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Abstract

This paper describes a simple method based upon Markov
chains for generating a traffic stream with particular se-
lected correlation properties and its use in testing ideas for
reducing correlations in data streams. The Markov model
generates data exhibiting the statistical phenomenon known
as long-range dependence (LRD) which describes a time
series where the data has siginificant correlations even at
high lags. This mathematical model is then implemented
in simulation and buffering techniques are tested to reduce
the correlations found in the traffic. It is found that local
buffering can be used successfully to break up correlations
in traffic and to selectively reduce correlations with a spe-
cific lag.

1 Introduction and Background

In the last ten years much attention has been given to the
correlation structure of internet traffic. Consider a time
series of packets per unit time travelling along a particular
link in a network. Intuitively it would seem likely that cor-
relations in this time series could have great effects on the
queuing performance. For example traffic which tended to
stay high for long periods and low for long periods might
well cause more problems for a network than traffic which
was less correlated. Long-range dependence (LRD) is a
statistical phenomenon which describes a time series where
the correlations persist even in widely separated points in
the series. In 1993 a paper was published [9] which showed
that measurements of data on the internet showed the pres-
ence of LRD. In the subsequent years, a huge number of
papers have been published on this subject. The interest
is mainly fuelled by the realisation that the statistical na-
ture of the traffic can have a marked effect on the queuing
performance.

Local buffering strategies have long been used in net-
works to improve queuing performance by smoothing data
(or by admissions control). This paper introduces a novel
(and extremely simple) method for generating a time-series
of packets which exhibit LRD. This is used as a source of
traffic with a correlation structure exhibiting correlations
over a wide range of lags. A new method of local buffering
is used on the data to influence correlations at specific lags.
It is important to realise that local buffering cannot reduce
LRD itself (and this is not the goal of this paper) but it
could be used to influence correlations in the data.

1.1 A Brief Introduction to LRD

A good introduction to the topic of LRD is given by [2]. An
introduction in the context of internet data measurement is
given by [3, chapter one]. Several definitions of LRD are in
common use in the literature (not all of them equivalent).
A commonly used definition is given below.

Definition 1. A weakly stationary time series exhibits
LRD if its autocorrelation function (ACF) does not have a
finite sum. That is,

∞
∑

k=−∞

ρ(k) = ∞,

where ρ(k) is the ACF.

It is often assumed that the ACF has the specific asymp-
totic form,

ρ(k) ∼ cρk
−α, (1)

for some positive constant cρ and some real α ∈ (0, 1). The
symbol ∼ is used to mean asymptotically equal to so that
f(x) ∼ g(x) means f(x)/g(x) → 1 as x → ∞. The best
known measure of LRD is the Hurst parameter H where
usually H ∈ (1/2, 1) with H = 1/2 representing data which
is short-range or independent. The parameter α is related
to H by H = 1 − α/2.

The constant α is related to the Hurst parameter A large
number of papers have shown the presence of LRD in time
series from internet traffic measurements [9, 16, 10] and it
has also been shown that the effect on queuing performance
can be considerable. Traffic which exhibits LRD can ex-
perience more packet drops and delays than traffic which
does not. It is claimed [6] that the Hurst parameter is “...a
dominant characteristic for a number of packet traffic en-
gineering problems...”. Estimates of queuing performance
are given by [13, 14] but [12] notes that the effect is not a
simple one and in some cases a high Hurst parameter may
improve network performance.

1.2 Buffering and Correlations

It has long been known that local buffering in the internet
can improve the performance of a network — notably for
admission control at the edge of a network. The classic
example of this is the much studied “Leaky Bucket” [4] and
its variants. Other buffer management techniques such as
RED [8], or BLUE [7] rely on feedback mechanims in the
TCP protocol to affect data sending rates. Such non-local
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techniques will not be discussed in this paper. The idea
of this work is to experiment on smart buffering where the
rate of sending varies to achieve a specific aim. It can be
shown [11] that local buffering cannot reduce the Hurst
parameter of traffic. However, local buffering certainly can
reduce correlations. This work provides an experimental
investigation of this using simulation results.

