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ABSTRACT
This paper describes TARDIS (Traffic Assignment and Retiming
Dynamics with Inherent Stability) which is an algorithmic proce-
dure designed to reallocate traffic within Internet Service Provider
(ISP) networks. Recent work has investigated the idea of shifting
traffic in time (from peak to off-peak) or in space (by using dif-
ferent links). This work gives a unified scheme for both time and
space shifting to reduce costs. Particular attention is given to the
commonly used 95th percentile pricing scheme.

The work has three main innovations: firstly, introducing the
Shapley Gradient, a way of comparing traffic pricing between dif-
ferent links at different times of day; secondly, a unified way of
reallocating traffic in time and/or in space; thirdly, a continuous ap-
proximation to this system is proved to be stable. A trace-driven
investigation using data from two service providers shows that the
algorithm can create large savings in transit costs even when only
small proportions of the traffic can be shifted.

1. INTRODUCTION
Internet Service Providers (ISPs) that are predominantly used

by residential users (sometimes called eyeball ISPs) typically have
traffic patterns which are dominated by incoming traffic as their
typical user downloads more than they upload. Managing this traf-
fic to reduce cost, network congestion and network instability is
a primary concern of such network operators. Traditionally, net-
works have attempted to manage demand through a combination of
traffic shaping, artificially curbing demand, and traffic engineering
through routing optimisations. Some recent research has consid-
ered alternative solutions, moving the incoming traffic in space (by
downloading content from different physical locations) [20, 4, 6] or
in time (by shifting delay-tolerant traffic to the off-peak) [12, 10, 9].
Both temporal and spatial traffic shifting share the same underlying
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premise: that reallocating traffic can improve network performance
(by reducing costs, increasing stability or other goals). This work
all deals with redistributing the traffic into and out of an ISPs net-
work. However, usually the assumptions are simply to move the
traffic to a “cheaper link" or to the “off peak". In fact the trade offs
may not be so simple and moving too much traffic may worsen the
situation. This paper presents a procedure for pricing the times and
locations and an algorithm which shows how this price can be used
to redistribute traffic in a stable way. A continuous time approxi-
mation of the algorithm is provably stable.

Spatial shifting of traffic is studied in a number of contexts. It
is often the case that content can be downloaded from different
physical locations. In some hosting infrastructures as much as 93%
of content is hosted in multiple locations and by one estimate 40%
of traffic could be downloaded from three or more locations [1].
Systems in common use which replicate content across locations
include peer-to-peer (P2P) systems, content distribution networks
(CDNs) and one-click hosting services (OCH). In these systems
a number of methods have been proposed or demonstrated which
show that these extra copies can be exploited to reduce traffic costs
or for other engineering goals [20, 4, 6]. Even when content is
available from only a single source then spatial shifting of traffic is
possible by using alternative routes [7] in a multi-homed network.

In parallel, multiple papers have explored the potential for shift-
ing delay-tolerant traffic to off-peak hours. In [12] the authors de-
scribe a mechanism that offers users higher bandwidth off-peak if
they deliberately delay some of their traffic. Further contributions
[10, 9, 3] represent similar attempts to shift traffic in time through
user incentive schemes.

The papers above (and others) present a number of different al-
ternative means to move traffic in either space and time and it seems
certain more will arise in other contexts (for example, content cen-
tric networking explicitly encourages content to be available from
multiple sources). This paper presents a control algorithm which
could be used with any of the above systems alone or in parallel.
The goal presented in this paper is traffic cost reduction but other
engineering aims could be brought in as well for example avoiding
the onset of congestion on a link.

The contributions of this paper are threefold. Firstly, the Shap-
ley gradient is introduced, a means to compare the costs associ-
ated with traffic flows from different sources at different times and
subject to different pricing schemes. This is a general mechanism
which, while focused on the 95th percentile common in transit pric-
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Figure 1: An eyeball ISP network where a user can download
requested content from three different transit links.

ing, can be used for many cost models common for ISPs. Secondly,
a unified mathematical framework is presented for reallocating traf-
fic across both time and space. The algorithm shows how traffic
allocation should respond to prices by shifting traffic. Thirdly this
reallocation strategy is shown to be stable. The dynamical system
representation of this mechanism is shown to converge to a benefi-
cial state for the system under weak conditions. The properties of
TARDIS are verified through analysis of real traffic traces from a
large European ISP and a Japanese academic network.

The structure of the paper is as follows. Section 2 gives back-
ground and related work in the area. Section 4 describes an algo-
rithm which can translate groups of links and pricing schemes to
comparable costs for putting traffic on the network from a given
source at a given time. Section 5 creates a dynamical systems
model of the traffic shifting in response to the calculated costs. Sec-
tion 6 describes a software model of the system and section 7 gives
an evaluation using real user traffic data. Finally section 8 gives
conclusions about the TARDIS system.

1.1 A brief description of the TARDIS proce-
dure

This section briefly describes the TARDIS procedure as a whole.
The focus of the procedure is to control where and when traffic
should be assigned as it arrives on a network. If a requested down-
load could be made from a different location or if it could be shifted
in time (by several hours) to the off-peak then the TARDIS pro-
cedure calculates at what time and location the traffic should be
placed in order to minimise costs. The mechanisms by which this
reassignment could occur are dealt with by many other papers in
the literature (as detailed in section 2) and several different mech-
anisms are proposed. The exact details of the mechanism used for
reassignment do not affect the TARDIS procedure.

Figure 1 shows the situation envisaged where shifting in space is
possible. In this case, the user wishes to download content which is
not available from the ISP’s internal network. The content is avail-
able from three separate transit links that are charged at different
rates. The decision as to which transit link to use is not trivial as it
is not always possible to know which link is “cheapest" at a given
time. This is discussed in depth in section 4. Note that, of course,
some links may be peering links not transit links, this does not af-
fect TARDIS if the pricing model is one which can be addressed
by the TARDIS system. Consideration to these pricing schemes is
given in sections 4.3.4 and 4.3.5.

TARDIS is given as input a cost model (details of how the ISP
is to be charged for its traffic) and the available choices for a given
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Figure 2: The TARDIS scheme for shifting traffic in space and
time to reduce costs.

piece of traffic (the times and locations to which that traffic could be
assigned, which of course, includes the possibility it cannot move
at all). The TARDIS model then computes splitting rates which
describe the desired proportion of traffic from the choice set which
should be assigned to each time and location. Note that obviously
individual flows are not split up to different destinations and times.

Figure 2 shows the basic iterative loop which would be used by
TARDIS. The dotted lines show input, the solid lines flow of con-
trol. On the first day, traffic is assigned without modification. The
resulting costs arising from this assignment are calculated from a
model of how the ISP is charged for their traffic. These costs are
used to calculate virtual prices for traffic which is assigned to a
given time and location. The mechanism for this calculation is
described in section 4. These prices are used to calculate split-
ting ratios which could be interpreted as the probabilities of traffic
choosing between various destinations (or times) picking a given
destination. The mechanism for calculating the splitting ratios is
given in section 5. These splitting ratios will, in combination with
the traffic placed on the network create a new cost. The new cost
will create new prices and so on. Obviously it is of primary impor-
tance that this system is stable and this is proved in section 5 for a
continuous time approximation of the system.

2. BACKGROUND
ISPs pay for traffic on their networks in a variety of ways ei-

ther directly through charges levied based upon the traffic level or
indirectly by paying for the cost of leasing appropriate network ca-
pacity. In transit networks the most common way to charge for
traffic is 95th percentile pricing (see section 4.1). If 95th percentile
pricing is applied to traffic generated by many users, it is natural
to ask how much each user contributes to the total cost and how
this could be mapped to a cost per time period. One answer to this
question is given in [17], where the authors use the Shapley value to
find user cost contributions and least-squares fitting to find the unit
costs that best approximate the Shapley value as a function of the
traffic volume and time of day. This is described more fully in sec-
tion 4.1. In [18] the authors consider pricing strategies for transit
ISPs noting that transit traffic prices vary according to destination.
They find that the strategy of discounting local traffic is not optimal



and instead suggest an automatic way to bundle traffic into a small
number of pricing tiers according to cost and demand. In [13] the
authors consider the benefits of ISPs changing routing decisions to
move traffic around their internal network to reduce cost. They ac-
count for a number of different network costs including fixed costs,
interconnect costs, transit and backhaul. They produce an optimi-
sation model which outputs routing decisions and uses the Shapley
value formulation from [17] to assess traffic where 95th percentile
billing is used. The work is considerably different in scope and
intent to this paper. Their aim is to produce a comprehensive cost
model and demonstrate that routing decisions in the internal net-
work could save costs given a fixed traffic matrix. This paper takes
a simpler cost model and focuses on the strategies which could be
used to save costs by altering the traffic matrix. In fact, the cost
models from [13] could be used as an input to the TARDIS system
to improve its ability to shift traffic on the internal network as well
as external traffic. The costs models formulated in [13] could all be
translated simply to the Shapley gradient formulation in section 4.

