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Abstract

This paper describes a model for generating time series which exhibit the statistical phenomenon

known as long-range dependence (LRD). A Markov Modulated Process based upon an infinite

Markov chain is described. The work described is motivated by applications in telecommunications

where LRD is a known property of time-series measured on the internet. The process can generate

a time series exhibiting LRD with known parameters and is particularly suitable for modelling

internet traffic since the time series is in terms of ones and zeros which can be interpreted as data

packets and inter-packet gaps. The method is extremely simple computationally and analytically

and could prove more tractable than other methods described in the literature.
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I. INTRODUCTION

Long-range dependence (LRD) is a statistical phenomenon which is used to describe a

process which exhibits significant correlations even between widely separated points. A more

formal definition is given in the next part of this paper. Roughly speaking, a process with a

high degree of LRD can be thought of as correlated at all scales. A good introduction to the

topic of LRD is provided by [1] and a discussion in the context of telecommunications traffic

is given by [2]. LRD is most often characterised by the Hurst parameter, H, which is in the

range (1/2, 1) for a time series which exhibits LRD. If H = 1/2 then this indicates the data

is independent or has only short-range correlations. The topic of LRD has attracted a great

deal of interest since LRD has been observed in time series measured in fields as diverse as

finance, internet traffic and hydrology.

This paper introduces and tests a mechanism for generating LRD based on an infinite

Markov chain. The traffic stream generated is binary in nature and the model has only

two parameters, the mean and the Hurst parameter of the generated traffic. This section

provides a brief introduction to the topic of LRD in the context of telecommunications

networks and discusses currently used generation mechanisms for modelling LRD and also

methods which are currently used to measure LRD in a time series. Section II describes

the infinite Markov model. In Section III it is proved that the model does in fact generate

a time series with a given mean and with LRD having a given Hurst parameter. Finally,

Section IV tests the model against other standard LRD generation models and discusses the

advantages of the model.

A. A Brief Introduction to LRD

A number of different (and not necessarily equivalent) definitions of LRD are in use in

the literature. A commonly used definition is the one given here.

Definition 1. A weakly stationary time series exhibits LRD if the absolute value of its

autocorrelation function (ACF) ρ(k) does not have a finite sum. That is,

∞
∑

k=−∞

|ρ(k)| = ∞.
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It is often assumed that the ACF has the specific asymptotic form,

ρ(k) ∼ cρk
−α, (1)

for some positive constant cρ and some real α ∈ (0, 1). Note that this is equivalent to a

functional form for the spectral density f(λ) defined by,

f(λ) =
σ2

2π

∞
∑

k=−∞

ρ(k)eikλ.

Equation (1) is equivalent to,

f(λ) ∼ cf |λ|
−β,

as λ → 0, where σ2 is the variance, cf is some positive constant and β ∈ (0, 1). The Hurst

parameter is then given by H = (1 + β)/2.

It should be noted that here, and throughout this paper, f(x) ∼ g(x) is used to mean

f(x)/g(x) → 1 as x → ∞ — sometimes, in the literature, the symbol is used to mean

asymptotically proportional to or f(x)/g(x) → k for some constant k as x → ∞.

The constant α in (1) is sometimes expressed in terms of the Hurst parameter H = 1−α/2.

The Hurst parameter as defined by this relation and (1) is the most commonly used measure

of LRD in the telecommuncations literature.

The reason for the interest in the subject within the field of telecommunications is the

fact that LRD has been observed in various time series related to internet traffic [3–5].

It is widely recognised that the engineering implications of LRD on queuing performance

can be considerable. If Internet traffic is not modelled well by independent or short-range

dependent models then much traditional queuing theory work based upon the assumption of

Poisson processes is no longer appropriate. Traffic which is long-range dependent in nature

can have a queuing performance which is significantly worse than Poisson traffic. Modelling

has shown how phase transitions can arise in computer networks [6], how and this phase

transition can be related to LRD [7, 8].

