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Abstract

The complexity and heterogeneity of the current inter-
net have rendered traditional analytical models and tech-
niques inadequate for networking researchers and engi-
neers. Many within the networking research community
feel that researchers investigating new protocols and ar-
chitectures, either by simulation or test-bed implemen-
tation, need to use common models. Despite the lack
of models with universal applicability, there are certain
models that are more appropriate than others to analyse
certain systems. Researchers in different areas tend to
use established models, typically to allow comparison of
results. In addition researchers have made considerable
progress in understanding the statistical nature of inter-
net traffic. Despite the widespread use of simulation and
test-bed implementation for modelling the internet there
is today little consensus on analysis techniques and their
validation. This paper summarises the main advances
made in the last ten years or so in understanding the na-
ture of internet traffic, models and practices developed
for internet topology and protocol dynamics analysis.

1 Introduction

Networking researchers are increasingly reliant on sim-
ulation and test-bed implementation to investigate the
behaviour of new protocols as well as for the design
and deployment of complex and heterogeneous networks.
This complexity and diversity is constantly growing with
the introduction of more end-users, introduction of new
applications, and the deployment of wired and wireless
technologies in large scale. The internet protocol suite is
often used over these diverse networks to provide a plat-
form for distributed applications and services. The size
and complexity of these networks means that increas-
ingly refined analytical and simulation tools are neces-

sary to investigate their behaviour. Many within the
networking research community [27] advocate that re-
searchers should use common, realistic models. How-
ever, no model exists which can be applied to every pos-
sible networking problem. Nevertheless there are cer-
tain models that are more adequate than others to anal-
yse certain systems. For example congestion control
typically is studied with a single bottleneck topology,
whereas multicast, peer-to-peer (P2P), and distributed
denial of service (DDoS) attack studies necessarily re-
quire bigger topologies. Researchers in different areas
use established models that most likely others have used
before, often to facilitate comparison of results. In addi-
tion there has been considerable progress in understand-
ing the statistical nature of internet traffic. This docu-
ment provides a short review of the main achievements
in this area over recent years.

The reasons for utilising internet models are mani-
fold. The researcher may for example seek to study
new protocols behaviour or seek to support the engi-
neering processes of network dimensioning and provi-
sioning. Whatever the motivations, it is crucial to iden-
tify the appropriate time-scale at which to analyse the
problem at hand. This is because certain factors only
exhibit themselves and therefore influence the system at
certain time-scales. At the shortest timescales, ranging
from microseconds to minutes, the influencing factors
include protocol interactions with hardware and human
factors such as for example how often a user is active.
At medium timescales, with times ranging from hours to
days, different factors become important, usually with a
strong impact made by human behaviours which are in-
fluenced by time of day and time of year. Finally at the
longest timescales, ranging from weeks to years, the be-
haviour of the network and its traffic are affected by sea-
sonal patterns, long-term growth, and pattern changes
due to the emergence of new applications. In particu-



lar, a change in the dominant application on the inter-
net may radically reshape overall traffic characteristics.
Notably, in the late nineties network traffic was largely
generated by web based applications; as of 2005 the dom-
inant position is occupied by peer-to-peer traffic which
exhibits different characteristics than HTTP. In this pa-
per only the shortest timescale, ranging from microsec-
onds to minutes, will be treated. It is in fact at these
timescales that engineering factors have stronger impact
than human behaviours and network economics.

This document is organised as follows. In Section 2 a
treatment is given to current understanding of the statis-
tical nature of internet traffic. Section 3 discusses issues
connected to internet topology modelling. Section 4 con-
cludes the document by summarising current consensus,
known pitfalls and guidelines for modelling the internet.

2 Internet traffic characteristics

In order to successfully simulate internet traffic or cap-
ture it in a mathematical model, an understanding of
its statistical properties is necessary. Internet traffic has
been shown to exhibit correlation over a range of time-
scales in different networking contexts with potentially
detrimental effects on performance. This section gives
an overview of work that in the last decade has provided
evidence of existence and found causes of traffic correla-
tion and discusses models that have been developed to
study networks with correlated traffic.

Before the early 1990s traffic and performance stud-
ies had been predominantly based on models such as
Poisson processes which have no long-term correlation
structure. Such models are attractive because of their
mathematical tractability and the large body of queuing
theory which relies on the assumption of Poisson pro-
cesses. In 1993, the seminal paper [39] (expanded in
[40]) found evidence of long-range correlation in LAN
traffic and brought the concept of self-similarity (and
the related concept of long-range dependence) into the
field of network traffic and performance analysis. As a
result, it is often considered important to capture these
correlation aspects when modelling internet traffic. The
concept of self-similarity has a long history in mathe-
matics but Mandelbrot was an important pioneer [41].
Self-similarity is informally described as the property of
an object which looks “the same” when viewed at dif-
ferent scales. For network traffic this can be thought
of loosely as the idea that the traffic is bursty in the
same way whether the time-scale we are considering is
milliseconds or seconds (the approximation being only
valid over a limited range). A more formal definition
will be given later where we will also see that traffic self-
similarity has been observed in several contexts: LAN
and WAN networks, IP and ATM protocol stacks.

2.1 Basic statistical concepts for net-
work traffic

In this section we rigorously define the three statistical
properties of network traffic of long-range dependence
(LRD), statistically self-similarity and heavy-tails. These
properties are inter-related and refer to traffic scaling
behaviour that is they are measures of how a system
looks when considered at different scales.

Let {X;,X5,...} be an infinite time series. A time
series is said to be weakly-stationary if it has a constant
and finite mean (E[X;] = p for all 4, where E means
expectation) and the covariance between X; and X (i.e.
E[(X; — p)(X; — p)]) depends only on [j — .