A number of authors have investigated how eyeball ISPs can re-
duce their traffic costs by incentivising users to delay downloads.
In [10] and [9], the authors describe a model which uses a con-
trol loop to adapt the prices that ISPs charge users in response to
changes in their bandwidth consumption. This provides an incen-
tive for users to shift part of their traffic to off-peak times. An-
other deferred download scheme is the Internet Post Office [12] in
which users request files and the ISP downloads them off-peak and
temporarily stores them so that users can quickly retrieve the local
copies when they next log on. The idea is further developed in [3]
which uses real user data to estimate the cost reductions provided
by such time delays.

Spatial shifting of external traffic is studied in various contexts.
Routing via different transit links in a multi-homed network (to/from
the same destination) is studied in [7] which solves the problem
of rerouting to reduce network costs either for percentile based
pricing or linear cost pricing but not a mixture. In [8] the au-
thors investigate cooperation between content providers and ISPs
for traffic engineering and to improve server selection by choosing
which replica to download from. Their system shows several bene-
fits from merely information sharing about connections and larger
benefits from more active cooperation in choice of physical loca-
tion for connections.

For peer-to-peer systems a number of systems exist. ALTO/P4P
[20] was tested in simulation and experiment and shown to reduce
network transit costs. ONO [4] which was deployed and reduced
inter ISP traffic by changing peer selection. The ALTO/P4P ap-
proach is to introduce an interface between ISPs and overlay ap-
plications with the purpose of facilitating the selection of overlay
nodes based on locality. In [15] the authors assess the extent to
which BitTorrent swarms can be localised, i.e. downloads can be
kept within an ISPs own network, reducing the ISPs transit costs.
The authors consider various strategies to bias overlay topology
construction towards local peers, and develop the concept of in-
herent localisability, which assesses the download performance of
swarms using largely local connections within an ISP. Unfortu-
nately, the degree of localisability depends heavily both on the na-
ture of the torrent and the ISP.

Opportunities for space shifting are also widely recognised within
Content Distribution Networks (CDNs), which present both high
content replication and transparency in traffic redirection. In [14],
for example, alterations are made to DNS servers in order to serve
traffic from different CDN hosts transparently to the end user. In
[6] the authors propose content aware traffic engineering (CaTE),
which allows ISPs to take advantage of content available in mul-

tiple locations to reduce link utilisation. The authors show that
the gains can be substantial: more than 32% of the traffic in their
dataset can be be delivered from at least 8 different subnets, and
almost 40% of traffic can be obtained from 3 or more locations.
This estimate focuses on traffic from major providers and does not
include, for example, P2P.

One-click hosting services could provide another opportunity for
spatially shifting traffic as they contribute a large proportion to traf-
fic share and many are multi-homed [2].

The proposed TARDIS algorithm could be used in combination
with any of the systems from [14, 6, 20, 4, 10, 9, 13, 12] as a control
system to suggest which reallocations would most benefit the ISP.

3. DEFINITIONS
Some definitions are made here to simplify further discussion

and to gather terms for the rest of the paper.
Define a traffic pricing group (TPG) as traffic grouped together

for pricing purposes. In the simplest case this may be traffic over
a single physical link. It may also represent several links where
the traffic is aggregated to produce a final price or even a subset of
traffic on a single link priced differently. The latter arises for ex-
ample when providers charge for national and international traffic
at different rates, a practice often referred to as unbundling [18].

Define a traffic slot as a specific TPG associated with a specific
time window. Hence, a set of traffic slots represents a choice of
TPGs and time windows to which traffic volumes could be allo-
cated. For example, one set of slots may represent the possibility
of downloading from a fixed location at any time in the next eight
hours; another may represent the possibility of downloading only
during the current time window, but from many different TPGs.

The main variables used in the next sections can be found in the
following table.

v(S) Total cost of a TPG for traffic from users in set S
pi price of using slot i
Cj Set of slots making up the jth choice set
di Traffic demand in bytes for traffic which could be as-

signed to any slot in Ci
Xij Traffic flow in bytes which could be assigned to any slot

in Ci and is assigned to slot j
sij the proportion of traffic which could be assigned to any

slot in Ci and is assigned to slot j

The following notational conventions are used throughout this
paper. Lower case bold (e.g. x) indicates vectors. Calligraphic
script indicates sets (e.g. S). Upper case bold indicates a matrix or
a vector of sets (e.g. X).

4. PRICING
ISPs typically pay a number of different costs for traffic enter-

ing and leaving their network their network. These may include
fixed costs such as provisioning a link of fixed capacity on their
internal network, or to an Internet eXchange Point (IXP) and vari-
able costs, for example a transit link which is charged according
to the volume of traffic used. Of particular importance is the 95th
percentile pricing scheme, described in section 4.1. The nature of
the 95th percentile pricing scheme makes it difficult to deal with
analytically (as will be explained in the next section). In previous
work [17] the Shapley value has been used to estimate the price of
a particular time and link.

Through this section the words “price" and “cost" will be used
with very specific meanings. The cost of a traffic pattern is an out-
come of the shape of the traffic and the pricing scheme imposed
– it is the monetary value which would actually be paid for that



traffic using that scheme. The price will be used in this section to
mean a notional marker for a given traffic slot which indicates the
likely cost impact of assigning traffic to that slot. This price is used
as an internal mechanism to work out which traffic slots should
be avoided. If small amounts of traffic are moved from a high price
slot to a low price slot then it would be expected that the cost would
drop.

The following properties are useful for the price chosen:

1. The price can be quickly calculated.

2. An increase of traffic in a slot never causes the price of that
slot to fall (monotonic with traffic).

3. The price is differentiable with respect to traffic.

The first condition is for practicality. The second condition simply
says adding traffic never makes the price go down. The second and
third conditions are used in the stability proof in section 5.

In this paper the Shapley gradient is introduced to solve this
problem. This can be considered to answer the question “what is
the likely increase in cost which would be caused by adding traffic
to this link?" in a robust way which can account for a wide variety
of pricing schemes including, naturally, the 95th percentile.

4.1 95th percentile pricing in brief
For transit traffic, ISPs are commonly charged for the 95th per-

centile of their traffic. This works as follows. For each TPG the
95th percentile cost is set to some fixed value e.g. r dollars per
GBps (note that this is a rate not an absolute value). For the charg-
ing period T (a typical value is a month) the traffic is divided into
smaller time windows of length t (often 5 minutes is used). For
each window i the average traffic rate fi is calculated (it is the total
traffic in that window divided by t the window length). Define f (95)

to be the traffic rate fi such that only 5% of the fi are larger than
f (95). The price charged for the period T is then simply rf (95).
It is usual that inbound and outbound traffic are tracked separately,
and only the largest charged (see [5]). For eyeball ISPs this will
almost always be the inbound traffic as this is larger in volume than
the outbound traffic. The 95th percentile pricing provides a par-
ticular challenge for any scheme which aims to reassign traffic. In
particular the question “how does adding traffic to this slot affect
the amount paid?" becomes problematic. Adding or taking away a
small amount of traffic to any slot has no affect on the cost unless
that slot is one with traffic level f (95) for that TPG. A more subtle
analysis is required and this is provided by building on the Shapley
value as studied in [17].

4.2 Calculating prices using the Shapley gra-
dient

Consider the traffic in a single TPG with a known pricing scheme
and with N users. Let v(S) be the total cost which would be paid
using this scheme for the traffic generated by a some set of users S.
Define N as the set of all N users. The Shapley value is a concept
from game theory which assesses the contribution of a user’s strat-
egy to an overall cost/benefit. The Shapley value (see [17]) of the
ith user is defined as

φi =
1

N !

