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Introduction

Long-Range Dependence (LRD) is a statistical phenomenon
describing persistent correlations.

Presence and nature of LRD is characterised by H the Hurst
Parameter.

The Hurst Parameter is perfectly well-defined. A large number
of theoretically sound estimators exist.
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Introduction

Long-Range Dependence (LRD) is a statistical phenomenon
describing persistent correlations.

Presence and nature of LRD is characterised by H the Hurst
Parameter.

The Hurst Parameter is perfectly well-defined. A large number
of theoretically sound estimators exist.

The existing estimators disagree when applied to the same
data.

Trends and periodicities or other corrupting noise may be
mistaken for LRD.

The literature gives different approaches for pre-processing
data before measurement.

This paper is a very simple overview for someone who wants
to measure LRD.
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The Autocorrelation Function and Hurst Parameter

Let {X1, X2, X3, . . . } be a weakly stationary time series.

The Autocorrelation Function (ACF)

ρ(k) =
(E [Xt − µ])(E [Xt+k − µ])

σ2
,

where µ is the mean and σ2 is the variance.

The ACF measures the correlation between Xt and Xt+k and is normalised so
ρ(k) ∈ [−1, 1]. Note symmetry ρ(k) = ρ(−k).
A process exhibits LRD if

P

∞

k=0 ρ(k) diverges (is not finite).

Definition of Hurst Parameter

The following functional form for the ACF is often assumed

ρ(k) ∼ Cρ|k|
−2(1−H),

where ∼ means asymptotically equal to, Cρ > 0 and H ∈ (1/2, 1) is the Hurst
Parameter.
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More About LRD

The time series {Xt : t ∈ N} can be converted to the frequency domain
using a Fourier transform. Let f (λ) be the spectral density of the series
at frequenecy λ.

LRD in the Spectral domain

In the spectral domain, the previous definition becomes

f (λ) ∼ Cf |λ|
−(2H−1),

as λ → 0, where Cf > 0 and H is the Hurst paramter.

Computationally, LRD is difficult to work with.

LRD is hard to measure — estimates at low frequencies or high lags.

The sample mean converges at a rate proportional to n2H−2 not
n−1.

Standard techniques for confidence intervals fail to work.
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Why do we care about LRD?

In 1993 LRD (and self-similarity) was found in a time series of
bytes/unit time measured on an Ethernet LAN [Leland et al
’93].

This finding has been repeated a number of times by a large
number of authors (however recent evidence suggests this may
not happen in the core).

A higher Hurst parameter often increases delays in a network.
Packet loss also suffers.

If buffer provisioning is done using the assumption of Poisson
traffic then the network will be underspecifed.

The Hurst parameter is a dominant characteristic for a
number of packet traffic engineering problems.

The origins of LRD are uncertain but the most likely cause
seems to be the aggregation of file transfer processes.
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LRD, Self-Similarity and Heavy Tails

Statistically Self-Similar: The distribution of a process

{Yt : t ∈ N} is the same after stretching Yt

d
= c−HYct for

some constant c > 0. Examples: coastlines, tree-bark,
internet traffic traces.

If Yt is stat. self similar with H ∈ (1/2, 1) with stationary
increments Xt = Yt − Yt−1 then Xt has LRD and same Hurst
parameter H.

Heavy Tailed: Distribution where extreme events still have a
significant likelihood. P [X > x ] ∼ x−β for β ∈ (0, 2)
Examples: heights of trees, frequencies of words, lengths of
file in the internet.

A process where the lengths of the on and off periods are
heavy-tailed will exhibit LRD.
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Estimators for the Hurst parameter

There are a large number of estimates for the Hurst parameter. Five are
used in this paper.

1 The R/S plot is the oldest and perhaps best known estimator for
the Hurst parameter.

2 Aggregated variance looks at how the variance of a series changes
as it is aggregated.

3 The Periodogram looks at the behaviour of an estimate for the
spectral density.

4 Wavelets are a method which can be considered as a generalisation
of Fourier transform.

5 Local Whittle estimator looks at the behaviour of the frequency
spectrum near the zero frequency.

The first two estimators are in the time domain and the last three in the

frequency domain.
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Simulated Data — Procedure

Simulated data sets with known Hurst parameter are
generated using Fractional Gaussian Noise and Fractional
ARIMA modelling.

The data set is then corrupted by the addition of noise of the
following types:

1 An AR(1) process with a high degree of short-range
dependence.

2 A sin wave.
3 A linear trend.

All five estimators are then applied to the raw and the
corrupted data.
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Simulated Data — Results (1)

Added R/S Plot Aggreg. Period. Wavelet Local
Noise Variance ogram Estimate Whittle

100,000 points FGN — H= 0.9.

