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ABSTRACT
This paper presents a statistically sound method for using
likelihood to assess potential models of network evolution.
The method is tested on data from five real networks. Data
from the internet autonomous system network, from two
photo sharing sites and from a co-authorship network are
tested using this framework.
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1. INTRODUCTION
It has been found that networks arising in very differ-

ent contexts share some structural statistical properties, for
example a power law in their degree distribution. Such net-
works include the Internet Autonomous System (AS) topol-
ogy, the WWW hyperlink graph, co-authorship networks,
sexual contact networks, social networks based on email ex-
change, biological networks and others. For examples and
references see [3, table 3.1]

One common hypothesis for the basis of these shared char-
acteristics is the presence of common elementary network
development processes, such as the preferential attachment
model of Barábasi et al. [2]. Other models have been pro-
posed for the evolution of specific classes of networks. Many
authors have proposed models which attempt to explain the
evolution of a target network in terms of simple rules which
produce artificial networks with the same characteristics as
a given target network. Examples of models of this kind
can be found in [1, 2, 4, 11]. In the literature, such models
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are usually tested by growing an artificial model of the same
size as the target network and comparing several network
statistics on the real and artificial networks.

In this paper we propose the Framework for Evolutionary
Topology Analysis (FETA). This framework provides several
advantages when compared to the usual method of testing
models: a single likelihood based measure of how well a
proposed model explains the observed network evolution, it
uses network evolution data rather than a single static net-
work snapshot, and it includes a method for creating new
network models from linear combinations of sub-models and
a method for optimising the mixture of these sub-models.
The FETA allows the assessment of network models with-
out growing artificial models and comparing them to the
target network, making model testing much faster. This pa-
per is a companion to [5] which introduced the framework
and showed it could recover known model parameters for
artificial network models. This paper shows that the FETA
framework can be used to investigate a variety of real net-
works. The class of models which FETA can work with
includes Barabási–Albert (BA) [2], Albert–Barabási (AB)
[1], Generalised Linear Preference (GLP) [4] and Positive
Feedback Preference (PFP) [11].

2. A LIKELIHOOD BASED FRAMEWORK
FOR ASSESSING NETWORK MODELS

The probabilistic models used by FETA are described in
terms of two components referred to as an inner model and
an outer model .

Definition 1. The outer model chooses the operation that
transforms the current network. This could be add a node,
add a link between existing nodes, delete a node or delete a
link between nodes.

Definition 2. The inner model chooses the entity on which
the operation will act. More simply it defines a probabilistic
model which gives the probabilities of choosing nodes or links
for the add or remove operation selected by the outer model.

A simple example would be the AB model. This would
correspond to an outer model which adds a new node and



then chooses exactly three inner nodes to connect to it. The
inner model assigns probabilities to each inner node exactly
proportional to their node degree. As is common in the
literature, the main focus of FETA is on the inner model.
The framework is flexible enough to allow or disallow node
and edge removal, non-simple and directed graphs. For this
paper, however, only connected, simple, undirected graphs
which never lose nodes or edges are considered.

Let G0 be the known state of the graph at a certain time.
Assume that graph is known for each time an edge is added
up to some step t (G0, G1, . . . , Gt is known). Let θ be a
proposed model which attempts to explain this evolution.
The model θ assigns probabilities to entities in the network
at each step of the network evolution.

In order to simplify the explanation, assume that the outer
model always involves the choice of a single existing node to
connect to a new node. Let C = (N1, . . . , Nt) be the ordered
list of nodes selected at each step derived from G0, . . . , Gt.
Let pi(j|θ) be the probability that inner model θ assigns to
node j at step i – that is, the probability that node j is
chosen at step i. To be a valid model θ should ensure thatP
j pi(j|θ) = 1 where the sum is over nodes. The following

theorem can easily be shown [5].

Theorem 1. Let C = (N1, . . . , Nt) be the observed node
choices at steps 1, . . . , t of the evolution of the graph G. Let
θ be some hypothesised valid inner model which assigns a
probability pj(i|θ) to node i at step j. The likelihood of the
observed C given θ is

L(C|θ) =

tY
j=1

pj(Nj |θ).

Note that the probability pj(i|θ) may depend on many
things including past history, node properties exogenous to
the graph and previous node choices. As long as these are
observable then the calculation is still easy to make. The
next step is to define a null model θ0 to compare the hy-
pothesised model θ against.