∑
π∈SN

[v(S(π, i))− v(S(π, i)\i)], (1)

where SN is the set of all N ! possible permutations of N , π is
one such permutation, and S(π, i) is the set of users who arrive not
later than i in the permutation π. Intuitively, (1) can be interpreted
as randomising the order of users, estimating the cost incurred by

each user i and averaging this cost over all possible user orderings.
In [17] the Shapley value of a user’s traffic is used to assign a cost
to each hour of the day which reflects the possibility of traffic in
that slot contributing to an increased price. The full calculation
of the Shapley value (1) requires considering N ! combinations of
user traffic to analyse traffic from N users but [17] shows that a
relatively small sampling gives an efficient, unbiased estimator (in
their work 1,000 orderings produced a low error estimate) and this
sampling technique is used here.

In [17] this value (that differs for every user) is combined with
a least squares fit to get an average cost to assign to each hour.
However, this procedure is computationally intensive (calculating
the Shapley value for every user and then doing a least squares fit)
and does not produce a cost which can be compared to other pricing
schemes. What is required is some measure of the cost of adding
a small amount of traffic on a given TPG at a given time. This is
achieved by considering the gradient of the Shapley value.

Define the Shapley gradient as the rate of increase in cost when
a fictitious user N + 1 injects an additional small amount of traffic
du in slot j. The Shapley gradient is therefore,

Gj =
1

du (N + 1)!∑
π∈SN′

[v(S(π,N + 1))− v(S(π,N + 1)\N + 1)], (2)

where SN ′ is the set of arrangements of the users N plus the ficti-
tious (N+1)th user and S(π,N+1) is the set of all users arriving
not later than user N + 1 in the permutation π.

Define the Shapley gradient for an individual user i and slot j
as φ′ij = (φi(dij) − φi)/du where φi(dij) is the Shapley value
for user i with extra traffic du in slot j. For the traffic schemes
considered here this can be shown to be approximately the mean of
φ′ij over all users i with the error term O(1/N). In all but the 95th
percentile case φ′ij = Gj for all i. Details are given in appendix A.

4.3 Costs for various pricing schemes
In this section the Shapley gradient is calculated for various pric-

ing schemes. The Shapley gradient is a quite general concept and
works for any scheme where the Shapley value is differentiable.
This condition amounts to saying that the pricing scheme is such
that there is no step change with induced traffic. This would not
be the case with, for example, a scheme which charged a fixed rate
up to a given amount of traffic and then a higher rate above that
amount. In the section 5 it will also be useful that schemes are
differnentiable with respect to added traffic.

4.3.1 Shapley gradient for linear pricing
For traffic in a slot j charged with linear pricing at rate rj then

(2) reduces to simply Gj = rj as would be expected. The equation
becomes Gj = 1

du (N+1)!

∑
π∈SN′

rjdu since the cost of adding
du traffic to a slot j which is priced linearly at rj is rj du and hence
v(S(π,N + 1)) − v(S(π,N + 1)\N + 1) = rj du. Since there
are (N + 1)! members of SN the equation reduces to Gj = rj .

4.3.2 Shapley gradient for 95th percentile pricing
Let T (95)(S ′(π)) be the set of all time periods which have a

value equal to the 95th percentile value of the traffic up to and in-
cluding user N + 1 in arrangement π. Let I(X) be an indicator
variable – that is a variable which takes the value 1 if X is true and
0 if X is false. Consider a slot j charged at 95th percentile at rate
rj . For some arrangement of traffic S(π,N +1) then there are two
possibilities. If, for the traffic profile S(π,N + 1), then the flow in



slot j is equal to f (95) then adding du to slot j increased the cost by
rj du. In all other cases then adding du did not increase the cost.
Therefore, v(S(π,N + 1)) − v(S(π,N + 1)\N + 1) = I(j ∈
T (95)(S(π))rj du. Intuitively this says that adding traffic du to
slot j in an arrangement of traffic increases the 95th percentile cost
excactly when the traffic has been added to the 95th percentile slot
and at no other times. Hence, (2) can be rewritten as

Gj =
1

du (N + 1)!

∑
π∈SN′

[I(j ∈ T (95)(S ′(π))rj du].

This then gives

Gj =
rj

(N + 1)!

∑
π∈SN′

[I(j ∈ T (95)(S ′(π)))]. (3)

As in [17], only a small sample of all combinations in SN ′ need be
calculated and this can be computed efficiently see [17] and [13]
for further information on the performance of the estimation.

The expression (3) has the following properties useful to con-
struct the slot prices pj .

• When summed over all time windows associated with a TPG,
the result is the 95th percentile price actually paid for that
TPG with that traffic.

• It reflects the likelihood of adding traffic in a given time slot
increasing the 95th percentile cost.

• Off-peak slots have near zero Gj .

4.3.3 A useful approximation for 95th percentile pric-
ing

A problem remains with the 95th percentileGj as defined in (3).
Moving traffic to a very busy period is just as valid a strategy for
cost reduction as moving it to a quiet period. This follows because
shifting traffic from busy time periods to quiet ones will lead to a
lower 95th percentile, and hence, to a reduction in costs. However,
shifting traffic to the busiest time periods, so that it falls in the top
5%, could also reduce costs. In practice such a policy would impact
end-to-end performance adversely. The price function is therefore
modified by changing T (95) in (3) to T (>95), the set of slots with
a traffic level equal to or greater than the 95th percentile level and
normalisting by the size of this set.

Gj =
rj

(N + 1)!

∑
π∈SN′

[
I(j ∈ T (>95)(S ′(π)))

|T (>95)|

]
.

This alteration has the added benefit of making the slot price pj
monotone as a function of the traffic in that slot. The results for
TARDIS use this as the price function but use the unmodified 95th
percentile as the cost function. This has the benefit of not inducing
unrealistic traffic profiles although it means that cost reduction is
not sought as aggressively as it might be.

It will later be a useful property that the price of a slot is mono-
tonically non decreasing but also that it is continuously differen-
tiable. This can be achieved by constructing the following approx-
imation

G′j =
rj

(N + 1)!

∑
π∈SN′

A(j, π)∑
k A(k, π)

, (4)

where the k sum is over all time windows and A(j, π) = 1 if
t(j, π) > f (95)(π) and exp[(−(t(j, π) − f (95)(π))2/σ2] other-
wise. Here t(j, π) is the traffic level in slot j counting traffic up to
the N + 1th user in arrangement π and f (95)(π) is the 95th per-
centile level for the traffic up to this user. The parameter σ ≥ 0 is

akin to variance. This effectively fits a Gaussian shape to the price
for traffic below the 95th percentile level. The fall off is controlled
by σ and as σ → 0 the approximation to the previous formula
becomes exact.

4.3.4 Shapley gradient for fixed pricing with a max-
imum bandwidth

A common cost model on links is to pay a fixed cost for band-
width up to a given cap. This could occur, for example, if the ISP
pays for a link to an IXP with a given rate. Another situation where
this would occur is an internal link within the ISP which has fixed
capacity and must not be overloaded. As the fixed cost is already
paid, the price for putting traffic on the link is zero as long as the
traffic remains below the cap.

A naive approach to this cost system presents a problem for the
TARDIS system as the cost would be zero up to the capacity then an
infinite cost at that capacity when the link fails (more realistically,
the cost would approach infinity, link failure, as the link approaches
its maximum utilisation). Fortunately, a number of pricing schemes
are possible which allow modelling an approximation to this cost
function. The following scheme is inspired by the well-known re-
sult from queueing theory that the mean queue length for an M/M/1
queue with utilisation ρ ∈ (0, 1) is given by E [N ] = ρ/(1− ρ).

Let m be the maximum traffic rate allowed on a link and α ∈
(0, 1) be some proportion of that rate which can always be tolerated
(for example if α = 0.8 the link is considered unpriced until its
utilisation is 80%). The cost for a slot j carrying flow fj could be
approximated by

cj =

{
0 0 ≤ fj < αm
fj−αm
m−fj

αm ≤ fj < m.