If the time series is weakly-stationary then the auto-
correlation function (ACF) p(k) is given by

E[(Xy — p)(Xpqk — 1)

p(k) = ,
where p is the mean and o2 is the variance.

An important statistical property of network traffic is
that of long-range dependence, also known as long mem-
ory or sometimes strong dependence. Several definitions
(not all equivalent) exist in the literature. For a good
book on the topic see [8] and for a beginners summary
in the context of telecommunications see [12, chapter
one|. A commonly used definition is as follows:

Definition 1. A weakly-stationary time series
{X1,X5,...} is said to be long-range dependent
if the sum of the autocorrelation diverges (that is
> re o p(k) is not finite).

Often a specific functional form for the autocorrelation
for a LRD process is assumed, that is
p(k) ~ Gk, &)
where ~ means asymptotically proportional to (that is
f(z) ~ g(z) means lim, .o f(z)/g(z) = 1; in certain
cases the limit may be as « — 0) and where C, > 0
and a € (0,1). The best known measure of LRD is the
Hurst parameter H where H € (1/2,1) indicates LRD,
H = 1/2 indicates independent or short-range dependent
data and as H grows towards H = 1 stronger degrees of
LRD arise. The parameter « is related to H by the
equation H =1 — /2.

Sometimes, it is useful to consider LRD from the point
of view of the frequency domain. Consider the spectral
density of a weakly stationary time-series. This can be
related to the ACF via the Wiener-Khinchine theorem
[71]. If f(X) is the spectral density of a time series at
frequency A then

2 o0

=Y ek,
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where i = \/—1, p(k) is the ACF of the series and o is
the variance of the series.



In the frequency domain equation (1) becomes
FO) ~erIN77,

as A — 0, where f()) is the spectral density, ¢y > 0
and 8 € (0,1). The parameter (3 is related to the Hurst
parameter by H = (1 + 3)/2.

From these definitions, the concept of LRD can be
considered in two separate but related manners. Firstly,
LRD can be thought of as correlations persisting over
an extremely long period of time. Secondly, it can be
thought of as a significant power in low frequency bands.

A related concept is that of self-similarity, this is de-
fined as follows.

Definition 2. Let Y; be a stochastic process with con-
tinuous time parameter ¢. If the process is self-similar
with self-similarity parameter H then for any positive
constant c, the rescaled process ¢ Y., is equal in dis-
tribution to the original process Y;.

This definition, in essence, says that if a process is self-
similar, then it looks “the same” in a statistical sense
when considered at different time-scales, in other words
if the x (time) axis is stretched then the process will have
the same distribution if the y axis is also stretched by an
appropriate factor.

If a self-similar process Y; has stationary increments
and H € (0,1) then it can be shown (see [8, page 51])
that the increment process given by X; =Y; — Y;_; for
i € N has an ACF given by

p(k) ~ H(2H - 1)k*72,

which implies that for H € (1/2,1) then the increment
process is long-range dependent. This gives the rela-
tionship between self-similar and long-range dependent
processes.

Another important statistical concept is that of heavy-
tails. A variable is said to be heavy-tailed distributed if
the tail of the distribution function decreases to zero
more slowly than exponentially. Formally, for all € > 0,
a random variable X is heavy-tailed if it satisfies

P[X > z] e — o0, as x — oo.

Often a specific functional form is assumed for the dis-
tribution:
P[X > z] ~ Cz—aq,

for some C' > 0 and some « € (0, 2). Intuitively a heavy-
tailed distribution implies that large values can occur
with a non-negligible probability. It has been shown [66]
that a superposition of ON/OFF processes where the
lengths of ON and OFF periods are heavy-tailed will
give rise to a self-similar process. It can also be seen
that heavy-tails in the ON and OFF periods could lead
to long-range correlations in the process itself.

A widely known heavy-tailed distribution is the Pareto
distribution given by

P[X > z] =bz™¢, for all x > b,

where b > 0 is the minimum value of X and « € (0, 2)
in order to be a heavy-tailed distribution.

The presence of power-law relationships imply that
processes which are long-range dependent or self-similar
and distributions which are heavy-tailed, in some sense
look the same when viewed at different scales. A process
which scales in a constant way is sometimes referred to as
mono-fractal. A generalisation of this is a multi-fractal
process which exhibits complex behaviour that changes
over different timescales [46]. As we will see later, net-
work traffic at very small timescales, of the order of few
hundred milliseconds, may be better modelled by means
of multi-fractal processes.

The issue of measuring traffic LRD and statistical self-
similarity is a complex one. In the time domain it is
characterised by the fall off of the ACF at high lag. How-
ever, these are exactly those areas at which the fewest
readings are available and the data is most unreliable.
Similarly, in the frequency domain, the LRD is charac-
terised by the behaviour of the spectrum at frequencies
near zero, which are precisely those frequencies which are
hardest to measure. It is certain that simply examining
the ACF is not a robust way to estimate the Hurst pa-
rameter. In addition, a number of biases may be present
in real-life data which could cause problems. These in-
clude periodicity (users and processes daily usage pat-
terns) and trends (traffic volume changes throughout the
measurement period) which violate the assumption of
weak-stationarity and create difficulties for estimations.
The topic of measuring LRD is beyond the scope of this
paper, the reader is referred to [65, 6] for work which
compares existing techniques. Also a summary paper
giving practical advice on the estimation of the Hurst
parameter in real data and caveats about the associated
pitfalls is [13].