Definition 3. The null model θ0 is defined as the model
which gives every node in the choice set equal probability
(this can also be thought of as the random model). The per
choice likelihood ratio c0 is the likelihood ratio between θ and
the null model θ0 normalised by the number of choices.

c0 =

»
L(C|θ)
L(C|θ0)

–1/t
.

The quantity c0 is one if θ is exactly as likely as θ0 to
have given rise to the observed choices C. If c0 is greater
than one then θ is more likely and if less than one it is less
likely. Note that two hypothesised models can be compared
by looking at the ratio of their c0 values. Note also that
c0 and L(C|θ) are simply different ways of looking at the
model likelihood. It is also worth noting that, using the
same underlying source code to calculate the probabilities,
generating an artificial network model of the same size as
the real target network took much longer (sometimes a hun-
dred times as long) than measuring the likelihood statistics.
Other standard statisitics such as deviance and Akakai’s
Information Criterion can also trivially be calcualted from
L(C|θ).

If θi i = 1, 2, . . . , N are valid models for a given network
then θ =

PN
i=1 βiθi with βi ∈ [0, 1] and

PN
i=1 βi = 1 is

also a valid model. This allows sub models to be linearly
combined to form hybrid models. The linear β parameters
and other model parameters (for example the δ in the PFP
model) can be optimised to find the model which has the
highest c0 value for a given target network. Optimisation of
the β parameters can be performed using generalised linear
modelling as described in [5].

Let di be the degree of node i and Ti be the triangle
count (the number of triangles, or 3–cycles, the node is in).
The model components considered for this paper included
the following: θ0 – the null model (random model) assumes
all nodes have equal probability pi = k0; θd – the degree
model (preferential attachment) assumes node probability
pi = kddi; θT – the triangle model assumes node probability
pi = ktTi; θS – the singleton model assumes node probability
pi = kS if di = 1 and pi = 0 otherwise; θD – the doubleton
model assumes node probability pi = kD if di = 2 and pi = 0
otherwise; θR(n) – the “recent” model where pi = kH if a
node was one selected in the last n selections and pi = 0 oth-

erwise and θ
(δ)
p – the PFP model assumes node probability

pi = kpd
1+δ log10(di)
i . The k• are all normalising constants

to ensure
P
i pi = 1.

So, for example θ = 0.5θd+ 0.4θp(0.05) + 0.1θS is a model
which is 50% preferential attachment, 40% PFP with δ =
0.05 and 10% singleton model.

3. REAL DATA TESTING
The FETA procedure is used to create inner models for

several networks of interest. Section 3.1 fits models to a co-
authorship network inferred from the arXiv database. Sec-
tion 3.2 fits models to a view of the AS network topology
referred to here as the UCLA AS network and section 3.3 fits
models to a second view of the AS topology, which we refer
to here as the RouteViews AS network. Section 3.4 fits net-
work evolution models to a network derived from user brows-
ing behaviour on a photo sharing site known as“gallery”and
section 3.5 fits models to a social network derived from the
popular photo sharing site Flickr. The networks are sum-
marised below.

Network edges nodes edge/node
arXiv 15,788 9,121 1.73

UCLA AS 93,957 29,032 3.24
RouteViews AS 94,993 33, 804 2.81

gallery 50,472 26,958 1.87
Flickr 98,931 46,557 2.13

For each data set, three inner models are tried: a ran-
dom model, a pure PFP model (with an optimally tuned
δ for connections to new nodes, and another one for inter-
nal edges) and the best model found by trying all combina-
tions of submodels using the generalised linear model fitting
procedure described in [5] and maximising the per choice
likelihood ratio c0 – separate inner models are fitted to con-
nections from new nodes and connections between existing
nodes. These models will be called, for convenience, ran-
dom, PFP and best – where best here should be understood
as the best possible model using combinations of the sub-
models consdered rather than being the best possible model
of the network. Note that this model does not contain the
interactive growth model from [11] and the results that fol-



low should not be taken as a criticims of PFP as described
in [11].