This function gives a cost 0 up to αm and then rising until the cost
approaches infinity as the traffic in the slot approaches m. The
Shapley gradient will simply be the differential of this. If fj is the
flow on slot j then the price of that slot is given by the Shapley
gradient

Gj =

{
0 0 ≤ fj < αm
(1−α)m
(m−fj)2

αm ≤ fj < m.

This is equivalent to a price which is zero (or fixed and finite) for
traffic less than αm and rising rapidly to infinity as fj approaches
m.

4.3.5 Shapley gradient for other pricing schemes
It is important to consider the case where more than one cost

constraint affects traffic. For example, in figure 1 traffic must cross
the ISP internal network after the transit links. The ISP internal
network may have bandwidth constraints on links which form an
additional part of the problem in addition to minimising the cost
from external links. In this case the cost of using the external link
could be modelled as the sum of the cost from transit or peering
plus a fixed price weight as in the previous section when the asso-
ciated internal link is running near capacity. If it was known that a
certain transit link experienced congestion at some times then this
scheme could also be used to limit such assignment. The TARDIS
system is relatively flexible in the cost/pricing which can be as-
signed as long as the cost can be approximated by a differentiable
non decreasing function of the traffic.

The previous sections cover a large number of pricing schemes,
however one practice not yet dealt with is the idea of pricing bands.
For example, traffic might be charged at a particular rate (either
linearly, fixed cost or at 95th percentile) up to a given level and



then at a lower rate beyond this level. This presents a problem
for the TARDIS system in two ways: firstly, the cost is no longer
non-decreasing, at a certain point adding traffic reduces the cost;
secondly these pricing bands are often pre-agreed, it would not be
realistic to have an automated system switch between pricing tiers
according to changing traffic patterns. Therefore such a cost model
would be dealt with within TARDIS by assuming that the current
price band is an input and the decision to move up or down a price
band is an externally made engineering decision (made by humans
or by expert systems) which can be fed into the TARDIS system if
the decision is made to change the price band.

5. DYNAMICAL SYSTEMS APPROACH
Having assigned a price pi to each slot i, this section presents

a mechanism to allocate traffic to each slot so that the total cost is
reduced. This is equivalent to changing the time and/or TPG of a
piece of traffic. In this section a dynamical system is formulated for
which a solution with a stable equilibrium is provided. This system
is inspired by a system developed in the context of road traffic [16].

A naive approach would be to assign all traffic to the cheapest
slot available. This, however, could easily cause problems. Shifting
a significant amount of traffic in this manner may inflate slot price
excessively, potentially reducing traffic shifting to a small subset of
slots with wildly fluctuating prices, in a situation similar to route
flapping.

In addition to the potential for oscillation, the problem is further
complicated by the fact that not all traffic can be allocated to all
slots. Some (possibly large) proportion of the traffic can only be
assigned to a single slot, being delay-intolerant and having no al-
ternative download locations. Other traffic may impose different
restrictions, such as only being allocatable to slots in the same time
window (space shifted but not time shifted), or to slots associated
with the same location (time shifted but not space shifted). The ap-
proach chosen in this paper is to define choice sets, the sets of slots
that a user’s traffic can take. This could be:

1. a single slot (for traffic which cannot be moved),

2. a set of different TPG at the current time (for traffic which
can move in space but not time),

3. a set including the current time and a number of subsequent
times up to a given maximum delay for a single TPG (for
traffic which can move in time but not space),

4. the cartesian product of 2) and 3) for traffic which can shift
in both space and time.

5.1 The stable assignment problem
Define a choice set C as a set of slots to which a given unit of

traffic may be allocated. Let Ci be the ith such choice set, and
assume that each unit of traffic demand has an associated choice
set Ci. Let di be the amount of traffic within one period which is
free to choose among these choice sets and assume this is fixed.

Let Xij be the customer traffic demand that can be allocated to
slots in choice set Ci and is in fact allocated to a slot j (naturally,
Xij = 0 if j 6∈ Ci). Let X be the matrix of all such Xij . For
each slot i, the price pi is a function of the assigned traffic (in 95th
percentile the slot price depends on the assignment to all slots in its
pricing period). Write this explicitly as pi(X).

DEFINITION 1. Let Ci be a choice set and X be the assign-
ment of traffic within all choice sets. The choice set is said to have
an equilibrium assignment (or to be in equilibrium) if pk(X) >

pj(X) implies Xik = 0. The system is said to be in equilibrium if
all choice sets are in equilibrium.

In other words, at equilibrium, all the traffic is assigned to one or
more slots all of which have equal cheapest price. This definition
corresponds to the user equilibrium of road traffic analysis [19], or
Wardrop equilibrium of the first type. It embodies the idea that at
equilibrium no traffic can be assigned to a lower priced slot.

The stable assignment problem can now be stated in general
terms: find a method of allocating flows to slots within their choice
set such that the prices and flows resulting from such an assign-
ment are an equilibrium assignment for all choice sets. Evidently,
this represents an equilibrium state because once it is reached, no
traffic could be assigned to a different, lower price slot.

5.2 A continuous dynamic model of slot choice
The model is now formulated in terms of assigning traffic (choos-

ing the Xij) to achieve equilibrium by moving traffic within its
choice set to lower price slots. The demand di represents the amount
of traffic which can choose slots in Ci and is di =

∑
j∈Ci Xij . Fur-

thermore, since the pi will depend on theXij the problem of creat-
ing a stable dynamic system is then that of creating an adjustment
process for the Xij that moves the system towards equilibrium. In
practice both the Xij and the pi would be available only at the end
of each pricing period T . For analytic tractability, however, a con-
tinuous time formulation is now given.

The proposed adjustment strategy is as follows. If pk > pj ,
traffic which can be shifted from slot k to slot j will do so at a rate
proportional both to the price difference pk − pj and to the amount
of traffic Xik currently using slot k. Consider a toy example with
two slots, 1 and 2, and a single choice set C1 = {1, 2} (i.e. all traffic
can choose between both slots). Assume some initial assignment
X1 1 and X1 2. If p1 > p2, then the rate of change of the two
variables would be

.
X1 1 = −X1 1(p1−p2) and

.
X1 2 = X1 1(p1−

p2), where
.
X indicates time differentiation. This means that traffic

will be re-allocated from slot 1 to slot 2: X1 1 will decrease and
X1 2 will increase, leading to an increase in p2, a decrease in p1
and a reduction in both

.
X1 1 and

.
X1 1 as the system approaches

equilibrium. Since X1 1 decreases by as much as X1 2 increases,
these equations are flow preserving; in addition, it can be seen that
if given positive initial values, neither X1 1 nor X1 2 will produce
negative values.

More generally, for all j ∈ Ci,
.
Xij =

∑
k∈Ci

[Xik(pk − pj)+ −Xij(pj − pk)+] , (5)

where the notation [x]+ means max(0, x). The first expression
inside the sum shifts traffic towards j if pk > pj , and the second
one shifts traffic away from j in the opposite case. If choice set Ci
has only one member, the sum is empty and

.
Xij = 0 as expected

since Xij has no freedom to move.
For reasons of space, only an outline of a stability proof can be

given in this paper; it proceeds as follows. The evolution of the as-
signments Xij can be described with the differential matrix equa-
tion

.
X == Φ(X) which can be decomposed into equations for

each choice set .
xi = Φ(xi) where xi is the ith row from X – that

is the vector of flows in choice set Ci that is xi = (Xi 1, Xi 2, . . .)
(noting that Xi j = 0 if j /∈ Ci. If the system is at a Wardrop
equilibrium then

.
X(t) = 0 since for any Ci then in (5) the term

Xik(pk − pj) = 0 and Xij(pj − pk) = 0 as either the price term
or the flow term is zero. Let D be the set of Xij which are de-
mand feasible (that is

∑
j Xij = di for all i) and assume that the



system starts in a demand feasible state. The following theorem
that is a variant of [16] applies. For set Ci define xi as demand
feasible if

∑
j Xij = di and (slightly abusing notation) xi ∈ D.

Define ∇i(x) as the gradient over the vector space of xi that is
∇i(x) = (∂x/Xi 1, ∂x/Xi 2, . . .).

