i= k*2; i < MAX_NUM + 1; i+= k)

 sieve[i]= CROSSED;
Note that i is starting at twice k – obviously we don’t want to cross out k itself.

Check it all works

Finally, it is very worth checking that the algorithm we are performing works. In this case, we might be using the sieve to calculate the first primes for some specific reason. However, even if our program doesn't NEED them printing out, it is well worth temporarily writing such a function simply to check that we've got things right. Whenever you implement even a relatively trivial algorithm it is well worth writing a function or two to check that you've got it right. In this case, writing a print_primes function is relatively straight-forward:

void print_primes (int sieve[])

{

 int i;

 for (i= 2; i < MAX_NUM + 1; i++)

 if (sieve[i] == UN_CROSSED)

 printf ("%d is prime.\n",i);

}

This simple check caught three errors in the original version of the program. We will write a sieve program as one of the exercises in the next worksheet.

Strings in C

Arrays of type char are known as strings in C. Actually, without knowing it, you've already seen an array of char. When we typed:

printf ("Hello world!\n");

the phrase Hello world! was really an array of characters. We could equally well have written:

char hi_there[100]= "Hello world!\n";

printf (hi_there);

or even:

char hi_there[100]= "Hello world!\n";

printf ("%s",hi_there);

%s in a printf string is similar to %d but instead of an integer fits in a string to the print statement.

Note that as with arrays, we can only initialise a string with this type of construct. It is illegal to write:

char hi_there[100];

hi_there= "Hello World!\n"; /* This line should not compile */

but don't fear because we can write to a string using the sprintf function in the same way that we can write to the screen using printf:

char answer[100];

int ans= 42;

sprintf (answer,"The answer is %d\n",ans);

sprintf is another useful function which is part of the stdio.h library.

IMPORTANT RULE: Strings in C should be NULL terminated. That is to say, the last element of the character array must be '\0' or the char which has value 0.

When we write:

char a[14]="Hello World!\n";
we are saying that a is an array of 14 characters of which the elements are:

a[0]= 'H';

a[1]= 'e';

a[2]= 'l';

.

.

.

a[10]= 'd';

a[11]= '!';

a[12]= '\n';

a[13]= '\0';

The reason for having the '\0' convention is so that we know when to stop printing. If we have an array of 100 characters the first few of which are Hello World! if there were no '\0' character then the print statement would simply continue to print until it came to a '\0' needless to say, most of what it would print would be rubbish. Fortunately, the C language most of the time takes care of the '\0' for you. However, if you accidentally overwrite it then you can be in trouble. For example if we later alter the string:

char hi[12]= "Hello World"; /*Initialise a string which is correctly

 terminated with \0 */

printf ("String is (%s)\n",hi); /* Prints the string fine */

hi[11]= '!'; /* Add an exclamation mark at the end of

the string */

printf ("String is now (%s)\n",hi); /* Oh oh! We wrote over the \0 –

 this may print nonsense */

Usually you will find this could print something like this:

Hello world

Hello world!a$?!#

d1%

I.e. it prints the second Hello world correctly but then continues to print a lot of random nonsense after it. This is because the print statement will simply continue to print until it finds the '\0' even if this is a long way after where you thought the string should have ended. [Sometimes you get lucky and by coincidence the next character is '\0' – code which relies on you being lucky is NOT good code].

If we write a function which takes a char [] variable as an argument then we can also send it strings in double quotes. So, for example if we write:

void print_quoted_string (char []); /* Prototype for function*/

void print_quoted_string (char str[])

/* Prints a string enclosed in quotes */

{

 printf ("\"%s\"\n",str);

}

we can call it in two ways:

char hi [100]= "Hello World!\n";

print_quoted_string (hi); /* One way */

print_quoted_string ("Hello World!\n"); /* Another way*/

Both of these should work exactly the same.

The string.h library contains many useful functions for strings which we will look at in the next worksheet. Some of the more common ones are:

strcat (adds two strings together)

strcpy (copies one string to another)

strlen (returns the length of the string)

strcmp (compares two strings to see if they are the same)

It is also worth pointing out that if we initialise a string then we do not have to give it a length, it will automatically take the minimum length to hold the data given:

char test[]="1234567890\n";

Is the same as if we’d declared the string to be 12 characters (10 numbers, one for the return and one for the NULL termination).

Pass by value/Pass by reference what is & for in front of variables

As was hinted in the last Worksheet, there are different ways of passing arguments to functions in C. We saw two cases:

scanf ("%d",&i);

printf ("Number is %d\n",i);

In the first statement, the argument i is passed by reference – it can change its value as a result of what happens within the function. In the second case (which, it should be stressed, is the more common case) the argument is passed by value and the value of i cannot change as a result of what happens during the function.