In general it has been found that a higher Hurst parameter often increases delays in

a network, increases the probability of packet loss and affects a number of measures of

engineering importance. In fact Erramilli et al. [9] claims that the Hurst parameter is “...a

dominant characteristic for a number of packet traffic engineering problems...”. Some of the

effects on queuing performance are given by [10, 11]. However, [12] shows that while the
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Hurst parameter is important to queueing, the relationship is not a simple one — in some

cases a high Hurst parameter may improve performance or have no effect. The issue of the

scale and nature of the effect of LRD on queuing remains contentious.

B. Current Generation Mechanisms for LRD

A number of modelling techniques are currently used for generating traffic streams ex-

hibiting LRD. Of these, the most commonly encountered in the telecommunications litera-

ture are Fractional Gaussian Noise processes (FGN), Fractional Auto-Regressive Integrated

Moving Average models (FARIMA, also refered to as ARFIMA), iterated chaotic maps and

wavelet modelling.

The FGN process is usually defined as increments of the Fractional Brownian Motion

(FBM) process. An FBM process BH(t) is defined by:

P [BH(t + k) − BH(t) ≤ x] =

(2π)−
1

2 k−H

x
∫

−∞

exp

(

−u2

2k2H

)

du,

where P [X] is a probability of an event X and H ∈ (1/2, 1) is the Hurst parameter. This can

be seen as a generalisation of the more common Gaussian White Noise process. A number

of authors have described methods for generating FGN and FBM [13], [14] and [15].

The FARIMA model is an obvious modification of the traditional ARIMA(p, d, q) model

from time series analysis, allowing d ∈ (−1/2, 1/2) instead of d ∈ Z+. FARIMA processes

were proposed by [16] and a description in the context of LRD can be found in [1, pages 59–

66]. As might be expected the d parameter relates to the Hurst parameter. The relation is

simply H = d+1/2 — note that this only produces legitimate values for H when d ∈ (0, 1/2).

Iterated chaotic maps which exhibit intermittency are also commonly used to generate

time series exhibiting LRD. Given a starting value x0 ∈ (0, 1) then a time series {xn : n ∈ N}

can be generated by the following map

xn+1 =











xn + 1−d
dm1

xm1

n , 0 < xn < d,

xn − d
(1−d)m2

(1 − xn)m2 , d < xn < 1,

where d ∈ (0, 1) and m1,m2 ∈ (3/2, 2). If x0 ∈ (0, 1) then xn ∈ (0, 1) for all n ∈ N. If this

time series is used to generate a binary time series {yn : n ∈ N} by the rule yi = 0 if xi < d
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FIG. 1: Graph of a map which can be used to generate LRD.

and yi = 1 otherwise then the series can be shown to exhibit LRD with a Hurst parameter

given by H = (3m − 4)/(2m − 2). This map is illustrated in Figure 1. An explanation for

the presence of LRD in this map is provided by examining the behaviour of the orbits at

xi near zero or one. The escape from points near zero or one is extremely slow and this

causes long sequences of zeros or ones in the generated yi series. Pioneering work in this area

is [17] with early applications to telecommunications being given by [18]. This mechanism

is particularly suited for generating data for modelling of packet networks since the ON

(yi = 1) state can be considered to be a packet and the OFF (yi = 0) state as an interpacket

gap.

In fact, the work described in [17] relates to the Markov chain based work described in

this paper as it approximates the chaotic map approach as a piecewise linear map which

can, in turn, be modelled as a Markov chain with the topology described later. A number

of other papers have used Markov chains to model linear approximations to intermittent

maps [19–22]. The papers [17], [18] and [23] relate the piecewise linear approximations of

intermittency maps to LRD and show how certain parameters for Markov chains give rise

to LRD in a process arising from the chain. However, we can find no reference to papers

which relate intermittency in general to LRD.

A technique gaining favour in modelling (and also in measuring) LRD is wavelet anal-

ysis. This allows the LRD hypothesis to be generalised to multifractals. LRD defines a

single scaling behaviour for the system (which applies in the tail of the ACF) — if this
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scaling behaviour was the same at any scale then the process defined would be a monofrac-

tal. However, if the scaling behaviour differs across scales then the process is multifractal.

There is some evidence that Internet traffic exhibits different scaling behaviour at different

timescales. A general description of multifractal processes and wavelets is found in [24]

and a description of how wavelets can be used to create models with the same multifractal

spectrum as a given data set can be found in [25].