THEOREM 1. If Φ(X) is continuously differentiable, the dy-
namical system

.
X = Φ(X) is Lyapunov stable if there is a con-

tinuously differentiable set of functions V (xi) over D such that for
all i

1. V (xi) ≥ 0 for all xi ∈ D.

2. V (xi) = 0 if and only if xi is in equilibrium and

3. ∇iV (xi) · Φ(xi) < 0 for all i if X is not in equilibrium.

PROOF. See appendix B.

A suitable set of V (xi) is given by V (xi) =
∑
j,k∈Ci Xij(pk−

pj)
2
+. This is shown in appendix B.

Although this proof regards a continuous dynamical system, our
simulation model, along with any implementation, would be dis-
crete (see section 5.3). The discrete shadowing lemma shows that,
in a wide variety of circumstances, the behaviour of a discrete ap-
proximation of a continuous system can remain arbitrarily close
that of the original one (see Theorem 18.1.3 in [11]). Note, how-
ever, that the system proposed may not be such an approximation.

5.3 The model in practice
It is more useful to use split proportions sij = Xij/di since

di will, in fact, vary between days. This sij can then be directly
interpreted as the proportion of traffic choosing amongst choice set
Ci which should be assigned to slot j.

Converting the dynamic system from section 5.2 from a con-
tinuous time to a discrete time (day-to-day) model is achieved as
follows. For every choice set Ci then a descent direction is given
by the vector .

si = (
.
si0,

.
si1,

.
si2, . . .) where

.
sij =

∑
k∈(Ci\j)

[sik(pk − pj)+ − sij(pj − pk)+] .

Moving a delta in this direction will move the sij closer to equilib-
rium. The ideal change in this direction would be:

sij := sij + ki
.
sij ,

for some ki. The ki must have the following properties:

1. All sij must stay in the range [0, 1].

2. ki
.
sij must remain scale invariant with respect to price (that

is, if all prices in the network are multiplied by the same
constant, then ki

.
sij will not change).

3. Similarly, if the pricing on a single link is multiplied by a
constant factor then ki

.
sij should not change for switches of

slot in time only.

4. Neither “too large” nor “too small” a proportion of traffic
must be moved in every iteration.

This is achieved as follows. Firstly, define for each Ci the norm
||Ci|| =

√∑
j∈Ci

.
s2ij . Note that because of the definition of .

sij if
all prices in the network which apply to slots in Ci are multiplied
by a factor C then ||Ci|| is also multiplied by the same factor. If
the constant ki is proportional to 1/||Ci|| then the value of ki

.
sij

is invariant with respect to a multiplication of the price achieving
2) and 3) above. Secondly, the equations already ensure sij ≥ 0.
When ki

.
sij would cause sij > 1 then it is reduced accordingly by

multiplying ki by a suitable constant. Finally, to achieve 4) then
ki is set initially to 0.1/||Ci|| initially reducing logarithmically to
0.001/||Ci|| by the end of the simulation. This roughly corresponds
to 10% of the traffic shifting in the earliest iterations and only 0.1%
by the later iterations.

In a running system, a system manager would likely want only
small (cautious) steps per day as the system would run for a long
time and attempting large shifts in traffic between days would be
unnecessary.

6. MODELLING FRAMEWORK
The scheme is assessed by evaluation based around real traffic

traces. In order to test how the scheme would perform in a variety
of different scenarios a number of assumptions about pricing are
tested. The traffic traces are analysed to see how they would re-
spond to the algorithm given hypothetical assumptions about pric-
ing and about what traffic can be moved in time and what traffic
can be moved in space.

6.1 Model inputs
Two data sets covering user traffic demand were used. The first

data set (EU) was collected from a large European ISP, and contains
mostly residential traffic. The second data set (JP) was obtained
from non-anonymised traces collected from within a Japanese aca-
demic research network. Each data set provides the amount of data
sent and received by every network user aggregated over each time
window. In the EU case the traffic is all traffic leaving and enter-
ing the ISP network (over transit and peering links) aggregated for
each user in hourly periods. In the JP case the traffic is collected
from a single link which all traffic into and out of that network must
traverse and is aggregated per IP address inside the network in 15
minute periods. In both cases cost information and mapping of traf-
fic to external links is not known. Summaries for both EU and JP
datasets are shown below.

Data (GB)
Dataset Start date Days Window Users Out In

EU 07/11/11 7 1 hour 37,580 2,343 12,672
JP 17/03/08 3 15 min 12,728 849 566

The EU dataset is an example of a typical eyeball ISP, with in-
bound traffic far higher than outbound. Although TARDIS is ex-
pected to be especially useful for providers like these, even for net-
works where such behaviour is not observed traffic balancing can
still reduce costs. The JP dataset exhibits higher outbound traf-
fic because demand is driven by remote hosts spanning multiple
timezones. Its inbound traffic, on the other hand, displays a much
stronger diurnal pattern and typically exceeds outbound traffic dur-
ing traditional peak hours. Since TPG and pricing information are
unavailable for either dataset, it is necessary to make some further
assumptions in order to test the TARDIS procedure.

6.1.1 Assigning traffic pricing groups and prices
The JP dataset provides full packet header traces, and thus al-

lows traffic to be further aggregated by remote host. By using ge-
olocation on the source IP address, inbound data can be split into
hypothetical ingress TPGs. Three sets were defined according to
the geographic source of data: Japan / China, United States and all
other sources. This selection reduced the disparity in traffic vol-
ume between sets but also mirrors an operational reality, namely
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Figure 3: Inbound traffic for the JP data set split by geographic
location
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Figure 4: Inbound traffic for EU dataset split across three
TPGs using T2 weighting policy.

that traffic from regional and international partners is priced differ-
ently. The resulting geographical bundling is shown in figure 3 and
used as a proxy to define traffic pricing groups.

For the EU dataset only user traffic aggregates are available and
no destination information was available to split traffic into TPGs.
It would be a pessimistic assumption for TARDIS to simply split
randomly as this would give each TPG the same temporal profile
and reduce the opportunities for cost saving by space shifting (since
each link would have its peak hour at the same time). Real traffic
traces have different time behaviour for traffic originating from dif-
ferent destinations (for example P2P users turning off their client
according to their local diurnal pattern). Therefore a means of split-
ting traffic was required which would induce slight difference in the
diurnal cycle. The following procedure was used:

1. Half the traffic was split equally between each TPG.

2. The other half of the traffic was split between each TPG ac-
cording to a weighted cosine function with 24 hour periodic-
ity cos[(t − pi) ∗ 2π/24] where t is the time period for the
traffic being split (in hours) and pi is the time in hours hour
where TPG i gets peak weight.

This splitting process keeps the total amount of traffic in each
hour the same but ensures that different TPGs have slightly dif-
ferent peaks by choosing different values for pi. To evaluate the
impact of the difference in the diurnal patterns between TPGs two
different policies are used. In the policy T2 the three TPGs have
peak hours two hours apart and in T4, four hours apart. Obviously,
the more widely separated the peak hours, the better the system will
perform under space shifting. Figure 4 shows inbound data for the
EU dataset with the T2 peak shift policy over the three hypothetical
TPGs.

Having constructed hypothetical traffic pricing groups, it is now
necessary to assign pricing schemes to each group. Hypothetical

schemes were assumed to test a variety of scenarios (no real pric-
ing data was available for the networks being tested). It will be
assumed that traffic will be charged at the 95th percentile level on
all TPGs, for the following pricing levels:

• Equal Prices, PE , TPGs priced in the ratio 1:1:1.

• Low Variation, PL, TPGs priced in the ratio 4:2:1.

• High Variation, PH , TPGs priced in the ratio 10:3:1.

The high variation corresponds to “We set the unit traffic costs to
be between $1 and $10 per Mbps, which corresponds to publicly
available data on the current prices for Internet transit" [13].

6.2 Modelling user choice
The model discussed above can be used to determine how much

demand a user places on traffic pricing groups for each time win-
dow. The next stage is to consider which other slots traffic may be
shifted to. In practice, this will depend on technical feasibility, user
willingness and the availability of data in another slot.

A question arises as to the correlation between traffic which can
be shifted in time and traffic which can be shifted in space. If it
were unlikely that time-shifting traffic could also space shift (be-
cause the two types were fundamentally different) then the two
would be anti-correlated and this would mean that more traffic
overall could shift than if there were no correlation. Conversely,
it may be that the opposite is true and that traffic which can shift in
time is more likely to be able to shift in space. If this is the case
then less traffic will be able to shift at all than if there were no corre-
lation. For the model we use we take the independence assumption
as being a mid-way assumption.