2 A Markov method for Simulat-

ing LRD

Figure 1 shows an infinite Markov chain which can be used
to generate a time series exhibiting LRD. A chain with
this topology but different transition probabilities is stud-
ied in [15] and [1] (who also studies the double sided ver-
sion). The parameters fi are the transition probabilities
for reaching a given state i from state 0. Also πi is de-
fined as the equilibrium probability of state i. It is clear
that

∑

∞

i=0
fi = 1 and also that

∑

∞

i=0
πi = 1. The chain is

described in detail in [3, Chapter 2].
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Figure 1: An infinite Markov chain which generates a time
series exhibiting LRD.

The chain shown, given a starting state X0 ∈ Z+, pro-
duces a Markov time series X = {Xi : i ∈ N} where all
the Xi ∈ Z+. In turn, this chain can generate a time series
Y = {Yi : i ∈ N} where Yi = 0 if Xi = 0 and Yi = 1
otherwise.

It can be trivially shown that the chain is ergodic if
∑

∞

i=0
ifi < ∞ and also ∀i ∈ N,∃j > i : fj > 0. Fur-

ther, it is simple to show that the equilibrium distribution
πi of the ith state is given by πi = π0

∑

∞

j=i fj . Note that
for i = 0 this simply says π0 = π0 since the transition prob-
abilities must sum to one. In addition, since

∑

∞

i=0
πi = 1

then π0 = 1 −
∑

∞

i=1
ifi.

An obvious way to introduce correlations of lag k into
the series Y is to introduce unbroken sequences of k or
more ones. Such an unbroken sequence can only occur if
the X series is in a state k or higher (from the topology
of the underlying chain). Therefore, the probability that
Yt+1 = · · · = Yt+k = 1 is clearly given by

∑

∞

i=k πi. To
introduce LRD the condition ρ(k) ∼ cρk

−α where α ∈
(0, 1) should be met if P [Yi+1 = 1 . . . Yi+k = 1] ∼ Ck−α.
Hence the strict condition,

∞
∑

i=k

πi = Ck−α,

is introduced where C is a constant (note that it has not
yet been shown that this produces a valid ergodic Markov
chain). By setting k = 1 it can be shown that C = 1− π0.

This is equivalent to setting

fk =
1 − π0

π0

[

k−α − 2(k + 1)−α + (k + 2)−α
]

, (2)

for k > 0 and also, since f0 = 1 −
∑

∞

i=1
fi,

f0 = 1 −
1 − π0

π0

[

∞
∑

i=1

i−α − 2

∞
∑

i=2

i−α +

∞
∑

i=3

i−α

]

,

which reduces to,

f0 = 1 −
1 − π0

π0

[

1 − 2−α
]

. (3)

These two equations (3) and (2) define a Markov chain
which has two parameters α and π0. The α parameter is
the same parameter in (1) and is related to the Hurst pa-
rameter. The π0 parameter is the equilibrium probability
that the X series (and hence the Y series) is in the zero
state and is hence given by π0 = 1−µ where µ is the mean
of the Y series. It can be proved [3, chapter two] that this
chain produces a time series with the given mean and Hurst
parameter. The model is valid for α, π0 ∈ (0, 1) if

π0 >
2α − 1

2α+1 − 1
.

2.1 Computational Implementation of Markov

Method

While the model described in this section cannot be thought
of as a realistic model of network traffic, it is rich enough
to provide a correlation structure with significant correla-
tions at all lags (the key feature of LRD). Simulating the
model on a computer is extremely simple and it allows the
production of a stream of packets which exhibits LRD. If
the series X can be generated then the series Y can be
generated from it with Yt = 1 representing the sending of
a packet and Yt = 0 representing an interpacket gap. It is
clear that if Xt > 0 then Xt+1 = Xt −1 from the structure
of the chain. The only difficulty comes in generating Xt+1

if Xt = 0. A naive approach to this would be to generate a
random number r, uniformly distributed in (0, 1) and say

that Xn+1 is the smallest i such that
∑i

j=0
fi < r. This

procedure is successful for small i but becomes inaccurate
since as i increases the sum gets nearer to one but the fi

get nearer to zero. Adding numbers near zero to numbers
near one is a difficult problem for finite precision computer
arithmetic. Hence the errors in each stage of addition get
larger. However, by the very nature of LRD, large values of
i are likely to come up and it is these which are important.