C. Measurement Techniques for LRD

A number of techniques are known for estimating the Hurst parameter from real data.

There is no single technique which can be considered perfect. Computer code and analysis

of various techniques can be found at [26]. Comparisons of measurement techniques can be

found in [27], [28] and [29]. In this paper, five techniques are used: the R/S statistic (in

two variants), the Aggregated Variance, the Periodogram, Whittle’s Local Estimator and a

wavelet based technique.

The R/S statistic (also known as rescaled adjusted range) is one of the oldest and best

known techniques for estimating H. It is a time domain method which relies on considering

the way that R/S(n) varies with n where R is the range, S is the sample variance and n is a

scale (sample size) within the time series. It is discussed in detail in [30] and also [1, pages

83–87]. There are several problems with this technique which are cited in the literature.

The estimate produced is highly sensitive to the range of scales examined. In this paper two

versions of the estimator are used which choose the scales to investigate in different ways.

The estimator is known to be biased and also slow to converge. It is included in this paper

mainly for its historic importance since it has become a standard measure despite its known

weaknesses.

The Aggregated Variance estimator produces an estimate for the Hurst parameter by

considering how the variance of the time series scales as the series itself is aggregated into

blocks. Again this is a time domain technique with known weaknesses — jumps in the mean

and slowly decaying trends in particular can be issues. A fuller description can be found in

[1, page 92].

The periodogram is one of the oldest frequency domain based estimators and is described

in [31]. It involves producing an estimate for the spectral density I(λ) of the time series
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and considering the slope of this as |λ| → 0. Theoretically, for LRD, a log-log plot of the

periodogram should have a slope of 1 − 2H close to the origin.

Whittle’s estimator [32] is a frequency domain technique which uses an approximate

maximum likelihood estimator and an estimated functional form for the spectral density

I(λ) based upon an assumed underlying model. Here, the Local Whittle variant is used [33]

which is a semi-parametric version assuming a functional form for I(λ) only as |λ| → 0.

Wavelet analysis has already been mentioned as a modelling technique and has been

used for the estimation of the Hurst parameter. In addition this has the benefit of providing

an estimate of the multifractal spectrum of the data [24, 25]. This method is based upon

considering the behaviour of the frequency spectrum although wavelets themselves are a

technique to allow insight into both frequency and time-domain behaviour simultaneously.

D. The Need for a Parsimonious and Tractable LRD Generation Method

Given the large (and not exhaustive) list of modelling techniques already mentioned, it

might be asked whether there is a need for another model. However, the model here is

specifically designed to be the simplest possible computational model which produces LRD.

Fractional Gaussian Noise and FARIMA are relatively simple to analyse from a statis-

tical point of view (though the model described here is arguably simpler). However, these

processes cannot easily be calculated in an ongoing manner (that is, the entire time series is

usually generated “at once” and, having generated n points, the user must effectively start

again to generate the n + 1th point).

Iterated chaotic maps are computationally parsimonious but are analytically problematic

since no closed form for the invariant density of the map described in the previous section is

known. Therefore, it is difficult to generate traffic with a given mean using the iterated map

method and progress theoretically is difficult. An intermittent map with a known invariant

density is given by [34], however, it is not known if this map would generate LRD and other

barriers exist to computational implementation.

The generation mechanism given here is extremely simple, theoretically sound and has

only two parameters, the mean and the Hurst parameter. The data produced is produced

in a stream of ones and zeros and can be simply used with simulation models of networks

— the one representing a data packet and the zero representing an inter-packet gap.
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II. THE MARKOV MODEL FOR LRD

Figure 2 shows an infinite Markov chain which can be used to generate a time series

exhibiting LRD. This particular chain with different transition probabilities has been studied

by a number of authors, notably, in this context Wang [17] and Barenco and Arrowsmith [23]

(the latter also investigates the double sided version). The parameters fi are the transition

probabilities for reaching a given state i from state 0. Also πi is defined as the equilibrium

probability of state i. It is clear that
∑∞

i=0 fi = 1 and also that
∑∞

i=0 πi = 1. More details

and expanded versions of the proofs included here can be found in [2, Chapter 2].