An important problem in using the model in a practical context is
generating the choice sets. To approach this problem systematically
choice sets are generated separately for demand which can shift in
time, demand which can shift in space and demand which can shift
in both. For example, for space shifting, there must be a choice
set for each time window containing slots for all TPGs. For time
shifting within a given TPG, there must be a choice set for each
time window which contains slots representing that TPG at that
time window, the next time window, the time window after that,
up to the maximum allowable delay shift. Although the number
of choice sets is large, it is manageable as it is proportional to the
product of the number of time windows and TPGs.

The user choice model selected can be condensed into the small
set of parameters shown below.

NT Proportion of users eligible for time shifting.
NS Proportion of users eligible for space shifting.
µT Mean proportion of data shifted in time by eligible

users.
µS Mean proportion of data shifted in space by eligible

users.

Given these parameters, each user selects their time and space shift-
ing characteristics as follows:

1. The ability to shift traffic in time or space is determined by
comparing randomly generated numbers in (0,1) to thresh-
olds NT and NS respectively.

2. For time shifting users, the proportion of time shifted data is
set individually for each user to PT = R(1−µT )/µT where
R is a random number in (0,1). This produces a population
of users who swap up to 100% of their traffic in time, with a
mean proportion of µT .



3. Similarly, for space shifting users, the proportion of space
shifted data by each user is set to PS = R(1−µS)/µS .

An assumption needs to be made about the maximum time delay
allowed (here 18 hours was chosen) and which links are available
for traffic to choose (here, it was chosen that traffic which could
shift in space could always choose all three links). The combination
of both available time windows and TPGs produces a choice set of
available slots. For simplicity, traffic is treated identically within
each slot. Given the available slots, the proportions pij assigned
by the dynamic model in section 5 are used to choose which slot to
assign the traffic to. An amount of traffic f can be assigned among
slots in choice set Ci in two possible ways:

• All-or-nothing assignment. All of f is assigned to a ran-
domly chosen j ∈ Ci with probability pij .

• Proportional assignment. A proportion pij of f is assigned
to each slot j ∈ Ci.

6.3 Data analysis details
After the previous assumptions are made, the processing of data

to assess the TARDIS algorithms is as follows:

1. Initialisation. A preliminary run through of all N days of
traffic is used to initialise the traffic splits sij and to generate
initial traffic profiles.

2. Pricing. Based on the traffic from the previous day, costs for
each slot are calculated using the Shapley gradient procedure
presented in section 4.

3. Traffic Shifting. The slot costs are used to update sij for all
slots in Ci as explained in section 5. Traffic assigned to each
slot is updated accordingly.

4. Iteration. The next day is processed by returning to step 2. If
day N has been reached, processing continues by wrapping
around to the first day, the second day and so on.

Figure 5 shows the analysis in diagramatic form. The known
input is the N days of traffic (from EU or from JP). This will in-
clude the assumptions T0, T2 or T4 from section 6.1 for the EU data
and the geographic split for the JP data. Two assumed inputs are
the time/space shifting possibilites (as discussed in section 6.2) and
the pricing schemes. All pricing schemes tested here are 95th per-
centile (as that is the main focus of the Shapley gradient method)
and the ratios between TPG are either PH , PL or PE with PH the
highest difference between links being the base case.

The analysis begins by modelling the traffic as if it could not
choose slots for a warm up period. This initialises the shift propor-
tions sij for all choice sets Ci. These are used to generate slot prices
for the next day according to the Shapley gradient Gj measured on
the previous day’s traffic. The slot prices are used to update the
shift proportions and these updated shift proportions are used to
generate the next day of traffic in combination with the next day of
traffic data from the EU or JP dataset.

Finally it is worth briefly mentioning execution time. The algo-
rithm given is easily lightweight enough to run real time in practice
for the number of users discussed here. The graphs in the next
section each contain 25 graphs of 500 days and were run on only
modest computing hardware. Each 500 day run took less than 1 day
of real time to complete for 10,000 users. An implemented system
would obviously have to perform only 1 day per day. It should also
be noted that if the number of users is large then splitting rates can
be calculated using only a sample of data. In fact the runs for the
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Figure 5: Diagram showing the trace driven analysis of
TARDIS.

EU data were performed on a sample of 10,000 users – runs on the
full data set produced extremely similar results. The runs for the JP
data were performed on the full data set.

7. ANALYSIS OF USER DATA
Results are presented in a common format. The simulation is

run for 50 days as a “warm up" and then 500 simulated days. The
effects of this recycling days is discussed in section 7.3. The split
ratio is frozen for the final 50 days and the price paid over the first
50 days is compared with the price paid over the final 50 days. The
graphs is repeated for different proportions of traffic being allowed
to swap in time and in space. It is uncertain what proportions of
traffic could in potential be engineered in this way so values from
0 to 60% are tried for space swapping and values from 0 to 20%
for time swapping. The results are presented as the proportional
reduction in price paid by the ISP and are compared to the theoret-
ical maximum efficiency. The proportional reduction is given by
(Pi − Pf )/Pi where Pi is the mean daily price for the initial 50
day period and Pf is the mean daily price for the final 50 day pe-
riod. This ratio represents the reduction in price paid, e.g. 0.4 is
a 40% saving. The theoretical maximum efficiency is simply the



proportion of traffic which can swap either in time or in space. The
data will not necessarily produce the same result on repeated runs
as there are random elements to which users are assigned to swap
and different users have different data profiles. Repeated tests with
the same input are used to estimate the standard deviation on the
obtained results and these are included on all plots. The exact pro-
cedure is described in section 7.3. Each box in the plots, therefore
has the form x ± y(z) where x is the calculated reduction in the
price, y is twice the estimated standard deviation (if the variable
were normally distributed this would be a 95% confidence inter-
val and z is the reduction which would be achieved if all shifted
traffic had zero cost. So, for example, 0.1 ± 0.02(0.14) should be
interpreted as a cost reduction of 0.1 (10%) on the base costs with
the true figure likely to be between 0.08 and 0.12 (the range being
two standard deviations each side of the mean) and the maximum
possible reduction (if all shifting traffic simply disappeared) being
0.14.

In all the cases tested here it is assumed that all three TPG are
available for swapping. While this is an optimistic assumption, in
many real situations more than three TPG would be available to
an ISP. The high variation pricing scheme PH (i.e. a price ratio
of 10:3:1) using 95th percentile pricing is the default for the base
scenario. In addition, for the EU data set the base model includes
the peak hour weighting scheme T2 (see section 6.1.1). The base
model uses the proportional assignment choice model (see section
6.2) but this was found to make no difference to the outcome (see
section 7.3).

The proportion of time shifters is a combination of the propor-
tion of users whose traffic shifts in time and the proportion of traffic
shifted in time NTµT . Similarly for space shifting the proportion
of traffic shifted in space is NSµS . To reduce the number of mod-
elling parameters varied then NT = NS = 1 and µT and µS
are varied. However, the results were found to be no different if
µS = µT = 1 and NT and NS are varied (see section 7.3).

7.1 Base case results
This section presents the results on the base case analysis. Figure

6 (top) shows the base case for the EU data. As can be seen, the
savings are substantial with, in the highest case, 55% of the transit
price being reduced. In many cases the saving is close to the opti-
mal pricing that could occur. Note that in some cases it is slightly
over due to statistical variances in the results (for example, if the
traffic randomly selected to be allowed to shift happened to be on
higher priced links in that run). It can be seen that, in particular,
time shifting is extremely good at saving cost with almost all of the
potential benefit being realised.

Figure 6 (bottom) shows the same results for the JP data. In this
data there is more statistical variance in the results, likely because
the data set has more “imbalance" in the traffic distribution with a
small number of users contributing a large amount of data. Natu-
rally, if those users move their data then this contributes more to
the solution. The results show broadly the same pattern as the EU
data but the link swapping is slightly less effective.