When we pass by value, as it sounds, the variable is first translated into a numerical (or character – depending on the type of the argument) value and this value is passed to the function. For example:

int i= 5;

is_prime (i);

is_prime (5);

is_prime (2+3);

is_prime (i * is_prime(i));
All call the is_prime function from the last worksheet with the value five. On the other hand if we use arguments passed by reference, we pass on the address of the variable in question. In fact the & is often called the address of operator. It gives the memory location of the variable which is associated with it. This is why it makes sense to call a function with &i but not with &5 for example. Functions must be specially written to take values passed by reference.

IMPORTANT RULE: & is the address of operator. It can be used to give the memory location of a variable. Some functions are written so that they must be called with the address of a variable – an argument which is passed using the address of operator is said to be passed by reference. An argument which is passed by reference may be modified by the function which it is passed to.

You might ask why not write all functions to use pass by reference? After all, it would seem to be an advantage to be able to change the value of the arguments. In fact very, very few functions in C are ever written as pass by reference for several reasons:

1) Normally, it is confusing if the arguments of a function change within the function. Think how you'd feel if you wrote:

int n= 3;

if (is_prime(&n))

 printf ("%d is prime!\n",n);

and, on running it you were told:

4 is prime
because the is_prime function had (for whatever reason) changed the value of n to 4 instead of 3.

2) Everybody,. at some point, forgets to put the & in front of the variable. If I had a penny for every time someone wrote:

scanf ("%d",i);

then I wouldn't have to teach programming to earn money.

3) In any case, most people find pass by reference more confusing than pass by value.

In short, you should almost always use pass by value but remember that pass by reference is available in times when you want to, for example, return more than one argument. [In scanf we return the number of things we have read and also change the variables associated with what we've read – there's no way this could be done with just one return value]. The whole pass by value/pass by reference dilemma is part of a larger topic in C called pointers.

Introduction to pointers

Pointers are traditionally considered one of the most confusing bits of C. Unfortunately, they are also one of the most powerful which is why we are introducing them early on. You can write a C program without using pointers. However, if you do avoid pointers, you'll be missing some of the very reasons for using C in the first place.

In short a pointer is an address in the memory of your computer which is expected to contain a certain type of variable. Let's start with a first look at a pointer:

int *p;

int q= 5;

p= &q;

printf ("p is %d\n",*p);

IMPORTANT RULE: * in front of a variable being declared means the variable is a pointer to. For example int *p means p is a pointer to an int. When we are using a pointer variable * dereferences the pointer – which is a fancy way of saying that it tells us what the value is of the thing which the pointer is pointing at.

So, in order, this program says:

1) p is a pointer to an integer.

2) q is an integer which has the value 5.

3) p points to q. That is to say the address held by the pointer p is the address where the variable q already is in memory.

4) We print out "p is 5". Note that we use the * to refer to the value held at the address pointed to by p. The operation of "finding the value at a memory address" using * is known as dereferencing a pointer.

If instead we had said printf ("p is %d\n",p); then the statement would have printed the address which the pointer referred to (a large and largely meaningless number which refers to a certain part of your computers memory).

Let's have a look at this graphically:

[image: image1.wmf]q=5

p

This represents the situation after the first two lines. Each box represents a location in memory big enough to hold one integer. The variable q (with the value) 5 is sitting in one of these boxes. p has not yet been initialised and therefore is pointing at a random bit of memory.

[image: image2.wmf]q=5

p

Now we use the & or address of to make p point at q.

In case you're wondering:

int *p;

p= 5; / NEVER do this */

Would be a very bad thing to do since it would try to put the value 5 into a random bit of memory. At the very best, you will find that p doesn't contain the number 5. At the worst (if you're using a Microsoft operating system) you might crash the entire computer and have to start again. As we said, pointers can be confusing – and in this case dangerous too.

CAUTION: If you want to set the value that a pointer refers to, make sure that the pointer is actually pointing somewhere valid. If you start writing to pointers willy-nilly, your programs will crash.

When we set p to point to q, in a lot of ways the two variables are the same. For example:

int *p;

int q= 5;

p= &q; /* p points at q – p is set to the address of q */

p= 6; / The value at memory location p is set to 6 */

printf ("q is %d\n", q);

q= 5;

printf ("p is %d\n", *p);

will print:

q is 6

p is 5
Before we leave the topic of pointers (for a while) let's have a look at how we would write a function to accept a variable passed by reference. In this case, we're going to write a simple (and totally useless) function n_equals_2m which, when passed a variable m and a reference to a variable n will set n to be equal to twice m.

Here's the code (prototype first):

void n_equals_2m (int *, int);

void n_equals_2m (int *n, int m)

/* Set n to be twice m */

{

 *n= (2 * m);

}

If we wanted to call the code we would do it like so:

int a, b;

b= 5;

a= 5;

n_equals_2m (&a, b);

printf ("a is %d, b is %d\n",a,b);

which should print:

a is 10, b is 5
Let's leave pointers for now and talk about something more immediately useful, arrays. [While arrays may seem very different, in fact they are, in many ways, equivalent to pointers in C]. We can also return pointers from a function. This will be discussed later.
Recap of syntax and language elements learned in week two

Here is a recap of the new syntax items and language elements introduced in worksheet 2 and lecture 2.

break exits immediately from one level of loop.

continue within a loop immediately goes round the loop another time.

