Introduction 00 Experimental Setup

Results

The queuing mode

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions 0000

Mathematical models of internet traffic on a link

Richard G. Clegg (richard@richardclegg.org) Dept. of Electronic and Electrical Engineering, UCL— Talk for Dept of Mathematics, Liverpool 2007 (Prepared using <code>MTEX and beamer.)</code>

Introduction ●○	The Traffic Models	Experimental Setup 000	Results	The queuing model	Conclusions 0000
Talk Ov	erview				

Motivation

- Several mathematical models exist in the literature which claim to model the internet traffic on a link.
- These models are motivated by the need to model and to predict queuing delay (buffer provisioning).
- In specific many models aim to capture Long-range dependence (LRD).
- How useful are these models in practice?

Problem definition

- Define some stochastic process {X_t : t ∈ ℕ} where X_i ∈ {0,1} with 1 representing a packet and 0 an inter-packet gap.
- The stochastic process is parameterised and these parameters can be set to match measurements of "real traffic".
- The simulated traffic should exhibit the same queuing behaviour as the real traffic.

Introduction ○●	The Traffic Models	Experimental Setup 000	Results	The queuing model	Conclusions 0000
Quick gi	uide to Long-	Range Depe	ndence		

Long-Range Dependence

LRD is often defined in terms of the autocorrelation function (ACF), $\rho(k)$. A weakly-stationary series has LRD if $\sum_{i=0}^{\infty} \rho(k)$ does not converge. Often it is assumed that

$$\rho(k) \sim Ck^{2(1-H)},$$

where C > 0 and $H \in (1/2, 1)$ is known as the Hurst parameter.

- Measured in packets/unit time on internet data [Leland et al '93]. Can cause problems with queuing/delay [Erramilli et al 96].
- This has triggered a huge research effort in LRD based traffic models.

Introduction The Traffic Models Experimental Setup Results The queuing model Conclusions occorrectional Gaussian noise (fGn) and fractional Brownian motion (fBm)

Fractional Brownian motion

fBm is a generalisation of Brownian motion (self similar). $B_H(0) = 0$ a.s. $B_H(t)$ is a continuous function of t and

$$\mathbb{P}\left[B_{H}(t+k)-B_{H}(t)\leq x\right]=(2\pi)^{-\frac{1}{2}}k^{-H}\int\limits_{-\infty}^{x}\exp\left(\frac{-u^{2}}{2k^{2H}}\right)du,$$

where $H \in [1/2, 1)$ is the Hurst parameter with H = 1/2 being Brownian motion.

Fractional Gaussian noise (fGn) is the process $B_H(t + k) - B_H(t)$ for a given fixed k. Efficient methods exist for generating a fixed length discrete sample $\{B_H(t) : t \in 1, 2, ..., N\}$ for a given H and N.

- fBm can be used as the basis for a contiuous time queuing model [Norros '94].
- Let $\{Y(t): t \in \mathbb{R}^+\}$ be fBm.
- Let $A(t) = mt + \sqrt{am}Y(t)$ be the arrival process where m is the mean arrival rate and a is a variance parameter.
- Let the queue drain at some constant rate c > m.
- Assume an the queue length is not bounded (infinite buffer).

 Results can be stated about the probability of the queue length P[Q(t) > x] (at least firm lower bounds can be established).

Introduction 00	The Traffic Models 00●000000	Experimental Setup 000	Results	The queuing model	Conclusions 0000
A discre	te time traf	fic model fro	m fCn		

- Let $\{Y(t): t \in \mathbb{N}\}$ be a discrete time sample from fGn.
- Assume an queue with infinite capacity which drains one unit of traffic per unit time.
- Let $Z(t) = mt + a \sum_{i=1}^{t} Y(u)$ where m < 1 is the mean number of arrivals per unit time and a is a variance parameter.
- The arrival process {A(t) : t ∈ Z⁺} is generated by the rules below (initialised with A(0) = 0.

$$egin{aligned} \mathcal{A}(t) &= egin{cases} \mathcal{A}(t-1) + 1 & \mathcal{Z}(t) \geq \mathcal{A}(t-1) + 1 \ \mathcal{A}(t-1) & ext{otherwise.} \end{aligned}$$

- This can be thought of as accumulating work until there is enough to generate a single arrival.
- Open research questions (as far as I am aware):
 - How can a best be tuned to match real traffic (other than "tweaking")?