2.2 Internet traffic LRD: empirical evi-
dence

The paper [39] established for the first time that net-
work packet traffic has self-similar characteristics. Ev-
idence of self-similarity was found by means of a rigor-
ous statistical analysis of a large set of LAN (Ethernet)
packet traces taken at Bellcore. This paper is of con-
siderable importance as, for the first time, accuracy and
applicability of existing (mainly Poisson) models for the
analysis of networks performance were questioned. In
the light of this paper, Floyd and Paxson [52] embarked
into a study aiming at showing that WAN network traf-
fic does not exhibit self-similarity properties. To their
surprise they found that WAN traffic is consistent with
self-similar scaling. The existence of self-similarity in
WANSs was later confirmed in [17] and [24]. In [52] it
is also shown that Poisson processes adequately model
certain session arrivals such as FTP and TELNET but
not others such as HT'TP, SMTP and NNTP. Evidence
of self-similarity in WWW traffic was provided in [17].
The authors use a large set of WWW traces taken in a



university computer lab over several months. They show
that self-similarity in Web traffic could be explained by
the long-tailed nature of the distribution of file sizes, the
effect of user behaviour, and the aggregation of multiple
flows in local area networks.

These early papers which found evidence and explana-
tions for self-similarity in network traffic, concluded that
self-similarity is an intrinsic property of traffic generated
according to certain distributions of session duration and
size, regardless of how packets are sent to the network
within each session. Later research, focusing on WAN
network traces, questioned at which level the network
impacts on traffic characteristics, i.e. when it matters
how the packets are sent within each session. In [56] and
[24] it was found that the impact of the network (e.g.
protocols, topology) shows up when studying the net-
work at small time-scales, i.e. timescales of the order of
the RTTs in the system investigated, typically then of
the order of a few hundred milliseconds or smaller. At
these small timescales traffic exhibits a structure more
complex than self-similar, namely a structure that is con-
sistent with multi-fractal scaling. These findings did not
invalidate earlier work but complemented it, in that they
established that at small timescales internet traffic be-
haviour is consistent with multi-fractal scaling whereas
at larger timescales it is consistent with self-similar scal-
ing.

Whereas earlier work had shown that the aggregation
of multiple flows leads to traffic exhibiting self-similar
properties, in [31] evidence was found that VBR video
traffic deriving from a single flow is long-range depen-
dent.

In summary evidence has been found that:

o Self-similarity is exhibited by LAN (Ethernet) and
WAN (internet) traffic at timescales longer than a few
hundred milliseconds.

e In a WAN environment a connection starts at a
random point in time, begins transmitting and then
stops. The connection arrival process can be modelled
by means of a Poisson process.

e By choosing the distribution of lengths of ON/OFF
periods (for the LAN case) or the distribution of the
session durations (for the WAN case) to be heavy-tailed
with infinite variance, one can observe that aggregated
packet level traffic exhibits asymptotic self-similarity
behaviour over timescales of the order of few hundreds
milliseconds or larger.

e Multi-fractal scaling is exhibited by LAN (Eth-
ernet) and WAN (internet) traffic at timescales of
the order of the RTTs in the system under considera-
tion, typically of the order of a few hundred milliseconds.

2.3 Internet traffic LRD: possible causes

Several studies have been carried out to explain the phys-
ical causes of self-similarity in network traffic and iden-
tify the properties of distributed systems that induce

self-similarity at multiplexing point. In [47] the so-called
self-similarity “structural causality” was discussed: if the
distribution of file or object sizes is heavy-tailed then, at
multiplexing points, network layer traffic is self-similar.
This result was shown by simulation and found to be
consistent over a range of link bandwidths and buffer
sizes. We have seen earlier that, intuitively a distribu-
tion is heavy-tailed when it can take a wide range of val-
ues and very large values may occur with non-negligible
probability. Heavy tails have been observed for file sizes
on file and web servers and CPU times of processes, as
reported in [47]. The reason why heavy-tails cause self-
similarity was discussed in [16] and [72]. These papers
show that multiplexing a high number of independent
ON/OFF sources with heavy-tailed strictly alternating
ON and/or OFF periods gives rise to self-similarity. In
[23] it is shown that the heavy-tailed nature of file sizes
at the application layer is preserved down the protocol
stack and leads to approximate heavy-tailed busy peri-
ods of network layer traffic. In [23] it is also proved that
self-similarity over large time-scales is almost entirely at-
tributable to user related variability, as opposed to being
network (e.g. protocol, topology) related. Hence packet
level self-similarity reflects the high-variability at the ses-
sion level. The breakpoint between small and large time
scale occurs at some intermediate point that depends
upon RTTs for TCP or rate for UDP, it also depends
upon variability of congestion and delays. At short time
scales the more complex behaviour of multi-fractal scal-
ing is observed (as opposed to self-similar scaling). A
convincing explanation for this behaviour at short-time
scales has not been found yet. It has been hypothesised
that this is caused by the presence of TCP-like flow con-
trol algorithms and, to a lesser extent, due to network-
related variability. For example, [26] uses a Markov ap-
proach to model TCP timeout behaviour and shows that
it can lead to what the authors refer to as “local long-
range dependence” (that is, LRD up to a certain time
scale). However, this has been called into question by
recent work. Specifically, some of the original measure-
ments regarding the TCP mechanism have been cast into
question [25] and shuffling experiments have shown that
LRD doesn’t disappear if artifacts due to the TCP feed-
back mechanism are removed from flow patterns [34].
Hence, the claim that scaling behaviour in internet traf-
fic arises from TCP feedback mechanisms must now be
regarded as doubtful.

