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Abstract





This paper describes work begun at the University of York on the control and optimisation of telecommunications networks and how this research parallels work done on traffic networks.  Firstly, this paper will outline a brief introduction to telecom networks, their similarities with and differences from road traffic networks.  Secondly, we will outline some important current research areas in the telecoms field and how research in transport networks overlaps with this:





1) The Internet is extremely congested.  This congestion has a similar nature to traffic congestion.  In both cases control is needed for solving  the problem.  This paper will describe how pricing and control techniques from road transport may have applications in telecoms traffic.





2) The Internet is a chaotic system.  Internet traffic has been shown to exhibit a phenomenon related to chaos known as "Long Range Dependence".  This paper will describe "Long Range Dependence" and the practical problems it causes for internet traffic and also the prospects for finding this behaviour in road traffic.





3) The Internet needs predictive techniques.  With both road traffic and Internet traffic, it would be helpful to be able to predict in advance  the levels of traffic.  In this case, the time-frames of predictive interest are slightly different (we might want to predict internet data for the next few seconds but road traffic prediction will typically be over a longer  time scale).  We will briefly outline a technique based on chaos theory which has some success for predicting telecoms data and may be adapted to


predict road traffic data.


Introduction





Road traffic networks and telecoms networks seem to have many similarities that could be exploited, but researchers in one field are often unaware of work being done in the other that could be useful.





At the most abstract level, both road and traffic networks can be thought of as abstract networks with a collection of sources and destinations and nodes (junctions in road traffic, “routers” or “switches” in telecoms traffic) where congestion occurs and route choice decisions may be made.  In both networks there are links between these nodes with some capacity and speed constraints. Within this framework then, a common problem is how to optimise the distribution of an amount of traffic (which is often considered as a given but may also be "demand managed") over this network so that delays/congestion are minimised.  In road networks the units we wish to manage are "vehicles", in telecoms networks the units to be managed are known as "packets" or sometimes "datagrams".





There are however, some significant differences between the two types of networks, mainly:





In a telecoms network there is no significant delay within a link. Traffic travels on a link at the speed of light. Congestion only occurs at a node. If traffic is received at a node for which no output space (“bandwidth”) is available then the traffic is stored in a queue (“buffer”) until output space is available or





If a "packet" has been stored for a given time in a queue, and space is still not available, then that packet is “dropped” i.e. discarded.  Many researchers wish that something similar could be done to cars when road traffic queues become too big!





Nonetheless, there seem to be enough similarities between the two areas to make comparisons fruitful. 





For a general reference and background to telecoms issues we suggest Walrand’s books ([1,2]).


Structure of this paper





This paper is in four sections. Section one describes the phenomenon know as “Long Range Dependence”, its detection and some affects that its presence has in telecoms networks. Section two looks at methods of prediction based on Dynamical Systems theory and describes some work done at York using these techniques. Section three then looks at the possibility of applying these ideas to road traffic. Section four considers the opposite movement and looks at the possibility of applying ideas from road traffic research (specifically pricing and control) to telecoms networks.


Long Range Dependence


In simple terms, long range dependence is a “persistence” phenomenon which is observed in many time series where clusters of consecutive data tend to exhibit similar values.  Mandelbrot refers to this as the “Joseph effect” after the Biblical figure who foretold “seven fat years and seven lean years”.





To explain long range dependence mathematically: if we have a time series x(t) the auto-correlation function rx(k) is given by:





�EMBED Equation.3���





where k represents the displacement in time of the series with respect to itself.





An independent process exhibits an auto-correlation which decays exponentially fast as k increases.  That is to say:





rx(k) ~ a|k| 	as 	|k| �symbol 174 \f "Symbol" \s 12�®� �symbol 165 \f "Symbol" \s 12�¥�,	0 < a < 1





(where ~ is used to mean “asymptotically proportional to”). To put it in non mathematical terms, the time series does not correlate well with a time shifted version of itself.