OFF ON

0 1 2 . . . n . . .
f1

f2

fn

f0

FIG. 2: An infinite Markov chain which generates a time series exhibiting LRD.

The chain shown, given a starting state X0 ∈ Z+, produces a Markov time series {Xi :

i ∈ N} where all the Xi ∈ Z+. In turn, this chain can generate a time series {Yi : i ∈ N}

where Yi = 0 if Xi = 0 and Yi = 1 otherwise.

It can be easily shown that the chain above is ergodic (and hence the equilibrium distri-

bution exists) if
∑∞

i=0 ifi < ∞ and also ∀i ∈ N,∃j > i : fj > 0 — the first condition ensures

that the mean return time to the zero state is finite, the second ensures that any state in

the chain can be reached from the zero state (obviously the zero state will be reached from

any state i in exactly i steps). For the rest of this paper it will be assumed that any chain

discussed meets these conditions for ergodicity.

Theorem 1. The equilibrium distribution of the ith state is given by,

πi = π0

∞
∑

j=i

fj.

Proof. For a state i then at equilibrium, the inputs to a state will sum to πi. That is,

πi = πi+1 + π0fi. (2)
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Substituting the same equation for πi+1 gives,

πi = π0fi + π0fi+1 + πi+2,

and repeating this subsitution recursively gives the proof.

Note that since
∑∞

j=0 fj = 1 then for i = 0 this equation simply says π0 = π0. Since all

the πi must sum to one then, in addition,

π0 = 1 −
∞

∑

i=1

πi = (1 −
∞

∑

i=1

ifi)
−1,

which, as has already been discussed, is finite.

A. Introducing LRD into the model

LRD with Hurst parameter H can be guaranteed if the ACF ρ(k) meets the condition

given by (1). The most obvious way to induce a correlation for a lag k into such a model is

to choose the fi in such a way that unbroken sequences of k or more ones occur in the Yn

series with the required frequency. Therefore, it would be suspected that the condition,

P [Yi = 1, Yi+1 = 1 . . . Yi+k = 1] ∼ Ck−α,

where α ∈ (0, 1) will produce LRD with H = 1 − α/2. To meet this requirement, the

following strict condition is introduced for k > 0,

∞
∑

i=k

πi = Ck−α,

where C is a constant. Note that there is no guarantee that this is a valid Markov chain —

conditions for this will be given later. By setting k = 1 it is immediate that C = 1 − π0.

This gives,
∞

∑

i=k

πi = (1 − π0)k
−α k > 0.

Subtracting the equation for k + 1 gives,

πk = (1 − π0)[k
−α − (k + 1)−α] k > 0.

From (2) for k then,

π0fk = πk − πk+1 k > 0,
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and therefore for k > 0,

fk =
1 − π0

π0

[

k−α − 2(k + 1)−α + (k + 2)−α
]

, (3)

and also, since f0 = 1 −
∑∞

i=1 fi,

f0 = 1 −
1 − π0

π0

[

∞
∑

i=1

i−α − 2
∞

∑

i=2

i−α +
∞

∑

i=3

i−α

]

.

Most of the terms of the sum cancel leaving

f0 = 1 −
1 − π0

π0

[

1 − 2−α
]

. (4)

The two equations, (3) and (4) form the model for LRD. The model is defined by two

parameters π0 and α. The α parameter is related to the Hurst parameter as shown. The π0

parameter is the equilibrium probability of state zero. Hence 1 − π0 is the sum of all other

equilibrium probabilities and, therefore, the probability that any given Yi = 1. Therefore,

the expectation value of Yi is given by, E [Yi] = 1 − π0. It remains to be proved that the

model does generate LRD with the required Hurst parameter and this is shown in the next

section of the paper.

It can be easily shown that this model meets the conditions for ergodicity established

earlier. However, it should be noted that this model is not valid for every possible combina-

tion of π0 and α. In particular, for values of π0 near zero then the term (1−π0)/π0 becomes

large and values of fi from (3) will be negative, a contradiction since the fi are probabilities.