It can simply be shown that if Xt = 0 and 0 < k ≤ i ≤ j,

P [Xt+1 ∈ [i, j]|(Xt+1 ∈ [k,∞], Xt = 0)] =

i−α − (i + 1)−α − (j + 1)−α + (j + 2)−α

k−α − (k + 1)−α
.

(4)
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Using this equation, Table 1 shows a procedure for gen-
erating the sequence {Xt : t ∈ N} given some randomly
chosen X0.

1. If Xt > 0 then Xt+1 = Xt − 1. Exit here.

2. Explicitly calculate P [Xt+1 > j] for values
of j ≤ N where N is some small integer as
described previously.

3. Generate a new random number R in the
range [0, 1].

4. Calculate
P [Xt+1 ∈ [N, 2N − 1]|Xt+1 ∈ [N,∞]] from
equation (4). If R is less than or equal to
this probability then Xt+1 is in the required
range. Otherwise set N := 2N and go to
step three.

5. If Xt+1 is in the required range then refine
down by generating a new random number
and seeing if Xt+1 is in the range
[N, (3/2)N ]. Continue refining by a binary
search (with a new random number each
time) until Xt+1 is found. Exit here.

Table 1: A procedure for finding Xt+1 from Xt in the infi-
nite chain.

3 Local Buffering to Reduce Cor-

relations

A leaky bucket only allows traffic to exit from the buffer at
a limited rate. The intelligent buffer described here will use
a decision process to select whether to allow traffic to exit
at a high, medium or low rate. This rate will be chosen to
minimise a given statistic. For the purpose of this paper,
the autocorrelation function at various lags will be used as
the statistic to minimise.

Let XT = {x1, x2, . . . , xT } be T samples from a time
series representing the traffic per unit time output from a
buffer. Let k̂(XT ) be a statistic which can be estimated
on a sample of T items of data and which it is desirable to
reduce. (The k stands for “kipple” a word coined by the
science fiction writer Philip K. Dick [5] to describe detritus
which builds up of its own accord if you do not take actions
to reduce it.) Now, assume that after l steps there are
three possible continuations of the series representing high,
medium and low traffic. There are therefore three separate
T length samples,

XH
T = {xl+1, . . . , xT , xH

T+1, . . . , x
H
T+l}

XM
T = {xl+1, . . . , xT , xM

T+1, . . . , x
M
T+l}

XL
T = {xl+1, . . . , xT , xL

T+1, . . . , x
L
T+l},

where the H, M and L stand for high, medium and low.
Therefore, there are three separate estimates for the value
of the k̂ statistic after l new values have been added to the
time series.

1. First allow the buffer to output traffic at its
normal rate for T time periods to get the
series XT .

2. Estimate the three samples XH
T , XM

T and
XL

T assuming that the buffer rate is set to
high, medium or low respectively and with
the assumption that the input to the buffer
for the next k time steps is the same as it
was for the most recent k time steps.

3. Calculate the values of k̂(XH
T ), k̂(XM

T ) and

k̂(XL
T ).

4. Set the buffer output rate to high, medium
or low according to which of the three
statistics is lowest.

5. Wait one time step. Move the time series
along by one time step so all the T length
samples are moved one step to the right.
Go to step two.

Table 2: A procedure for minimising a given statistic using
a buffer.

Now, if the prediction in step two is good then this proce-
dure should minimise the parameter k̂. This will be tested
in the simulation in the next section. The parameter l
can be thought of the amount of time the simulation looks
ahead. In the experiments described, this is kept as one.

4 Simulation Method

The network simulator ns-2 (www.isi.edu/nsnam/ns/) is
open source and freely available online. It simulates packet
based networks using either UDP or TCP protocols. The
Markov based LRD generation mechanism was added to
the ns-2 simulation as well as the intelligent buffering tech-
nique. In this case the simulation is kept extremely simple
and uses UDP. The topology for the experiments described
here is shown in figure 2. Nodes one to eight are sources
generating long-range dependent traffic according to the
Markov method previously described. They all send their
traffic through to the output (labelled router node) via the
shaper node which implements the procedure above to re-
duce correlations. In the results reported here the router
node remains unused.