7.2 Variant results
A number of variants on the base scenario were tried and are

reported here. The most obvious variant is to try the lower differ-
ence in pricing. In this scenario the link prices are split in the ratio
4:2:1 not 10:3:1. The results are presented in figure 7. The effec-
tiveness of time swapping is not reduced significantly as might be
expected. However, the effectiveness of link swapping remains rel-
atively high, especially in scenarios with low levels of time swap-
ping. Therefore it seems link swapping can still be extremely ef-
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Figure 6: Base case for EU data (top) and JP data (bottom).

fective for saving cost even when cost differences are low. In fact
there was still some leeway Nonetheless, in this scenario, in the
cast with most swappers, almost 40% of the price is saved in both
data sets (the theoretical maximum being 68%). In fact tests on the
equal price policy PE show that by taking advantage of the peak
time differences gains can be made even when there is no differ-
ence between the rates charged. For example on the JP data set a
cost saving of 10% was made in a scenario with 20% space shifting
and no time shifting.

An investigation was made into the effect of a wider split in the
peak hours across pricing groups, the T4 scenario described in sec-
tion 6.1.1. As would be expected, this produces some advantage
for the TARDIS system but in fact the advantage is slight and the
results are indistinguishable from the T2 results when error bars
are accounted for. The graph for the EU data is shown in figure 8.
When compared with figure 6 (top) it is apparent that little differ-
ence to the price has been made.

7.3 Checking data analysis assumptions
A number of assumptions on the data analysis are checked for

robustness. The first, and most important, is the repeatability of
runs. As mentioned, the stochastic element to assignment of which
traffic can be swapped means that not every run gets the same re-
sults even with identical input. It is therefore important to calculate
the repeatability of the results. This is assessed by a run with 60%
link swappers and 20% time swappers repeated ten times each for
the JP and EU data. The Shapiro-Wilk normality test showed that
the results were not normally distributed and no simple distribu-
tion could be found hence no simple way of calculating confidence
intervals was available. Instead the coefficient of variation is cal-
culated (the ratio of standard deviation to mean). This is used to
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Figure 7: Low pricing variant case for EU data (top) and JP
data (bottom).
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Figure 8: The T4 variant in traffic splits, EU data

calculate estimated standard deviations for the results.
Runs were made with prices on all links equal. Benefits from

swapping in space were still present as different links had different
peak times. The exception was in the EU data set if policy T0

was used to split traffic between links. In the case of exactly equal
traffic on all links and equal prices on all links then no benefit was
discovered from link swapping, as might be expected. With equal
prices, 20% of link swappers and no time swappers produced a 5%
saving in prices in the EU data (with the T2 policy) and 10% in the
JP data.

Runs were made to test assumptions about which traffic was cho-
sen to shift. No significant difference was found in the results when
x% of users were chosen to shift all their traffic or when all users
were chosen to shift x% of their traffic (chosen at random).

Runs were made to test assumptions about the limited number
of days of data available. In specific it might be worried that the
very good performance on the data was due to the same data being
recycled again and again. To test this artificial extra days were
generated from the real days of data by the following procedure.

1. A total traffic level for the new day is chosen from a nor-
mal distribution with the same mean and variance as the real
traffic’s daily traffic level.

2. Each user picks one day at random and uses their traffic pro-
file for that day.

3. The traffic for each user is multiplied by a constant chosen to
give the required traffic level from the first step.

This procedure will generate extra days of traffic which have the
same mean traffic level and same variance in traffic level between
days as the original and will also have the same split of traffic be-
tween users as the original. However, every day of traffic will be
different. By using this procedure then it is certain that cost sav-
ings are not due to the traffic being “too predictable". Conversely,
however, the traffic levels for the assessment days can increase or
decrease (about a constant mean) so a perceived cost saving or in-
crease could be a result of a temporary increase in traffic. Figure
9 shows these results for the JP data set. This should be compared
with figure 6 (bottom). The errors are larger on this graph because
of the fluctuation on the data. This can be seen especially in the
base case with zero time and space shifting where the cost has got
worse even though no users can shift. This is simply a random
fluctuation upwards in traffic. The two standard deviation bound
is larger in this graph because it includes elements for the repeata-
bility of the assignment procedure but also variations in the traffic
levels. There appears to have been a decline in the benefit in some
scenarios this is within the two standard deviation bounds so it is
hard to tell whether it is a real variation or a result of random traf-
fic growth. For example 0.48 ± 0.1 in the base case has become
0.41±0.14 in the case with varying traffic. Most falls are of around
this level so if the variation in the traffic is causing worse perfor-
mance it seems that it is not greatly worse.

Finally, the outcomes of using either the all-or-nothing or pro-
portional allocation strategies (see section 6.2) were also tested.
No significant differences were found between the two.

7.4 Discussion and criticism of results
It is hard to get realistic results to assess the TARDIS system

for several reasons. Firstly, it is hard to get data sets for several
days of data which maps ingress and egress traffic to individual
users (ideally in a non-anonymised way the lack of anonymisation
is what enabled separation of the JP traffic by destination). Pub-
licly available traces known to the researchers were unsuitable for
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Figure 9: The JP results with randomised “extra" days of traf-
fic.

one or more of these reasons and hence non public data had to be
used. Secondly, ISP pricing plans are commercially sensitive and
not usually publicly disclosed. Findally, knowledge of the likely
traffic which can be shifted is hard to get. The percentage shifting
in space can only be estimated from work such as [1, 6, 14], esti-
mates seem to be relatively high ([6] gives 40% of traffic available
in three or more locations). Knowledge of which traffic can be time
shifted is even less available although some insights can be gained
from work such as [10, 9].

In the light of these problems, the results in this section are an
attempt to get the best possible assessment of the system without
introducing too many parameters which cannot be estimated. They
should be taken as an investigation of how well the system is likely
to work under a range of conditions and a robust attempt to lo-
cate potential areas where the assumptions would cause problems
for such a system in practice. The large scale of the traces meant
that each investigation took considerable computing time (This is
because of the necessity of simulating the behaviour of tens of
thousands of users for every day simulated, a real TARDIS sys-
tem would only have to calculate splitting rates which is a much
easier task.)

This said, the results are remarkably successful in all the system
variants investigated here. In the majority of cases the TARDIS sys-
tem extracted a high proportion of the maximum possible benefit
available. Even when the assumptions were relatively conservative
(a low variation in pricing between transit links, a small percentage
of traffic able to swap in space or in time) the benefit in terms of
cost saving could still be relatively large.

With more detailed knowledge of ISP pricing and internal net-
work structures the scheme could be tested on its ability to reduce
transit costs while retaining the constraints of limited traffic capac-
ities on internal links or while avoiding causing excess congestion
in downstream systems.

8. CONCLUSIONS
This paper introduced TARDIS (Traffic Assignment and Retim-

ing Dynamics with Inherent Stability) an algorithm for determining
how to reassign traffic in time and space to reduce ISP transit costs.
A method was given to assign a cost to a given link at a given
time of day according to any of a number of widely used pricing
schemes. This time of day cost was used as an input to a reas-
signment scheme for traffic. Modelling the scheme as a dynamical
system it was shown that a continuous approximation to the scheme
was provably stable and assigned traffic to an equilibrium situation.

The scheme was tested in a realistic context by analysis of real
life data sets. This analysis tested several different assumptions
about pricing levels and about proportions of traffic space and time
shifting. In the majority of cases a large financial saving is possi-
ble. Time shifting appears to create a considerable saving in most
situations. Space shifting creates a saving in all situations except
those where all links are equally priced and traffic is split equally
across all links.

This research has received funding from the Seventh Framework
Programme (FP7/2007-2013) of the European Union, through the
FUSION project (grant agreement 318205).
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APPENDIX
A. THE SHAPLEY GRADIENT PRICE

In section 4.2 the Shapley gradientGj was introduced as the cost
gradient of the Shapley value when a fictitious user N + 1 adds an
amount of traffic du to slot j. Define the per user Shapley gradient
for user i in slot j as φ′ij = (φi(dij) − φi)/du where φi(dij) is
the Shapley value for user i with extra traffic du in slot j. It was
stated that for all schemes considered in this paper then the mean
over i of φ′ij is Gj . In the simplest cases, φ′ij = Gj for all i.

Formally, from section 4.2

Gj =
1

du (N + 1)!∑
π∈SN′

[v(S(π,N + 1))− v(S(π,N + 1)\N + 1)],

where SN ′ is the set of arrangements of the users N plus the ficti-
tious (N+1)th user and S(π,N+1) is the set of all users arriving
not later than user N + 1 in the permutation π.