The fact that the model is invalid for some combinations of π0 and α simply means that for

practical experiments the model must be confined to the valid region. Rearranging equation

(4) shows that for α, π0 ∈ (0, 1) then f0 ∈ (0, 1) if

π0 >
2α − 1

2α+1 − 1
,

and this defines a valid region for the model.

III. THE ACF OF THE MARKOV MODEL

It must now be shown that the model described in the previous section does produce

traffic with a given mean and Hurst parameter. To recap, the model relies on a Markov

chain of the form shown in Figure 2 and with transition probabilities given by (3) and (4).
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The parameters of the model are π0 and α. Given some starting X0 ∈ Z+, the Markov chain

produces a time series {Xi : i ∈ N} where Xi is the state of the chain at the ith iteration.

This is used to produce another time series {Yi : i ∈ N} where Yi = 0 if Xi = 0 and Yi = 1

otherwise. (The time series Yi = 1 if Xi = 0 and Yi = 0 otherwise also produces a series

with LRD and mean π0.) This series has LRD with mean 1 − π0 and Hurst parameter

H = 1 − α/2. That E [Yi] = 1 − π0 has already been shown. It remains to show that the

series has an ACF which follows the form in (1) and this requires a result due to Feller [35]

and is based on Wang [17].

A. Proof that the Chain Generates LRD

The event ε occurs whenever Xi = 0. It can easily be seen that the number of samples

between successive occurrences of ε is an independent and identically distributed variable

and hence meets the definition in [35]. A “trial” in the terms of [35] is equivalent to one

iteration of the Markov chain in this model.

Definition 2. If ε occurs at the zeroth trial then let the number of occurrences of ε in n

trials be Nn. Let F (n) be the distribution function of the number of trials between one event

ε and the next. (Note that these definitions are those used by [35]).

If the event ε has just occurred (at the zeroth trial) then the chain is in state 0. If the

chain makes the transition to state i − 1 then the event ε will occur in i steps. Therefore,

the distribution function is given by

F (n) =
n

∑

i=1

fi−1. (5)

The results from [35] and [17] both assume that the distribution function F (n) obeys

1 − F (n) ∼ Anγ , (6)

for some positive constant A and some γ. This will now be shown for the specified infinite

chain.

From equation (5),

1 − F (n) = 1 −
n

∑

i=1

fi−1 =
∞

∑

i=n+1

fi−1 =
∞

∑

i=n

fi.
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Substituting fi from (3):

1 − F (n) =

(

1 − π0

π0

)

∞
∑

i=n

[

i−α − 2(i + 1)−α + (i + 2)−α
]

=

(

1 − π0

π0

)

[

n−α − (n + 1)−α
]

=

(

1 − π0

π0

)

(n + 1)α − nα

(n + 1)αnα

=

(

1 − π0

π0

)

(1 + 1/n)α − 1

nα(1 + 1/n)α
.

Expanding (1 + 1/n)α using the binomial theorem gives

(1 + 1/n)α = 1 + α/n + O(n−2).

Substituting this expression top and bottom gives

1 − F (n) =

(

1 − π0

π0

)

1 + α/n + O(n−2) − 1

nα(1 + α/n + O(n−2))

=

(

1 − π0

π0

)

n−α(α/n + O(n−2))

(1 + α/n + O(n−2))

∼

(

1 − π0

π0

)

αn−(1+α),

where f(n) = O(g(n)) for functions f(n) and g(n) means that |f(n)| < Ag(n) for some

positive constant A and all n > 0. This is the form required by equation (6) with γ = (1+α)

and A = α(1 − π0)/π0.

From [35, Theorem 10], given that the probability distribution satisifies 1−F (x) ∼ Ax−γ ,

where A is a positive constant and 1 < γ < 2 then

var (Nn) ∼
2A

(2 − γ)(3 − γ)µ3
n3−γ .

In the case of the chain under investigation γ = 1+α, and A = α(1−π0)/π0. Since the chain

is ergodic, the mean recurrence time of state zero for the infinite chain is 1/π0. Therefore,

var (Nn) ∼
2απ2

0(1 − π0)

(1 − α)(2 − α)
n2−α. (7)

From [17] (equations 2.26a and 2.26c) if

var (Nn) ∼ Kn2−α,
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for some positive constant K and some α ∈ (0, 1) then the autocorrelation function is given

by

ρ(n) ∼ Cn−α,

where C is some positive constant. This is the form required by (1).