Finally, there remains the possibility that LRD is an
emergent property from the network itself. Measure-
ments made in [11] show that, even when “packet inter-
departure times are independent, arrival times at the
destination show LRD”. Simulation work has shown that
in simple simulations where all sources are Poisson and
no TCP-like feedback mechanisms are used the emergent
traffic can exhibit LRD [63, 74].

In summary, therefore, four possible causes for LRD
are identified in the literature:
e Some traffic such as VBR video traffic intrinsically pos-



sesses LRD because of its nature.

e The aggregation of file transfers where the sizes of the
files has a heavy-tailed distribution leads to LRD.

o TCP feedback mechanisms lead to LRD. However, note
that this claim must now be regarded as doubtful.

e LRD arises from the network itself as an emergent

property.

2.4 Traffic correlation and control

In the previous section we have seen that self-similarity
has been explained as an intrinsic property of traffic gen-
erated at the application layer. We have also observed
that evidence has been found that the network itself gives
rise or contributes to self-similarity. The paper [47] ar-
gues from simulation results, that the flow control mech-
anism and reliable transmission of TCP (Reno, Tahoe,
Vegas) preserve traffic self-similarity at the link layer at
various timescales. In these simulations, the presence
of closed-loop control results in a direct relationship be-
tween the heavy-tailed distribution of transmitted data
files and self-similarity at the link level traffic. In con-
trast, in an open-loop simulation based on UDP, heavy-
tailed distribution of file size is seen to generate bursty
traffic at short timescales, but does not generate long-
range dependence. This result was shown to be robust to
changing in file distribution, topologies, link capacities,
buffer sizes, and interference from different cross traffic.

The papers [56] and [24], mentioned earlier, claim that
at time-scales of the order of a few hundred millisec-
onds or smaller network traffic is consistent with multi-
fractal scaling. This could be caused by the presence of
TCP-like flow control algorithms (however see [34] for a
counter-claim) and, to a lesser extent, due to network-
related variability. Research effort is currently being put
into deriving further multi-fractal models and finding a
physical explanation for multi-fractal behaviour at small
time-scales [20].

In [53], by means of simulation, it is argued that TCP
retransmission mechanism alone may give rise to self-
similarity at various time-scales. More recently the pa-
per [68] claims that TCP congestion control alone can
cause self-similarity regardless of application layer traffic
characteristics. However, these measurements are con-
tested by [25]. The impact of TCP control on traffic
self-similarity has been investigated more recently in [73]
by means of simulation. Poisson arrivals are assumed
at the application layer and results show that traffic in
the (bottleneck) network looks Poisson when either the
network is lightly utilised with little loss or when the
network is highly utilised, in these circumstances TCP
congestion control smooths out the burstiness of the ag-
gregated traffic. However, the traffic appears self-similar
when the network is not stable with intermediate load
and occasional short periods of congestion (typical of
many networks).

It is hard yet to make clear conclusions on the exact
effect of closed loop (TCP) interactions on traffic correla-

tions. The evidence currently seems inconclusive. Simu-
lation studies and mathematical models show that closed
loop interactions can lead to long-range correlations in
traffic. However, experiments on real data show that
when the data is shuffled to remove the effects of closed
loop interactions then LRD is still present although the
nature of correlations does change. It seems that more
research is needed in this area before firm conclusions
can be drawn about what effect TCP feedback mecha-
nisms do genuinely have on real networks.

In summary, findings regarding relationship between
traffic correlation and control are:
e In a network, even without the presence of feedback
mechanisms, the heavy-tailed distribution of file sizes
may introduce long-range dependence.
e TCP retransmission and congestion control mecha-
nisms have been suggested as causes of long-range de-
pendence but this remains controversial.
e In a network where traffic levels are low the degree of
long-range dependence is also low (the Hurst parameter
is near 0.5) and SRD models may be appropriate. More
congestion can lead to a higher Hurst parameter up until
the point where the network becomes overloaded.

2.5 Traffic correlations and queuing the-
ory

For the performance analysis of queues with correlated
traffic input, new queuing models have been developed
(1], [2], [44], [48], [67]. These models apply to infinite
buffers and suffer from their asymptotic nature, that
is the theoretical expectation that they provide are ob-
tained when buffer length is either assumed to be infinite
or tends to infinity. Under the assumption of infinite
length buffer and long-range dependent traffic input the
main finding is that the distribution of queue length has
slower than exponential decaying tail (as opposed to ex-
ponential for traffic with non-long-range dependence).
The queue length decaying function has been described
by a Weibull distribution [44] and by polynomial [67].
If the arrival process is described by a single ON/OFF
source with heavy tailed ON and OFF periods than the
queue length distribution decays according to a power-
law. Whereas if the arrival process is described by a sin-
gle ON/OFF source with OFF periods only being heavy
tailed, than the queue length distributions decays expo-
nentially [46].

Little is known about finite buffer systems where the
traffic is highly correlated. Some authors question the
importance of capturing traffic long-range dependence
when finite buffer sizes are considered [32] and [62]. It
is argued that correlation becomes irrelevant for small
buffers and short time-scales, and hence suitable short-
range dependent models are adequate for self-similar
traffic modelling. In [62] it is shown that, for realistically
configured ATM switches’ buffer sizes, cell loss is not ad-
versely effected by long-range dependent traffic and that
short term correlation have a much more dominant ef-



fect on performance and therefore Markovian models are
adequate for analysing performance.

We have seen earlier that in [47] it is shown that the
degree to which file size distribution is heavy tailed (at
the application layer) directly affects the degree of self-
similarity at the link layer. They investigate the effects
on queuing behaviour in the presence of self-similar traf-
fic and in closed-loop system based on TCP. They find
that queuing delay is strongly affected by an increase
in the degree of self-similarity, whereas packet loss and
re-transmission rate increase only gradually (roughly lin-
ear).