In a long range dependant process the auto-correlation function rx(k) does not decay exponentially fast but instead has the form:





	rx(k) ~ |k|��-( ,	as 	|k| �symbol 174 \f "Symbol" \s 12�®� �symbol 165 \f "Symbol" \s 12�¥�,	0 < �symbol 98 \f "Symbol" \s 12�b� < 1.


The parameter �symbol 98 \f "Symbol" \s 12�b� is related to the Hurst Parameter which is a frequently used measure of the degree of long range dependence. 





The Hurst Parameter can be derived from �symbol 98 \f "Symbol" \s 12�b� in the above equation from the relation:





	H = 1 - �symbol 98 \f "Symbol" \s 12�b�/2              





Note that H is always in the range 0 �symbol 174 \f "Symbol" \s 12�®� 1.  The Hurst parameter is an important measure of long range dependence.  If H = 1/2 then a data set has independent data - an example of such a data set would be Brownian motion where points in the time series depend only on their nearest neighbour.  If H > 1/2 then the data set has long range dependence.  That is (in loose terms) data which is spatially separated in the series is likely to be correlated.  If H < 1/2 then the data set has negative long range dependence, that is to say, in loose terms data which is spatially separated in the series is likely to have a negative correlation.


Measuring H in Real Data


Several methods are commonly used for LRD. We shall mention two popular ones here, R/S plots and variance time plots.


First we deal with R/S plots.  Let Xk: k= 1,2,…. n be a set of n observations which have an expectation value (sample mean) E[X(n)], the scaled, adjusted range is given by:
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where S(n) is the standard deviation and for each k: 1…n, Wk is given by 





Wk = (X1 + X2 + … + Xk) - kE[X(n)], k= 1,2,…n





The Hurst parameter is given by the equation �EMBED Equation.3��� and by taking logs we get:





�EMBED Equation.3���





Therefore the gradient of a plot of log(R/S) against log (n)  is the Hurst parameter. 





A second method for calculation is a variance time plot.  Again, let Xk be a series of observations for k=1…n.  If we take a sample of m points:





var[X(m)] ~ m-(





��Therefore, the gradient of a plot of log(var X(m)) against log m will be -( and the Hurst parameter can be found using the equation H= 1-(/2. As an example, we give here the varience time plots for two sets of data. 1) A series of 10,000 pseudo-random points and 2) 10,000 points from a non-linear source model, with the parameters chosen in such a way that the source is periodic.





Fitting a straight line to the left hand graph gives an estimate for H of 0.49, very near to the 0.5 that would be expected for data with no long range dependence. However it is clear that fitting a straight line to the right hand graph will give a misleading estimate for H.





Having tried both of these methods on both random data and data from a chaotic source model, it seems clear that these methods require considerable insight and care to obtain meaningful results. In addition, such methods must be modified for use in an on-line situation. One suggestion for such a method is given in Samuel et al. [3] Many other methods are described in Taqqu’s web pages [4].


Lrd in Telecoms





A large number of real-life measurements have shown that genuine telecoms traffic has long-range dependence (LRD).  Erramilli et al. [5] (and see also [6]) show:





Measurements real (measured) traffic traces exhibit LRD.


Network traffic with LRD will have longer queues and delays than the same volume of traffic without such LRD.


To successfully model network traffic, LRD must be accounted for.





In his paper, Erramilli shows that if we measure the number of Ethernet packets passing a point in a network every 10ms then plot this “number of packets” against “time of detection” the resulting time series has a Hurst parameter H �symbol 187 \f "Symbol" \s 12�»� 0.8. 





Other authors have expressed scepticism about the importance of LRD. Both Macfadyen [7] and Ryu and Elwalid [8] claim that there is a “critical time scale” such that correlation over longer time scales can be ignored.