2 How well does this process reflect the nature of fGn?

Introduction 00	The Traffic Models	Experimental Setup	Results	The queuing model	Conclusions 0000
Iterated	Chaotic Map)			

Iterated double-sided Manneville-Pomeau map.

A One Dimensional Chaotic Map Which Generates LRD

 $x_{n+1} = \begin{cases} x_n + \frac{1-d}{d^{m_1}} x_n^{m_1} & 0 < x_n < d, \\ x_n - \frac{d}{(1-d)^{m_2}} (1-x_n)^{m_2} & d < x_n < 1, \end{cases}$

where $x_n, d \in (0, 1), m_1, m_2 \in (3/2, 2).$

・ ロ ・ ・ 雪 ・ ・ 雪 ・ ・ 目 ・ う へ の ・

- Map produces LRD with $H = max(m_1 1, m_2 1)$.
- Open research questions (as far as I know):
 - What is the invariant density of this map? (difficult)
 - 2 Given m_1 and m_2 what d do I pick to get mean traffic level μ ?
- The map becomes easier if we construct a piecewise linear approximation (with an infinite number of pieces).
- The pieces are chosen so that one piece completely maps to the "next one out" (at least as far as the discontinuity — the domain of piece n is (z_n, z_{n+1}) and the range is (z_{n+1}, z_{n+2}) [Wang 1989].
- The symbolic dynamics of the one-sided piecewise linear approximation could be an infinite Markov chain.

Introduction 00	The Traffic Models ○○○○○●○○○	Experimental Setup 000	Results	The queuing model	Conclusions 0000
The Ma	rkov Model				

- This is topology of Wang and Clegg/Dodson models.
- If $\{X_t : t \in \mathbb{N}\}$ is generated by chain then generate

$$Y_t = egin{cases} 0 & X_t = 0 \ 1 & ext{otherwise}. \end{cases}$$

- Model can be finite or infinite. f_i are transition probs, π_i equilibrium densities.
- Can choose f_i so return times have heavy-tails and get binary series with LRD [Heath et al 1998].

Satting	the Transitie	n Drobabilit	ioc		
Introduction 00	The Traffic Models ○○○○○○●○○	Experimental Setup 000	Results	The queuing model	Conclusions 0000

- Two parms α and μ = 1 π₀ if ergodic (conditions easy).
- Find f_k such that $\sum_{i=k}^{\infty} \pi_i \sim Ck^{-\alpha}$.

Transition Probabilities for this Markov model

$$f_k = \begin{cases} \frac{1-\pi_0}{\pi_0} \left[k^{-\alpha} - 2(k+1)^{-\alpha} + (k+2)^{-\alpha} \right] & k > 0\\ \frac{1-\pi_0}{\pi_0} \left[1 - 2^{-\alpha} \right] & k = 0 \end{cases}$$

- From balance equations $\pi_k = \pi_{k+1} + f_k \pi_0$.
- Thus $\pi_k = \pi_0 \sum_{i=k}^{\infty} f_i$. (Note, if k = 0 this says $\pi_0 = \pi_0$).
- For k > 0 then $\pi_k = (1 \pi_0)[k^{-\alpha} (k+1)^{-\alpha}].$
- Hence $\sum_{i=k}^{\infty} \pi_i = (1 \pi_0)k^{-\alpha}$ for k > 0 as required.

Introduction 00	The Traffic Models ○○○○○○●○	Experimental Setup 000	Results	The queuing model	Conclusions 0000
Arrowsm	hith/Barenco	o Model			

- General class of models described in [Barenco & Arrowsmith '04] proof of strong result giving LRD.
- Think of as double-sided version of Wang topology.
- Could set model to use LRD with Wang or Clegg/Dodson probabilities but theoretical issues cause problem with mean and stability.
- Instead model actual ON/OFF distribution in digitised data.

Introduction 00	The Traffic Models ○○○○○○○●	Experimental Setup 000	Results	The queuing model	Conclusions 0000
Models I	Used				

- Simple and tractable packet generation models.
- Models are "clocked" and "binary". Fixed width packets generated at times $n\Delta t : n \in \mathbb{N}$.
- Models used
 - Poisson process (strictly speaking Bernoulli process) (mean only).
 - Fractional Gaussian noise model (mean, "variance" and Hurst parameter).
 - Wang model [Wang '89], Clegg/Dodson Model [Clegg & Dodson '05] — Markov Modulated process (mean and H).