A key lesson learnt is that, from a queuing dynamics
perspective, multiplexing is highly desirable to smooth
out traffic burstiness, as the addition of independent
flows reduces variances and the impact on queue lengths
deriving from traffic bursts.

Initial efforts in understanding effects of self-similarity
have concentrated on first order performance measures
such as loss and delay. Further research effort needs to
be put into understanding transient queuing behaviour
under self-similar traffic input as well as understanding
second-order performance measures such as jitter and
packet loss variation (particularly relevant when provi-
sioning services requiring certain QoS guarantees).

In summary the main findings regarding relationship
between traffic correlation and queuing theory are:

e In infinite buffer systems the queue length has been
shown to delay slower than exponentially.

e Further research needs to put into understanding
queueing dynamics in finite buffer systems.

e Further research needs to be done towards better un-
derstanding of second-order performance measures (e.g.
jitter, loss variation).

2.6 Self-similar traffic models

The analysis of long-range correlation behaviour in the
context of network simulation can be based on a number
of models. For a comprehensive review of these models
the reader is referred to [46]. In choosing a model there
is often a trade-off between its simplicity and its ability
to capture the nature of the traffic. A few of the more
commonly used models are listed in this section.
Fractional Brownian motion (fBm) is a non-stationary
stochastic process which is a generalisation of the well-
known Brownian motion (or Weiner process) but with
a dependence term between samples. It is a self-similar
process and has a defined Hurst parameter. (If H = 1/2
then it is simply Brownian motion). If By (t) is {fBm then
the process Y (t) = By (t+k)— By (t) when H € (1/2,1)
is fractional Gaussian noise (f{Gn) which is long-range
dependent. A quick computational method for gener-
ating {Gn is given by [50]. This is an extremely simple
model which only has two parameters: the Hurst param-
eter and a variance parameter. This makes it mathemat-
ically attractive but its simplicity means that it cannot
capture a diversity of mathematical properties. In ad-

dition, by definition the fBm model must at time pro-
duce negative results (albeit with a small probability).
However a traffic model that predicts negative packet ar-
rivals or negative inter-arrival times might be considered
flawed.

Fractional Auto-Regressive Integrated Moving Average
(FARIMA) models are an expansion of the classic time-
series ARIMA models and allows modelling of long-range
dependence. In addition to allowing the specification of
a Hurst parameter, they can also allow the specification
of degrees of long-range dependence. A description in
the context of LRD can be found in [8, pages 59-66].
However, as the fGn seen before, they also suffer from
the drawback about possible negative inter-arrival times
or packet arrivals.

LRD can be also be generated using a family of chaotic
maps known as intermittency maps. For example take a
map from the family given by

1—d
Tn + am1 x;nl
Tnt+1 = d

i 0<z, <d, @)
—zp)™ d <z, <1,
where d € (0,1) and my,m2 € (3/2,2). This map can
be used to generate a binary time series which is one if
z, < d and zero otherwise where the ones and zeros are
interpreted as packet transmit and inter-packet trans-
mit gaps. If m = max(mj,msy) then this will generate
LRD traffic with H = (3m — 4)/(2m — 2). The map is
analytically difficult to work with and hence piecewise
linear approximations have been studied using Markov
chains. Pioneering work in this area is [69] with early
applications to telecoms being given by [21]. Two dif-
ferent approaches to using Markov chains for generating
LRD are given by [7, 14].

An interesting technique for modelling traffic is
Wavelet analysis. This allows not only capturing the
Hurst parameter but also the synthesis of a whole host of
scaling behaviour and the replication of the multi-fractal
spectrum. Details can be found in [58, 57].

There is no consensus on which of the proposed models
is the most adequate to use; however when synthesising
network traffic for simulation studies or analysing traffic
measurements, some maintain a useful rule-of-thumb is
to use as many different methods as possible for check-
ing and validating whether or not the data at hand is
consistent with the hypothesised scaling behaviour.

Analysing sophisticated protocols under correlated
traffic conditions is a complex task as often protocols and
their control mechanisms have an impact on the traffic
itself. As discussed in [45], incorporating correlation in
models for protocol analysis and simulation can follow
two approaches:

e Trace-based approach: In this approach the aim
is to produce traffic as statistically “close” to the
real traffic traces as possible. Real traffic traces
from a variety of sources can be analysed and math-
ematical or computational models can be developed



which generate traffic which is similar in statisti-
cal nature. The wavelet based method previously
described is a good example of this.

e Network-based approach: In this approach the
aim is to produce as good a simulation of the in-
ternet as possible with the hope that this will auto-
matically generate traffic with the required statisti-
cal nature. By an accurate simulation of protocols
and network topology it is hoped that the statisti-
cal nature of the traffic will show up an emergent

property.

Both approaches have associated drawbacks. With the
trace-based approach, traffic can be produced and used
to answer questions about queuing behaviour and about
network capacity requirements. However, a fundamen-
tal problem with this approach is that the internet relies
on protocols that control congestion and feedback. If
the network changes the statistical nature of the traf-
fic changes with it. Indeed the statistical nature of the
traffic is a fundamental property of the protocols and
the topology of the network. On the other hand, with
the network-based approach, it is impossible to accu-
rately simulate a network as vast and complex (and ever-
changing) as the internet. A network-based approach is
therefore unlikely to ever be able to fully capture the
dynamics of the internet.