IV. TESTS ON THE MARKOV MODEL

In this section, two standard models for generating LRD are compared with the Markov

model described in this paper. The computational performance of the algorithm is compared

against other algorithms.

A. Practical Implementation of the Model

The only difficulty in modelling the situation on a computer comes in calculating Xn+1

when Xn = 0. In this case, a random number generator and the transition probabilities

fj must be used to find the next state. A naive approach to this would be to generate a

random number r, uniformly distributed in (0, 1) and say that Xn+1 is the smallest i such

that
∑i

j=0 fi < r. This is fine for low values of i but as i increases then this procedure

becomes inaccurate due to the finite precision arthmetic used by computers. The problem

is that, as i increases the sum gets nearer to one but the fi get nearer to zero (since adding

numbers approaching zero to numbers approaching one is likely to produce severe rounding

error problems). Hence the errors in each stage of addition get larger. However, by the very

nature of LRD, large values of i are very likely to come up.

It can simply be shown that if Xn = 0 and 0 < k ≤ i ≤ j,

P [Xn+1 ∈ [i, j]|Xn+1 ∈ [k,∞]] =

i−α − (i + 1)−α − (j + 1)−α + (j + 2)−α

k−α − (k + 1)−α
.

(8)

Using this equation, Table I shows a procedure for generating the sequence {Xn : n ∈ N}

given some randomly chosen X0.
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(1) If Xn > 0 then Xn+1 = Xn − 1. Exit here.

(2) Explicitly calculate P [Xn+1 > j] for values of j ≤ N where N is some small

integer. Use the procedure for the finite state model to find a value for Xn+1 if

Xn+1 < N .

(3) Generate a new random number R in the range [0, 1].

(4) Calculate P [Xn+1 ∈ [N, 2N − 1]|Xn+1 ∈ [N,∞]] from equation (8). If R is less

than or equal to this probability then Xn+1 is in the required range. Otherwise

go to step six.

(5) If Xn+1 is in the required range then refine down by generating a new random

number and seeing if Xn+1 is in the range [N, (3/2)N ]. Continue refining by a

binary search (with a new random number each time) until Xn+1 is found. Exit

here.

(6) Increase the value of N to 2N and go to step 3.

TABLE I: A procedure for finding Xn+1 from Xn in the infinite chain.

B. Hurst Parameter Estimates

Three generation mechanisms for LRD are compared, Fractional Gaussian Noise (FGN),

iterated maps (it. map) and the Markov method developed in this paper. For each method,

three different Hurst parameters are investigated and for each of these, three data realisations

are created. For each realisation, one million points were generated (in the case of the iterated

map and Markov method, each of those points was an aggregate of one hundred zeros and

ones). The Hurst parameter was estimated using the previously discussed measurement

techniques to check the match between theory and experiment.

The three methods were implemented in the C programming language. On a 2GHz

processor PC running Debian linux, to generate one million points took 55 seconds for the

Markov method, 60 seconds for the iterated maps method and 6 seconds for the fractional
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Gaussian noise method. However, it is debatable whether this is a fair comparison since

the first two methods could be considered to be generating a hundred million points and

aggregating into groups of one hundred. No C code to generate FARIMA based data was

available and the R code available took 188 seconds to generate only a hundred thousand

points — the run time did not seem to scale linearly and the test to generate a million points

was stopped after several hours.

It would naturally be expected that the FGN model is the easiest to estimate and this

shows in the results in Table II. All the estimators were relatively close to correct with

the possible exception of the R/S plot on traffic with a Hurst parameter of 0.875 where the

underestimate of H was quite severe.

Estimates on the iterated chaotic map traffic were not so successful. The raw R/S plot

proved inconsistent and had a hard time estimating higher hurst parameters. It should be

noted, for example, that for H = 0.75 estimates varied from 0.678 to 0.828. The performance

for H = 0.875 was similarly bad. The modified R/S parameter was better in that it was

more stable across runs but tended to overestimate. Local Whittle and wavelets tended to

overestimate the Hurst parameter. It should also be noted that the true result was regularly

outside the 95% confidence intervals for the wavelet estimator.