A variable declared as static keeps its value on subsequent calls of a function.

We can change the type of a variable using a cast of this form (new_type)variable for example:

int i= 3;

printf ("i is %f\n",(float)i);

A variable which is declared with a * before its name is a pointer. Instead of holding a value of a certain type it instead points at a memory location which could hold a value of that type. & is the address of operator. Given a variable name, & returns where that variable is stored in memory. This can be used to set pointers to point at variables. * is the dereference operator [in some ways it is the opposite of the &] – it returns the value which is in a particular memory location. This can be used to set or print out the value pointed to by a pointer

For example:

int *p; /* P is a pointer to an int */

int q= 5; /* q is a regular int */

p= &q; /* p now points at q */

p= 7; / Sets the value pointed at by p to 7 */

 /* This also sets q to 7 since p points at q */

sets p as a pointer which points at the location of q. If an argument of a function is a pointer then the value it points to may be changed within the function. This is known as pass by reference. We prototype a function to accept pointers like so:

int func_takes_ptr_and_int (int *, int);

We can declare arrays of fixed size and pass them to and from functions. For example:

int a[100];

char string[32];

float values[12];

void mult_matrix (int []); /* Function prototype */

void mult_matrix (int array[]) /* First line of function */

We can initialise arrays using the following construct:

int a[5]={4,5,6,7,8};

char c[3]= {'a','b','\n'};

A string in C is an array of characters terminated by a '\0' character. C will usually take care of this termination for you but it should be remembered that the string should be large enough to include this character. Strings can be initialised with a string in double quotes and functions which take a char[] or a char* argument can be passed a string in double quotes as an argument. For example:

char hi[15]="Hello World\n";

printf (hi);

printf ("Hello World\n");

An example program using language features from Worksheet and Lecture Two

/* **An example program to show where everything goes in a C Program

 **This program has MORE comments than usual - but otherwise should

 **be a good example of how to write code - Comments with ** in them

 **have been added to make points and are not good commenting practice */

/* ** This header file is sometimes required by Microsoft Visual C++

 ** it is not really part of the C language*/

#include "stdafx.h"

/* ** stdio.h is used to include standard Input and Output functions */

#include <stdio.h>

#include <math.h>

/* ** This program does not have any GLOBAL variables but if it were to

 ** then here is where they would go */

/* ** Now list function prototypes */

void plot_point (double, int);

/* Plots a '*' part way across a screen of a given width */

double plotting_function (double);

/* A function mapping [0,1]->[0,1] to plot*/

/* ** main means START HERE - your program will start at this point */

int main(int argc, char* argv[])

{

int i;

int width= 80;
/* Width of the screen */

int height= 24; /* Height of the screen */

double x_pos, y_pos; /* x value and y value on our graph */

/* First print the "y-axis" of our graph */

for (i= 0; i < width-1; i++) {

printf ("*");

}

printf ("\n");

/* Now loop round for all our possible x positions */

 for (i= 1; i < height; i++) {

x_pos= (double)i/(double)height; /* Calculate our x posn */

y_pos= plotting_function(x_pos);

plot_point(y_pos, width);

}

return 0;

/* ** Return 0 means "we have successfully completed our program" */

}

/* ** This function goes with the prototype above - remember a void

 ** function is one that doesn't return anything */

void plot_point (double y_pos, int screen_width)

/* Plot the point at "y_pos" */

{

int i;

int y_int; /* The y_position as an integer position on the screen */

printf ("*"); /* Print the "x-axis"*/

y_int= (int) (y_pos * screen_width);

/* If we cannot print this point then just return */

if (y_int <= 0 || y_int >= screen_width -1) {

printf ("\n");

 return;

}

/* Print a * in the correct place */

for (i= 1; i < y_int; i++) {

printf (" ");

}

printf ("*\n");

/* ** Don't need a return at the end of a void function -

 ** "Falling off the end" works just the same */

}

/* ** The next line is the "function header" it is subtly different to the

 ** prototype in that it doesn't require a semi-colon but it MUST give

 ** names to all its variables. The names of arguments in the function

 ** header are used throughout that function */

double plotting_function (double x)

/* Replace this with any function - but remember that only x and y

values in the range [0,1] will be plotted */

{

double y;

y= 0.2 + x + 2*x*x - 3*x*x*x; /* Calculate a third order polynomial*/

return y;

/* ** A function other than a void function MUST end with a return */

}

Important: Some older compilers, , do not accept const used as it is in these two lines – thus you should normally use enum or #define as described below

Start left brackets on same line as a statement

Indent the code a bit less after a right bracket

Indent your code a bit more after every left bracket

PAGE
2

_999075150.doc

q=5

p

_999075482.doc

q=5

p