Model true ON distribution, OFF distribution or both.

Introduction 00	The Traffic Models	Experimental Setup ●○○	Results	The queuing model	Conclusions 0000
Queuing	Model				

- Assume a single FIFO server with an infinite buffer and output bandwidth *b*.
- Takes time l/b to process a packet of length l.
- If I is constant then this is a G/D/1 type queue.
- Measure E [q] the expected queue length (in packets or in bits) as function of b.
- Input to the queue maybe from "real" traffic traces or from models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Introduction 00	The Traffic Models	Experimental Setup ○●○	Results	The queuing model	Conclusions 0000
Real Tra	ffic Traces				

- 100,000 packets from real life traffic sources which give times and packet lengths.
- Establish base case use arrivals times and lengths as input to queue. Pick *b* to get approx 10% occupancy.
- Get "digitised" version of real data by only allowing output of fixed *I* bit packets at times $n\Delta t$.
- CAIDA OC48 data, two sets (H = 0.6) from spring 2003. High speed link (2.45 Gb/s). Available from CAIDA website.
- Bellcore data two sets (H = 0.8) much beloved historic data from autumn 1989. Available from Internet Traffic Archive.
- QUAINT data (H = 0.85) collected at Imperial college April 2003 traffic to and from a heavily loaded router (no results here).

Aside —	difficulties	of estimating	the H	urst naramet	er
Introduction 00	The Traffic Models	Experimental Setup ○○●	Results	The queuing model	Conclusions

This is the QUAINT data (the least consistent). Code for Hurst estimation available on my website.

Method	(0.1s bins)	(1s bins)	(10s bins)	(100s bins)
No samples	295969	29597	2960	296
RS plot	0.681	0.752	0.787	0.818
Agg var	0.919	0.860	0.839	0.806
Period.	0.977	0.987	0.870	1.400
Wavelet	0.887	1.105	0.811	0.591
Loc. W.	0.796	0.981	1.019	0.920

- The bin size in theory should not matter (then neither should the choice of estimator).
- Too small and many bins will be empty causing problems for the estimators.
- Too large and there will be insufficient data (rule of thumb, a thousand points is the least I would be comfortable with).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ の Q ()

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction 00	The Traffic Models	Experimental Setup	Results	The queuing model	Conclusions 0000
Compari	son of multi	-parameter i	nodels	(Bellcore B	data)

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ● ● ●

E[q]

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ● ● ●

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ の Q ()

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model •0000000	Conclusions 0000
The mat	hematical qu	leuing model			

- The Markov model can be formulated as a specific queuing model (it belongs to the class of D-BMAP/D/1 models).
- Consider the following discrete time queuing model based on the Markov model.
 - The system has two states, on and off.
 - 2 If in off state, prob f_0 , next state is off state.
 - **3** If in off state, prob f_i next *i* states on then off.
 - If on prob. g_n exactly n units of work arrive in iter $(g_0 = 0)$.
 - If off no work arrives.
 - One unit of work consumed per iteration.
- Can we calculate steady state E[Q] and $\mathbb{P}[Q = q]$?
- This system with the on and off reversed in the chain is the Discrete Batch Renewal process.
- This system with the two sided chain would (I think) be a renewal/reward batch process.

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model o●oooooo	Conclusions 0000
li's resi	ilt				

Remarkable result from [Li 1993].

Arrival process discrete time MMP with transition matrix **P**. Server process deterministic one unit of work per time unit. Let $\mathbf{Q}(z) = [Q_0(z), Q_1(z), \dots, Q_n(z)]^T$ be a column vector of the queue length generating function.

$$Q_i(z) = \sum_{q=0}^{\infty} \mathbb{P}\left[Q = q, \text{ state } = i\right] z^q.$$

$$\begin{split} \mathbf{Q}(z) &= (z-1)[z\mathbf{I} - \mathbf{P}^{T}\mathbf{G}(z))]^{-1}\mathbf{P}^{T}\mathbf{B}, \text{ where} \\ \mathbf{G}(z) &= \operatorname{diag}(A_{0}(z), A_{1}(z), \dots, A_{n}(z)), \\ A_{i}(z) &= \sum_{j=0}^{\infty} z^{j}\mathbb{P}\left[j \text{ arrivals when in state } i\right], \end{split}$$