Prediction From Dynamical Systems Techniques





Phase space reconstruction (as first proposed by Packard et al.[9]) has been a very successful technique for determining the dynamics of a stream of data, even when only one variable from many is available for measurement. In essence, the idea is that given a series of data from a source, we plot successive points against each other. For example, given a series {xI} we might plot the points (x0,x5,x10), (x20,x25,x30),(x30,x35,x40) in a three dimensional plot. If we have chosen the points to plot carefully (see for example Hilborn [10] for a discussion) then this graph might show us the gross structure of the dynamics of the underlying source. Once this has been determined it becomes possible to predict the future behaviour of the source.





The major problem with this method is that if the data that is being measured comes from a high-dimensional source (say 80 dimensional) then it becomes impractical. However, a technique called Singular Value Decomposition (as used in the Chaotic Tooling project) can often be used to pick the “most significant” dimensions and so say that to predict with 95% confidence you need only 10 parameters, or 3 for 70% confidence etc. The details of this method are rather technical and so not presented here. The best book on practical applications of these techniques seems to be Kuntz and Schreiber[11], although this is still rather mathematical. A less technical introduction is Chapter 2 of Mullin’s [12] book.





Full details of the techniques used in this study are given in [13].





We have applied these techniques to both real and simulated data from telecoms data with some success. As an example, we give here a graph of predicted (5 steps ahead) and “real” data based upon traces from a telecoms simulation program (cgNet).
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Possibilities of  Using these Techniques in Road Traffic





The major problem with these techniques is the need for very large amounts of accurate data (eg about 10,000 points were used to create the attractor for the prediction above). Usually data sets of this quantity and quality are not available in road traffic due to the complexities and expense of  collecting real on-street data. It is possible that automated flow data might prove usable with such a scheme, however several points must be considered. First, if the time resolution of collection is large (as it must be for road traffic since a car takes some time to pass over a detector) then a run of 10,000 sample may well cover one 12 or 24 hour period. In this case, we may either have to filter the data in some way to remove the within day trend, or (for prediction) have data from many days available so that the data can be “trained” as to the existence and properties of the  within day trends.  Either would present problems.





The best possibilities for such techniques would seem to the authors to lie in the prediction of motorway traffic where automated sensors and high volumes of traffic may make the necessary data possible to collect.


Pricing AnD Control





In telecoms networks, as with road-networks, pricing and control are important topics.  In this case, it is the opinion of the authors that work in the road traffic field, leads that in the telecoms field.  While the analogies with signal control in traffic are strong, it is unlikely that traffic signal control policies will directly transfer to telecoms networks.  In the case of the telecoms network, the route taken through the network is controlled directly at a node and little (if any) attempt is made to ensure that the network remains in equilibrium or that routes taken are anything other than shortest path.  Indeed most route selection in telecoms is what is known as OSPF (open shortest path first) which is in turn based upon Dijkstra’s algorithm.  Routes are rarely updated to avoid congestion although some account is usually taken of the reliability of transmission.





Some work has been done on using optimisation theory and pricing (real or virtual) to control congestion in telecoms networks e.g. by Gibbens and Kelly [14]. This work is like similar work done on road traffic networks (including work by the Networks and Nonlinear Dynamics group at York [16]). Pricing can be used in road traffic as a design tool to optimise other types of control e.g. signals. Smith [16] proved that  under certain conditions delay based pricing can be used to design optimal control for a network.


CONCLUSIONS





In the opinion of the authors, sufficient similarities exist between the two types of network that techniques can profitably be transferred between them. In particular there is scope for control and pricing techniques from the road traffic research world to be applied to telecoms networks (with suitable modifications).





LRD is a significant problem in telecoms networks and it is possible that it exists in road traffic, but due to the problems of data collection in road traffic it may be harder to find. The same problems apply to looking for nonlinear structure in time series derived from road traffic.





To conclude, while the two fields of research have some differences, the similarities are such that the authors believe a transfer of ideas both from road transport research to telecoms research and vice versa could lead to important new results in both fields. 
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