All links between the sources and the shaper have a ca-
pacity of 256kb/s, the link between the shaper and the
router has a capcity of 2048kb/s and the router to the exit
is half of that. The sources are all sending UDP packets
of size 256b at most every millisecond to give a maximum
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Figure 2: Network Topology for Testing in ns-2

rate of 256kb/s (that is, if the Markov chain generated a
continual stream of ones then there would be 1000 packets
of 256 bits giving a stream of 256kb/s kilobits per second).
The rates were chosen such that if all the links send at
exactly half their capacity then the router which carries
traffic to the sink will be exactly full. Note that, in fact,
if the traffic was this heavy (a mean of 0.5 for the Markov
chain) then considerable packet loss would result since the
system could only cope if the traffic were completely evenly
distributed.

The system was tested with l (the “look ahead”) pa-
rameter was set to one for these tests. The low, medium
and high send rates for the shaper were 575kb/s (low),
1075kb/s (medium) and 1575kb/s (high). For the exper-
iments described, the Hurst parameter was 0.75 and the
mean is 0.4. The experiments are compared with a “leaky
bucket” queue which simply sends out traffic at a maxi-
mum rate of 1575kb/s. The time interval chosen to collect
the data for the intelligent buffer was 0.32 seconds. These
figures were chosen to produce a system which had some
congestion, an interesting correlation structure in the leaky
bucket case yet remained relatively simple.

5 Results

Initial results are with the k̂ statistic measuring just the
value of the autocorrelation function at a single lag. Figure
3 shows attempts to suppress each individual autocorrela-
tion lag from one to twelve and compared to the base case
(leaky bucket). The figures should be interpreted as fol-
lows, the curve LB AC shows the autocorrelation function
of the output of the shaper node with the leaky bucket in
place. This curve is present on each of the six graphs and
shows the characteristic slow decline of the ACF which is
characteristic of LRD. The line AC 1 shows the autocorre-
lation function with the intelligent buffer and the k̂ statis-
tic being an estimate of the autocorrelation function at lag
one. By supressing k̂ the autocorrelation function at lag
one is suppressed and this can be clearly seen on the graph.
Similarly for the AC 2 line, the autocorrelation function is
suppressed at lag two.

These results show that this method can be used to sup-
press correlations at any lag. What is, perhaps, equally

interesting is that there are such striking harmonic effects.
For example, suppressing a correlation at a lag of one also
suppresses all odd lags but raises the correlation at even
lags (the AC 1 line). In fact, the rule seems to be that if
we suppress at a lag k then lags with odd multiples of k are
also suppressed but lags with even multiples of k actually
gain in correlation. This can be clearly seen for the graph
of AC 5 which shows a dip at lags five and fifteen but a
peak at ten. This periodicity in the ACF should be no
suprise and is even more striking in the next experiments.

This was followed by attempts to suppress correlations
at multiple lags which was achieved simply by making the
k̂ parameter the sum of the ACF estimated over several
lags. These experiments are shown in Figure 4 — graph
(a) shows attempts to suppress all even lags, (b) shows at-
tempts to suppress all odd lags, (c) shows attemps to sup-
press lags one to five and (d) shows attempts to suppress
lags six to ten. The results show interesting behaviour of
the autocorrelation. Graph (a) shows suppression of cor-
relation at most lags except for multiples of twelve. Graph
(b) shows that odd lags can be suppressed extremely suc-
cessfully and this leads to increased correlations at even
lags. Graph (c) shows that the lags one to five are sup-
pressed very well indeed and this causes increased corre-
lations at a lag of six and multiples of six. Finally, graph
D shows that the procedure can successfully suppress the
lags from six to ten at the expense of increased correlations
at other lags.

6 Conclusions

An intelligent buffering method has been described which
can be used to alter the nature of correlations in data. This
could be part of a more general shaping scheme for data
and allow finer control over the statistical nature of traffic
on networks. If all network buffers performed such shaping
and tweaking of traffic it seems likely that the network ad-
ministrator could have a firm control over the nature of the
traffic. However, much more work is needed in this area.
There are a large number of parameters to be explored. In
particular, it should be noted that the k̂ statistic could be
any statistic that we wished to reduce in the network which
could in principle be reduced by buffering. The choice of
the autocorrelation function was based upon the authors’
interest in the subject of long-range dependence and it is
clear that there are a large number of possibilities to ex-
plore.
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Figure 3: Autocorrelation function with different lags suppressed.
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Figure 4: Suppressing only different combinations of lags; (a) is even, (b) is odd, (c) is 1 to 5 and (d) is 6 to 10.
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