For linear pricing this is trivial to show. If the slot j is charged
at rate rj then φi(dij)− φi = rjdu since the extra traffic du costs
rjdu. Hence, φ′ij = rj and is not dependent on i. It is already
shown in section 4.3.1 that Gj = rj .

For the pricing of a link of fixed capacity as described in section
4.3.4 then the case is very similar. The price depends only on the
total flow on the link. So

φi(dij)− φi =
fj + du− αm
m− (fj + du)

− fj − αm
m− fj

=
(1− α)mdu

(m− fj)(m− (fj + du))

=
(1− α)mdu

(m− fj)2
,

where the final equality is because du is infinitesimal with respect
to fj . Hence φ′ij = Gj = (1−α)m

(m−fj)2
as calculated in section 4.3.4.

Any scheme where the price does not depend on the user could be
analysed in a similar manner.

For the 95th percentile pricing then by the arguments from sec-
tion 4.3.2

φ′ij = (φi(dij)− φi)/du =
1

N !

∑
π∈SN

[Fij ],

where

Fij = [v(S(π, i)) + I(j ∈ T (95)(S(π, i))rj du

− v(S(π, i)\i)]/du− [v(S(π, i))− v(S(π, i)\i)]/du

= I(j ∈ T (95)(S(π, i))rj .

The mean of φ′ij over all users i, φ′ij is given by:

φ′ij =

N∑
i=1

φ′ij
N

=
1

NN !

N∑
i=1

∑
π∈SN

I(j ∈ T (95)(S(π, i))rj .

Now notice that
∑
π∈SN

covers all arrangements of N items and
I(j ∈ T (95)(S(π, i)) covers all occasions where an addition of
traffic du following user i falls in the 95th percentile set for S(π, i).
As this is summed over all values of i this is exactly the same as
considering those occasions where the N + 1th user (who adds
traffic du to slot j) follows any other user over any arrangement of
users inN ′ (the set of users 1 to N plus the fictitious user N + 1).
This includes every possible arrangement of users in N ′ except
those with user N + 1 first. Therefore

N∑
i=1

φ′ij
N

=
rj
NN !

∑
π∈SN′

[v(S(π,N + 1))

− v(S(π,N + 1)\N + 1)]

=
N + 1

N

rj
(N + 1)!

∑
π∈SN′

[v(S(π,N + 1))

− v(S(π,N + 1)\N + 1)]

=
N + 1

N
Gj .

As N becomes large (N + 1)/N → 1 and hence the mean over i
of φ′ij becomes closer to Rj . More precisely φ′ij = Rj +O(1/N)
as stated in section 4.3.2.

B. A STABILITY PROOF FOR MULTIPLE
CHOICE SETS

Theorem 1 is identical to that in the appendix of [16] with the
exception of condition (3) which in that reference is given for a
single vector x as∇V (x) ·Φ(x) < 0, in the theorem here is given
over several vectors as ∇iV (xi) · Φ(xi) < 0 where ∇i is the
gradient over the vector space of Ci, that is

∇i(x) = (∂x/Xi 1, ∂x/Xi 2, . . .).

Recall that D is the set of Xij which are demand feasible (that
is
∑
j Xij = di for all i). Intuitively, this says that the demand

which must be assigned to choice set Ci is equal to the sum of the
demand which is actually assigned. It is important to note that the
demand feasible set is decomposable by choice set in the sense that
the matrixX is demand feasible if and only if each of its rows xi is.
Therefore, let xi be demand feasible if

∑
j Xij = di and (slightly

abusing the notation) say that xi ∈ D. For points on the trajectory
of the dynamical system then

.
X = Φ(X) and therefore, for all i

then .
xi = Φ(xi).

Having established that a demand X ∈ D must be composed of
vectors xi all of which themselves are demand feasible (xi ∈ D)
then the proof now follows that in the appendix of [16] for each xi
component separately. This shows that each choice set individually
converges to its equilibrium condition and hence the entire system
converges.



In brief the proof in [16] follows an epsilon delta style argument.
Firstly a set Dε is defined as the set of demand feasible points x ∈
D with V (x) > ε for some ε > 0. It is then shown that if the sys-
tem starts at a position x ∈ Dε and the dynamical system evolves
following .

x = Φ(x) and stays within Dε until some time T then
there is some fixed δ > 0 for which ∇V (x) · Φ(x) < −δ. Let
x(t) represent the system state at time t. The function V (x) must
shrink at least at rate δ and hence V (x(T )) − V (x(0)) < −δT .
Therefore V (x(t0)) < ε for some finite t0 ≤ V (x(0))/δ. In other
words the points leave Dε within some finite time whatever the
size of ε. Since this argument applies for all ε then as ε → 0 the
set Dε covers all of D except for the equilibrium positions where
V (X) = 0.

It is now necessary to show that the candidate V (xi) meets the
three conditions of Theorem 1. Recall from section 5.2 that the
candidate functions are

V (xi) =
∑
j,k∈Ci

Xij(pk − pj)2+.

The first two conditions are trivially shown. Firstly, V (xi) ≥ 0
since both Xij ≥ 0 and (pj − pk)2+ ≥ 0. Secondly V (xi) = 0
only when Ci is at equilibrium. This follows from the definition of
equilibrium. If some term is non zero then Xij > 0 and pj > pk
for some j, k ∈ Ci then this implies there is a flow Xij in choice
set Ci which has a price pj greater than some pk also in Ci. This is
counter to the definition of equilibrium in definition 1.

The final condition (3) of the theorem is the most difficult and
again the proof follows [16] but generalised to several choice sets.

Begin by differentiating V (xi) by parts. Define ∆ijk as a vec-
tor with −1 in position j and +1 in position k if j, k ∈ Ci and
the zero vector if either j /∈ Ci or k /∈ Ci. Define p as the
price vector p(X) = (p1(X), p2(X), . . .). In this form, then
V (xi) =

∑
j,k∈Ci Xij(pj − pk)2+ can be written more compactly

as V (xi) =
∑
j,k −Xi j (p(X) · ∆ijk)2+ (where the sum is over

all flows in X and · is the inner product). Considering Φ(xi) =

(
.

Xi 1,
.

Xi 2, . . .) the elements

.
Xij =

∑
k∈Ci

[Xik(pk − pj)+ −Xij(pj − pk)+]

can be written as as

.
Xij =

∑
k

Xij(p(X) ·∆ijk)+ −Xik(p(X) ·∆ijk)+.

Performing the differentiation∇iV (xi) by parts gives

∇iV (xi) =
∑
j,k

−2Xij (p(X) ·∆ijk)+∇i(p(X) ·∆ijk)+

−∇i(Xij)(p(X) ·∆ijk)2+

= −2JiΦ(xi)
T −

∑
j,k

(p(X) ·∆ijk)2+eij ,

where eij is the basis vector in the space of Ci which is 0 except
for a 1 in the direction of Xij and Ji is the Jacobian of the price
matrix at X in the vector space Ci given by

Ji =

 ∂p1(X)/∂Xi 1 ∂p1(X)/∂Xi 2 · · ·
∂p2(X)/∂Xi 1 ∂p2(X)/∂Xi 2 · · ·

...
...

. . .

 .

Hence

∇iV (xi) · Φ(xi) = −2Φ(xi)JiΦ(xi)
T (6)

−
∑
j,k

(p(X) ·∆ijk)2+
∑
l,m

(p(X)(eij ·∆ilm).

One of the conditions on Ji (the rate of change of the price) was
that it was monotonically non decreasing (condition 2 in section 4).
Hence XJiX

T ≥ 0 for all X . Thus −2Φ(xi)JiΦ(xi)
T < 0.

It can also be shown that−
∑
j,k(p(X)·∆ijk)2+

∑
l,m(p(X)(eij ·

∆ilm ≤ 0 following [16] again by showing that the remaining term
in∇V (xi) · Φ(xi), given by

−
∑
j,k

(p(X) ·∆ijk)2+
∑
l,m

(p(X)(eij ·∆ilm) < 0.

Since both terms in (6) are less than zero then this gives that∇V (xi)·
Φ(xi) < 0 for all i as required.