None 0.782 0.864 0.905 0.901 ± 0.009 0.934
AR(1) 0.805 0.784 0.88 0.969 ± 0.042 1.066
Sin 0.772 0.961 0.907 0.901 ± 0.009 0.945
Trend 0.782 0.958 0.928 0.901 ± 0.009 0.939

100,000 points FARIMA (0,d,0) — H = 0.7

None 0.663 0.692 0.699 0.696 ± 0.004 0.681
AR(1) 0.823 0.673 0.792 0.896 ± 0.033 0.876
Sin 0.665 0.972 0.704 0.696 ± 0.004 0.765
Trend 0.662 0.973 0.786 0.696 ± 0.004 0.746

100,000 points FARIMA (1,d,1) — H= 0.7, φ1 = 0.5, θ1 = 0.5.

None 0.684 0.693 0.706 0.697 ± 0.006 0.68
AR(1) 0.818 0.656 0.774 0.88 ± 0.041 0.878
Sin 0.689 0.973 0.71 0.697 ± 0.006 0.766
Trend 0.684 0.972 0.786 0.697 ± 0.006 0.743
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Simulated Data — Results (2)

Added R/S Plot Aggreg. Period. Wavelet Local
Noise Variance ogram Estimate Whittle

100,000 points FARIMA (0,d,0) — H = 0.9.

None 0.757 0.882 0.91 0.886 ± 0.004 0.861
AR(1) 0.804 0.789 0.873 0.969 ± 0.036 1.011
Sin 0.764 0.967 0.913 0.886 ± 0.004 0.883
Trend 0.757 0.974 0.933 0.886 ± 0.004 0.875

100,000 points FARIMA (1,d,1) — H= 0.9, φ1 = 0.5, θ1 = 0.5.

None 0.856 0.854 0.881 0.887 ± 0.006 0.858
AR(1) 0.888 0.773 0.874 0.959 ± 0.04 1.001
Sin 0.86 0.963 0.885 0.887 ± 0.006 0.879
Trend 0.856 0.968 0.92 0.887 ± 0.006 0.872

100,000 points FARIMA (2,d,1) — H= 0.7, φ1 = 0.5, φ2 = 0.2, θ1 = 0.1.

None 0.807 0.74 0.817 0.966 ± 0.048 1.05
AR(1) 0.814 0.691 0.822 1.007 ± 0.059 1.136
Sin 0.8 0.94 0.821 0.966 ± 0.048 1.052
Trend 0.807 0.939 0.856 0.966 ± 0.048 1.051

Richard G. Clegg (richard@richardclegg.org) A Practical Guide to Measuring the Hurst Parameter



Introduction
Long-Range Dependence

Measurements Made
Conclusions

Artificial Data
Real Data

Real Data — Procedure

Two real-life data sets are analysed in this paper:
1 A data set collected at the University of York in 2001. A 67

minute trace of incoming and outgoing data from the
University.

2 The much studied Bellcore data set — this was collected in
1989 and has been used in many famous papers.

The literature gives the following suggestions for
pre-processing data before estimating the Hurst parameter.

1 Taking logs of the time series (only appropriate if data is
positive).

2 Removal of mean and a trend from the data.
3 Removal of a best fit polynomial of high order (ten is chosen

here).
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Real Data — Results

Filter R/S Plot Aggreg. Period. Wavelet Local
Type Variance ogram Estimate Whittle

York trace (bytes/tenth) — 40467 points

None 0.826 0.924 0.928 0.909 ± 0.012 0.881
Trend 0.826 0.923 0.932 0.909 ± 0.012 0.881
Poly 0.827 0.892 0.863 0.909 ± 0.012 0.878

Bellcore data BC-Aug89 (bytes/10ms) — first 1000 secs.

None 0.707 0.8 0.817 0.786 ± 0.017 0.822
Trend 0.707 0.797 0.815 0.786 ± 0.017 0.822
Poly 0.707 0.789 0.787 0.786 ± 0.017 0.822

Bellcore data BC-Aug89 (bytes/10ms) — second 1000 secs.

None 0.62 0.802 0.808 0.762 ± 0.012 0.825
Trend 0.62 0.802 0.808 0.762 ± 0.012 0.825
Poly 0.618 0.786 0.777 0.762 ± 0.012 0.824
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Conclusions

Even in artificial data measuring the Hurst parameter can be
hit and miss.

Corrupting noise of various types can harm measurements and
all techniques were vulnerable to addition of short-range
dependent data.

Techniques used to pre-process the data seemed to make little
difference.

A researcher relying on a single measure of the Hurst
parameter is likely to be drawing false conclusions.
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