3 Modelling internet topology

The topology used to model network behaviour under
different protocols and loads needs to be as represen-
tative as possible of the conditions arising in the real
network and needs to allow comparison between differ-
ent protocol studies. While ideally the performance of
protocols should not be affected by topology, it has been
found that often protocols behave differently in different
topologies. The topology that is most commonly used
for modelling congestion control is the dumb-bell (also
known as the barbell) which includes a single bottleneck
link with multiple transmitting and receiving entities.
Another topology used consists of a single path but with
multiple bottleneck links, see Floyd [28]. Keshav in [38]
attempts to model a wide range of handcrafted network
topologies and loads. In addition to these simple and
intuitive models, topologies have often been generated
by means of automated traffic generators. The first net-
work topology generator that was used for protocol sim-
ulations was proposed by Waxman [70]. This randomly
generates links with a probability that depends upon the
(assumed) distance between nodes. It was later argued
that real network topologies do not have a random struc-
ture and that real networks’ modelling must account for
networks hierarchical structure. As a result, a family of
network generators, called structural generators, which
focused on the hierarchical nature of networks was devel-
oped; see for example [19]. This set of generators dom-
inated the scene until Faloutsos et al.[22] showed that

routers in internet graphs have a degree (i.e. number
of attached links) distribution that is heavy-tailed. Be-
cause of this connectivity propriety these networks are
often referred to as scale-free, as they self-organise into a
scale-free state. These findings had a great impact on the
topology generation philosophy at the time, as structural
generators do not produce topologies with heavy-tailed
node degree distribution. Researchers then focused on
developing topology generators that matched the mea-
sured internet nodes degree distribution (e.g. [37], [4],
and [3]). This family of generators, known as degree
or measurement based, have been extensively adopted
since. For networks with a medium to high number of
nodes (~ 1000) in [64] it is maintained that, while fo-
cusing on local properties (i.e. of degree distribution)
degree-based topology generators can capture the large-
scale hierarchical structures of real networks. The heavy-
tailed node degree distribution gives rise to the network
hierarchical structure. However [76] points out that a
power-law distribution is almost meaningless if the num-
ber of nodes is small. This means that, when modelling a
smaller topology (< 100 nodes), degree-based generators
will not be suitable as they would be unable to produce
a hierarchical structure, therefore structural generators
may still be preferable. In addition, degree-based gen-
erators have been the object of criticism by some who
argue that power-laws are ubiquitously expected from a
statistical point of view when dealing with high variabil-
ity data. In addition BGP statistics that led to con-
clude about the existence of power-laws distributions
have been proved to be incomplete. Also some maintain
that degree-based topology generators are useful from
a purely descriptive viewpoint but are incomplete mod-
els, as they are not driven by technical and economic
considerations that in practice have considerable impact
on network design. Research efforts in the field of net-
work topology generation have therefore been put into
designing topology generators that are more representa-
tive of real networks by incorporating both hierarchical
and nodal degrees features of the actual internet topol-

ogy [43].

It was noted earlier that the dumb-bell topology is
extensively used for congestion control modelling. [5]
argues that studies based on the dumb-bell topology
may be misleading and hence conclusions drawn from
its study must be considered with care. The authors ar-
gue that the dumb-bell topology is not representative of
the internet as, in reality, there is a considerable pro-
portion of traffic that traverses several congested links
(at least two). Furthermore they argue that dumb-bell
topology is not representative of the internet topology as
this usually assumes that the congested link is a back-
bone link, but in practice backbone links are generally
over provisioned and a bottleneck point is more likely
to lie at the edge of backbones, at access points. Also,
modelling a scenario with multiple bottlenecks highlight
certain behaviour that would not be predictable with a
dumb-bell topology. Indeed they show that a number



of TCP flows with long round-trip times going through
multiple congestion links get more bandwidth than TCP
flows with short round-trip times traversing only one
bottleneck link.

In [5] it also is maintained that no single topology or
single family of topologies currently known is universally
adequate for simulation studies. But the research com-
munity has a need to find a topology suite that is widely
accepted, so as to allow comparisons between different
protocol studies. In fact one of the reasons for dumb-
bell’s popularity has been the fact that others had used it
before and hence results were comparable. Such a widely
accepted topology suite will also need to be as simple as
possible, as bigger topology may make interpretation of
results complex and increase researchers’ likelihood of
drawing incorrect conclusions. It would seem that con-
sidering multiple topologies is advisable, although this
would increase complexity of interpretation. The au-
thors’ recommendation is to use a carefully crafted net-
work topology and loads that produce relevant behaviour
that are known to be present in the real network and that
may have generated abnormalities with other protocols
(see Section 4 for more details).

In addition to a widely accepted topology suite, cur-
rently many in the research community feel the need
for widely accepted network models. A network model
includes topology but also traffic characteristics, conges-
tion levels, protocols, scheduling policies etc. It is not
clear, at present, whether the models being used are valid
or flawed. In [30] Floyd and Kohler argue that it not
conceivable to design a unique network model that can
be employed in all circumstances and, at the same time,
draw meaningful conclusions. Rather network models
should be crafted by the researcher on the basis of the
problem at hand so as to capture the relevant behaviour
and ignore redundant ones. The Table 1 taken from [30]
contains an overview of typical models that have been
used in different contexts with assumptions that the re-
searcher is required to make.

No tool is currently available to model and simulate
a network of the size of the internet. Existing tools for
the simulation of large-scale topologies are limited in the
number of nodes that can be represented. Some of these
tools are detailed in Table 2, as reported in [59].