Estimates for the Markov based method were, in many ways, similar to the iterated map

method. If anything, the results from the estimators are slightly closer to the theory and

this is particularly notable for the wavelet and local Whittle case. The evidence provided

by the estimators is hard to interpret. However, it can certainly be said that the results for

the Markov method are as close as the results for the iterated map method.

Generally, considering the estimators themselves, the R/S method seemed unreliable (and

this agrees with theory which shows it to be a biased estimator with poor convergence). The

local Whittle and wavelets methods which have better theoretical backing seem to have a

better agreement with theory but it is worrying that the true Hurst parameter for the data

lay outside 95% confidence for the wavelet estimator in many cases.

V. CONCLUSIONS

The method for generating LRD shown here is computationally efficient, extremely simple

and produces a data stream with a given mean and Hurst paramter. The data stream can
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Source H R/S Mod. Agg. Period- Local Wave-

R/S Var. ogram Whit. lets

FGN 0.625 0.637 0.624 0.623 0.626 0.639 0.635

FGN 0.625 0.632 0.624 0.622 0.624 0.638 0.635

FGN 0.625 0.645 0.633 0.620 0.622 0.638 0.635

FGN 0.75 0.728 0.738 0.741 0.747 0.774 0.767

FGN 0.75 0.741 0.736 0.749 0.755 0.776 0.769

FGN 0.75 0.694 0.719 0.741 0.754 0.774 0.768

FGN 0.875 0.784 0.837 0.858 0.877 0.908 0.897

FGN 0.875 0.750 0.823 0.850 0.876 0.908 0.897

FGN 0.875 0.747 0.835 0.860 0.876 0.908 0.898

It. map 0.625 0.635 0.590 0.604 0.630 0.719 0.706

It. map 0.625 0.608 0.595 0.604 0.627 0.716 0.703

It. map 0.625 0.637 0.594 0.610 0.637 0.718 0.707

It. map 0.75 0.828 0.666 0.717 0.746 0.813 0.800

It. map 0.75 0.725 0.650 0.712 0.739 0.813 0.801

It. map 0.75 0.678 0.694 0.765 0.768 0.814 0.803

It. map 0.875 0.703 0.779 0.851 0.876 0.925 0.910

It. map 0.875 0.779 0.802 0.854 0.877 0.924 0.910

It. map 0.875 0.846 0.817 0.861 0.874 0.925 0.912

Markov 0.625 0.526 0.597 0.611 0.621 0.703 0.691

Markov 0.625 0.593 0.645 0.700 0.684 0.710 0.702

Markov 0.625 0.632 0.603 0.646 0.650 0.707 0.698

Markov 0.75 0.663 0.684 0.744 0.760 0.793 0.784

Markov 0.75 0.670 0.667 0.751 0.759 0.793 0.783

Markov 0.75 0.671 0.671 0.724 0.736 0.786 0.776

Markov 0.875 0.724 0.732 0.816 0.848 0.884 0.873

Markov 0.875 0.757 0.754 0.830 0.859 0.885 0.874

Markov 0.875 0.656 0.781 0.852 0.866 0.885 0.875

TABLE II: Hurst Parameter Estimates on Simulated Data.
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be generated in an online manner (that is, the method can be started without knowing

how many points must ultimately be generated unlike, for example, FGN). The method has

been proved theoretically to generate LRD with the required parameters and this has been

tested against a variety of known estimators for the Hurst parameter. It is interesting to

see quite how badly certain estimators perform even against very standard LRD generation

mechanisms.

Compared with existing methods of generating LRD this procedure has a number of

extremely attractive properties. It is computationally and mathematically extremely simple.

While other models may have more flexibility for precisely representing the nature of the

time series being simulated, it is hard to imagine a simpler model for generating LRD. It is

hoped, therefore, that this model will be tractable analytically for further developments, for

example, analysis of queuing performance of traffic generated by such a model.
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