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model 00●00000	Conclusions 0000
Implicati	ons for my q	ueueing mod	lel		

Working from Li, I can get a closed form for the equilibrium queue length.

$$\mathsf{E}\left[Q\right] = \frac{\overline{g}(\overline{g}-1)\left[\overline{f^2}-\overline{f}^2\right] + \overline{f}(1+\overline{f})\left[\overline{g^2}-\overline{g}^2\right]}{2(1+\overline{f})[1+\overline{f}-\overline{f}\overline{g}]},$$

where

$$\overline{f} = \sum_{i=1}^{n} if_i \text{ and } \overline{f^2} = \sum_{i=1}^{n} i^2 f_i$$
$$\overline{g} = \sum_{i=1}^{m} ig_i \text{ and } \overline{g^2} = \sum_{i=1}^{m} i^2 g_i.$$

Similarly a series of recursive functions allow calculation of $\mathbb{P}[Q = q]$ in terms of $\mathbb{P}[Q = q - 1]$.

- Matches simulation but numerically unstable as probs shrink.
- But, for (all?) LRD models, $\overline{g^2}$ infinite!
- Model is predicting infinite expected queue length although occupancy below 1.
- Mean queue is infinite even though queue can be empty as large a proportion of the time as we wish. Can this possibly be true? (cf P-K theorem).

Э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model 00000●00	Conclusions 0000
True for	other I RD	sources? - F	GN		

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ の Q ()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model 0000000●	Conclusions 0000
True for	real data?				

くしゃ 本語 * 本語 * 本語 * よし *

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model	Conclusions ●000
Conclusi	ons (general	conclusions)			

- No models with few parameters were close to matching queuing behaviour.
- Getting a simple model to match queuing performance is very difficult.
- The "digitisation" in these models is not the reason for the difference.
- Models which took the distribution of ON burst lengths were sometimes "good enough".
- The Markov model with ON distribution is fast to run and has easy theoretic answers.
- I need more data and fewer parameters (good models here have many parms).

- LRD is a nuisance to work with (poor convergence of mean, hard to measure *H*) is it fundamental anyway?
- All LRD models matched mean (sort of) and Hurst and for FGN variance but got different wrong answers.
- Real traffic does not queue like LRD traffic.
- The very idea of LRD modelling may be fundamentally broken.

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model	Conclusions
Where t	o now?				

- Need data to see how good the on distribution model is in general.
- Can we use theoretical model to match real queue (should be easy?).
- Multi-parameter model is fast to run, easy to implement and has strong theoretical results.
- Simplify multi-parameter models? Other models? (Wavelets? Model ACF?)
- Closed loop models?
 - Pro: Captures importance of TCP feedback mechanism.
 - Anti: Likely to be mathematically intractable. Does complex simulation gain us understanding?
- Open questions:
 - Can we prove that FGN and M-P do not have convergent E[Q]?
 - Is it a feature of all possible LRD models?
 - Is it just a feature of something about my queue model?

Introduction 00	The Traffic Models	Experimental Setup 000	Results	The queuing model	Conclusions ○○○●
Reference	ces				

- Barenco and Arrowsmith, Dynamical Systems, vol 19(1) p61-74 (2004)
- 2 Clegg and Dodson, Phys. Rev. E, vol 72 (026118) (2005)
- Olegg, Int. Journ. Simul.: Sys., Sci. & Tech. vol 7(1) p3-14 (2006)
- Erramilli, Narayan & Willinger, IEE/ACM Trans. Net vol 4(2) p209-223 (1996)
- Heath, Resnick & Samorodnitsky, Math. of Oper. Res., vol 23(1) p 145-165 (1998)
- Leland, Taqqu, Willinger, Wilson, Proc ACM SIGCOMM, p183-193 (1993)
- Li, IEEE/ACM Trans. on Net. vol 1 pp522–533 (1993)
- Neidhardt & Wang, Proc. ACM SIGMETRICS, p222-232 (1998)
- Norros, Queuein Systems, vol 16 pp387-396 (1994)
- Wang, Phys. Rev. A, vol 40(11) p6647-6661 (1989)

This talk, the author's papers referred to above and the software used are all available online at:

www.richardclegg.org/.