Floyd and Paxson [51] argue that accurately simulat-
ing the internet is an impossible task as this is a “con-
tinuously moving target” affected by continuous topo-
logical, traffic, and routing changes. In [59] it is shown
that, under fairly conservative assumptions regarding
the number of internet hosts (~110,000,000) and their
traffic demands, simulating a network of the size of the
internet is computationally not tractable neither with
current computing capabilities, nor it is likely to be
tractable in future. They observe that simulating a net-
work of the size of the internet for 100 seconds would
require more than a year of CPU time, nearly 300 Ter-
abyte of memory, and about 1.4 Petabytes of disk stor-
age to log the results. The authors therefore stress the

importance of smaller scale simulations whose outcome
can be extended with a sufficient degree of confidence
to larger topologies. They suggest that a possible ap-
proach could be to start with a small simulation (with
a few nodes) and then gradually increase the size of the
network investigated. They provide examples of simu-
lations where for topologies with an increasing number
of nodes, "results” tend to converge. Of course they
do not claim that this convergence will universally ap-
ply to all simulations, but this approach may be worth-
while in order to increase confidence in simulation find-
ings. These authors also maintain the unsuitability of
the dumb-bell topology, but they show (by experiment)
that modelling larger topologies is not a trivial task and
may lead to results that are difficult to interpret. More
specifically, they compare the performance of the RED
[29] and DropTail queue in a dumb-bell topology and
in much larger topologies and found that, while clear
difference existed between the performance of the two
queues regime with the dumb-bell topology, with much
larger topologies sometimes no difference was observed,
while results sometimes suggested better performance
with RED and sometimes with DropTail.

A simple alternative to the dumb-bell topology is the
parking-lot topology [10] (see Figure 1). This has the
advantage that it is not complex hence allows fast simu-
lations and interpretation of results. This topology has
five routers that are connected by the bottleneck links.
This topology allows modelling flows traversing a differ-
ent number of bottleneck links (i.e. 2, 3, and 5) and a
variety of RTTs.

Figure 1: Parking lot topology

4 Modelling the internet: lessons
learnt

Network models used in practice do not often resem-
ble internet reality. This in itself is not a problem as
by considering simple models in simulation or test-bed
implementation one aims to gain insight into system be-
haviour in a simplified context. This section contains a
set of guidelines that the network researcher may benefit



Research Topics \ Typical model used

Supporting assumptions

|

AQM, scheduling,

differentiated services aggregate traffic

A dumb-bell topology, with

Characteristics of congested links, range of RTTs,
traffic characterisation, reverse-path
traffic, effects of congestion elsewhere

Unicast congestion

A single path, with competing

Characteristics of links, queue management along

control traffic path, variability of delay, bandwidth asymmetry
Multicast congestion A single multicast group Router-level topologies, loss patterns,
control in a large topology traffic generation by group members

Routing protocols A large topology

Router-level topologies, AS-level
topologies, loss patterns

Routing lookups
address space

A lookup trace, or a model of the

Ranges of addresses visible
at a link

Web caching, peer-to-peer
systems

Models of large topologies
with application traffic

Topologies, application-level routing,
traffic patterns

Controlling DDoS attacks | Models of large topologies

with aggregate traffic

Topologies, attack patterns

Table 1: Commonly used simulation models and required assumptions.

| Tool name ‘ Reference | Number of modelled nodes |

OPNET [9] Few hundreds

GloMoSim 77 Few thousands

NS 42 Few thousands

TeD 54 Few tens of thousands

pdns 60 Up to few hundred of thousands
SSF 15 Up to few hundred of thousands
USSF 55 Up to few hundred of thousands

Table 2: Popular simulation tools.

from when building and analysing a simplified model of
the internet.

e When building and studying the behaviour of a system,
researchers must understand how sensitive the system is
to parameter changes. It is therefore necessary to explore
a range of parameters and understand consequences and
their causes.

e Care must be taken when analysing the sensitivity of
a system to parameter changes. While modelling may
show that the system is highly dependent to certain
changes the internet might not. This is because a con-
siderable impact of certain changes may be the result of
artificially selected models.

e A rule of thumb to use when studying parameter sensi-
tivity is to fix all parameters except one, and investigate
the impact of changing this parameter over several or-
ders of magnitude.

e Lessons learnt from the vast literature that followed
the paper that introduced RED [29] highlighting RED
weaknesses are that the researcher should bear in mind
that overlooking the following issues may lead to wrong
conclusions:

e How does the system behave when there is high
packet drop rate ?

e How are conclusions affected by the size of the

link(s) modelled ?

e How does the system behave if there is an oscillation
of queue size ?

e Traffic mix can strongly affect queue length dynamics,
for example adding short-lived flows, reverse path traffic,
and different RT'Ts may change simple oscillations into
more complicated bursty behaviour.

o When making assumptions about RTTs it is advisable
to model a broad range of RT'Ts, including short ones (<
50 ms) [36]. One may ask if the modelled range corre-
sponds to what happens in practice. This can be verified
by recording RTTs observed during the simulation and
comparing results with real RTT distribution observed
in the internet. If the distribution of the simulated RTTs
is severely different from measurements, then transmis-
sion delays should be adjusted accordingly.

e By recording cumulative distribution of packet num-
bers sent during a simulation, it is possible to find out
the fraction of flows in slow start (Web traffic) and the
fraction of long lived flows at a particular time of the
simulation and verify if this traffic mix is representative
of real networks.

o When deciding upon parameters to model it is advis-
able to consider available up-to-date internet statistics.
e Models must be derived keeping in mind that protocols



or architectures are for the “Internet of the future” and
not the one of today or the past.

