C Programming Course – COURSEWORK TWO

Introduction

As before, questions one and two should be attempted by all students. Question three is more difficult and is optional for students who wish to earn extra credit.

Question One:

Consider the function defined by

[image: image1.wmf]ò

-

=

1

0

1

)

(

dx

e

x

n

J

x

n

i) Prove that J(n) = 1- n*J(n-1).

ii) Calculate the integral for J(0) directly (by hand).

iii) Write a program using this relation to calculate J(n) given J(0).

(Get your program to work out J(10) from J(0), first of all using 3 digits of precision for J(0), then 4, 5 etc up to 10.

iv) Use Maple (or any other numerical method you are comfortable with) to get the exact answer [evalf(int x^10*exp(x-1),x= 0..1));].Which of your early answers (if any) was the right answer?

v) Now write another program to calculate J(0) given J(n) (using the same recurrence relation). Using an estimate of 0 for the value of J(10) calculate J(0). How near to the actual value of J(0) is your result? Try taking other values for J(10) and seeing how much difference the value you pick has on the result.

vi) Explain why the recurrence relationship works to calculate J(0) from J(10) but not J(10) from J(0). To do so you will have to consider how errors propagate through your program. Numbers are only represented in the computer with finite precision, so write J*(n) = J(n)+en (where J*(n) is the value you calculate, J(n) is the true value and en is the error gained in calculating the nth term).

Assuming that there is a small error e0 in your calculation of J(0) and assuming no subsequent errors are introduced, calculate en in terms of e0 as n increases when calculating J(10). Perform the same analysis to show how errors propagate for the reversed iterator which calculates J(0) given J(10).

Question Two:

The trapezoidal rule states that we can get an approximation to:

[image: image2.wmf]ò

b

a

dx

x

f

)

(

by the following procedure illustrated below:

[image: image3.wmf]a

b

y=f(x)

1) Choose the number n of equal-length intervals into which the interval of integration (from a to b) is to be divided.

2) Calculate the area of each of the n trapezoids which the area under the curve f(x) can be divided into (the area of each is the product of its base length and the average of the heights of either side of the trapezoid.

3) Sum each of these areas to get the total "area under the curve"

i) Write a program which integrates x2 from 0 to 3.

ii) Check your answer by performing the integration analytically.

iii) For what value of n (approximately) is the answer correct to one decimal place.

iv) For what value of n is it correct to three decimal places.

v) What sort of functions might be a problem for this sort of numerical integration?

Hint 1: You might choose to write a function which finds the area of a trapezium which has its base between x1 and x2 – the function header would look like this:

double trap_area (double x1, double x2)

/* Function to calculate the area of a trapezium in the function x squared – with a base going from x1 to x2 */

{

 /* Write your function here */

}

Hint 2: Remember that problems can sometimes occur when dividing ints to get an answer which we want to be a double. It is best if you don't use floats or doubles for loop variables.

Hint 3: If you get into difficulties, put in a printf statement that checks the height and width of each trapezoid as it is calculated. Start with a small n (three would be convenient) and check each area by hand as the computer calculates it.

Question Three
Write a program to use Newton's method to find roots of the cubic polynomial x3 – 8x2+19x-12. Given an initial approximate root x0 we can find a better approximation:

x = x0+h

where h = -f(x0) / f'(x0)

Iterate to get successive approximations (it is up to you to choose how many times to iterate to get a good approximation).

Your program should allow the user to input (using scanf) an initial approximation and iterate several times to improve the approximation.

i) Find starting roots which give three separate answers for roots of the equation and check these are the correct answers.

ii) Can you suggest a method by which you could automatically generate starting values which will converge to DIFFERENT roots of the equation for a general cubic.

iii) Can you (briefly) outline a method for using Newton's method to calculate the roots of a polynomial of any order which would also automatically generate starting values likely to converge to different roots. (Difficult).

_1001410487.unknown

_1002456506.unknown

_998394299.doc

b

a

y=f(x)