e Researchers should avoid the pitfall of modelling
packet-level trace-drive simulation where traffic derives
from network measurements. This is because, on the in-
ternet, TCP feedback mechanisms will adjust the packet
sending rates. Considering real network traces in an ide-
alised network is not necessarily realistic [51]. Trace-
driven simulation that attempt to replicate source-level
behaviour provide a more plausible model. This is be-
cause the network affects how and when traffic reaches
destination but not source behaviour [51]. Source-level
behaviour was modelled for example in [18] and [49].

e On the internet virtually all levels of congestion are
observed, hence a comprehensive analysis cannot dismiss
any one in particular. [51].

e Modelling congestion should take into account the
characteristics of congestion, for example, [35] observed
that in the internet there are intermittent short-lived
spikes of congestion.

e When comparing results one must take care on exactly
which protocol implementation was used. For example
performance achieved with TCP Reno may be very dif-
ferent than the one obtained with later TCP versions
that corrected Reno’s problems arising from multiple
losses in one RTT.

e Aggregation of statistics such as throughput, arrivals,
and duration of connections can be used to analyse the
behaviour of a system. However, a careful aggregation
process is necessary as inappropriate aggregation may
give rise to misleading results. For example, protocols
burstiness may be missed by comparing average data
transmitted in a given interval [33].

e To increase confidence, simulation studies should be
reproducible by others and hence models made available
to the public.

4.1 Modelling traffic

e Studying TCP traffic requires models that take into
account its long-range dependence. The use of Poisson
models may underestimate performance measures such
as queue size and packet delay. Poisson models can be
used for certain types of session arrivals. Accurate mod-
elling of wide-area traffic should be based on self-similar
traffic models.

e Aggregate internet packet arrivals exhibit long-range
dependence and are described by self-similar processes.
Several methods have been proposed to generate self-
similar traffic. However, there is not yet agreement of
the most suitable self-similar synthesiser. The ON/OFF
model combines link level self-similarity with source level
behaviour.

e In 2001 about 90-95% of internet traffic was carried by
TCP (www pages, data files, MP3 tracks). This means
that the vast majority of traffic was elastic with changes
dictated by TCP congestion avoidance scheme. A small
fraction, but increasing, involved inelastic streaming au-
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dio and video. So modelling the internet of the future
should account for this trend.

e The arrival process of flows at a backbone link typically
is given by the combination of a large number of inde-
pendent sessions. This arrival process can be described
by a Poisson process.

e Long-range dependence and high variability may some-
times cause traffic starvation. This can happen when a
link applies priority queuing and no bandwidth restric-
tions exist for the higher priority traffic. In this case,
high priority traffic that has a long-range dependence
and high variability over long time scales may starve low
priority traffic.

e Incorporation of self-similarity in models for protocol
analysis and simulation can follow the two approaches:
network-based and trace-based approaches discussed in
Section 2.6.

e Users session arrivals are well described by a Poisson
process, provided that the hourly rate of this process is
allowed to change in order to account for daily or weekly
patterns [52].

e [49], [52], and [75] suggest the breakdown in Table 3
for application layer modelling of internet traffic.

4.2 Modelling timescales and topology

e In models that capture network at small-time scales,
the impact of user behaviour is minimal while the impact
of network feedback is dominant. In this case closed-loop
is more adequate than open-loop. (Self-similar scaling
applies) [24].

e In models that capture large-timescale behaviour: the
impact of user is dominant while the impact of network
feedback is minimal. In this case open-loop should be
adequate.

e At small timescales how the packets are sent into the
network within a session matters. (Multi-fractal scaling
applies) [24]. Most appropriate models to use are still
an open question.

e When modelling elastic traffic (TCP) and investigating
packet-scale performance one needs to bear in mind that
this is influenced by flow level traffic dynamics, that is
performance may deteriorate as the number of flows in-
creases. Whereas flow-scale performance of elastic traffic
depends upon traffic demands (bits/sec), exceeding or
not available capacity [61].

e A possible approach to model topology is to start with
a small simulation (with a few nodes) and then gradu-
ally increase the size of the network investigated. These
simulations need to be run under somewhat similar con-
ditions. This means that it is necessary to find invariants
that are constant as the network size increases. A pos-
sible invariant could be the load on links [59].

o If the topology investigated is small and protocol well
specified then comparison could be made with real life
experiments.



| Application | | Distribution | |
Inter-arrival Duration Data
TELNET Exponential Log-normal Pareto
WWW Exponential Log-normal Self-similar
FTP Exponential Log-normal Pareto
SMTP Exponential Log-normal Log-normal

Table 3: Distributions that model different aspects of internet applications

5 Conclusions

The complexity and heterogeneity of current and future
networks requires increasingly sophisticated mathemat-
ical and simulation models. There is a growing demand
from within the networking research community for com-
mon and realistic network models. This is because net-
working research is likely to benefit from a common plat-
form that allows result comparisons and avoids known
pitfalls. Clearly, no single model is universally applica-
ble. In fact, network models should be crafted by the
researcher to capture the factors which have greatest
impact on the problem at hand. Nonetheless, certain
problems are more suitably analysed by means of certain
models rather than others. For this reason, researchers
would benefit from specific models designed to capture
given topological aspects, traffic characteristics, conges-
tion levels and protocol interactions. This paper has
provided an introductory (and by no means exhaustive)
overview of the current state of the art in the fields of
internet traffic and topology modelling. In addition, the
paper has reported on existing network models and some
proposed new models. Finally a summary has been given
of some of the lessons learned in modelling networks and
some guidelines for good modelling practice have been
given. Ultimately though, the researcher must be aware
that the models to use in practice will never be able to
reproduce faithfully either the present or future internet.
The researcher who aims to gain insight into networks
and protocols behaviour should therefore be reconciled
to the idea of operating in an environment where a trade-
off between simplicity and accuracy needs to be made.
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