Because the outer model was not the subject of interest
here the outer model was simply taken to be the actual op-
eration observed in the real data. In practice this was little
different from the results obtained from the outer model de-
rived simply by calculating empirically from the data two
distributions: 1) the number of inner nodes each new node
connects to on arrival, 2) the number of inner edges con-
nected between each new node arrival. The outer model
behaviour can be drawn from these distributions and the
results are little changed.

For each model, c0 from definition 3 is measured. Several
network statistics are then measured for comparison. Simple
statistics were chosen: d1 is the proportion of nodes which
have degree one and d2 the proportion of nodes with degree
two, max d is the maximum degree of any node and d2 is the
mean square of the node degrees (a measure of variance) –
note that d is not a useful measure, it is set by the outer
model and would be the same for all models. The clustering
coefficient γ is a measure of the proportion of possible tri-
angles present in the graph. The assortativity coefficient r
is positive when nodes attach to nodes of like degree (high
degree nodes attach to each other) and negative when high
degree nodes tend to attach to low degree nodes. For full
definitions of all these quantities see [7].

3.1 Fitting the arXiv data set
A publication co-authorship network was obtained from

the online academic publication network arXiv1. The first
paper was added in April 1989 and papers are still being
added to this day. To keep the size manageable, the network
was produced just from the papers with the category label
“math”. The network is a co-authorship network: an edge is
added when two authors first write a paper together. The
author match is on first initial and surname, though it is
clear this will allow some collisions. One paper2 was removed
from analysis. The paper has 60 authors (far more than the
next largest) which would add a distorting size 60 clique
(1,732 links). The arXiv network has also been analysed by
(amongst others) [8] from the perspective of growth rates
and clique addition.

Obviously the random model has c0 = 1. The pure PFP
model has δ = −0.17 and c0 = 1.31. The best model has
the model for connecting to new nodes 0.56θp(−0.29) +
0.28θR(3) + 0.16θS (PFP + recent + singleton) and the
model for connecting between existing nodes 0.57θp(−0.03)+
0.39θR(3)+0.04θS (PFP + recent + singleton) together this
gives c0 = 6.24. This implies that PFP should be slightly
better than random and best should be better than both.

Figure 1 shows the results for the arXiv data. As can be
seen, for d1 and max d the results are in the order predicted
and, for the best model are a good fit to the real data. For d2

random is slightly better than PFP. For d2 PFP is a better fit
than the best model although both are very similar and quite
close to the real data. For γ and r all models are similar and
similarly bad fit to the real data. No models have captured
these second and third order statistics. The obvious reason
for this is that uniquely in the arXiv data nodes are all added
as cliques. If n authors write a paper together then a clique

1http://www.arxiv.org
2http://arxiv.org/abs/math/0406190

of size n (some nodes in which are already present on the
network) is added. An obvious improvement to the model
could be obtained by having“add clique of size n”as an outer
model operation and an inner model which selected which
node(s) in the clique were already present in the network.

3.2 UCLA AS data set
The data set we refer to here as the UCLA AS data set is a

view of the Internet AS topology seen between January 2004
and August 2008. It comes from the Internet topology col-
lection3 maintained by Oliviera et al. [10]. These topologies
are updated daily using data sources such as BGP routing
tables and updates from RouteViews, RIPE,4 Abilene5 and
LookingGlass servers. Each node and link is annotated with
the times it was first and last observed during the measure-
ment period. The AS data set has been analysed by several
other researchers but few have analysed the data set as it
grows. [6] uses linear modelling techniques to assess the
goodness of fit of a preferential attachment model.

The data is preprocessed by removing all edges and nodes
which are not seen in the final sixty days of the data, so
that the final state of the evolution of the network is the AS
network as it is in August 2008. Edges are introduced into
the network in the order of their first sighting. If this would
cause the network to become disconnected, their introduc-
tion is delayed. Data is available from January 2004 and
a “warm up” period is given with G0 (the starting graph)
taken to occur slightly after this start date.s

For the UCLA data the best pure PFP model was with δ =
0.0015 which had c0 = 6.326. The best model was, for the
model to connect to new nodes 0.81θp(0.0015) + 0.19θR(1)
and for the model to connect between existing edges 0.75θd+
0.2θR(1) + 0.05θS . This model had c0 = 11.43.

Figure 2 shows the results for the UCLA network. For
d1, d2, max d and d2 the results are in the expected order
and for all but d2 are quite close (no model predicts d2 very
well). For assortativity, PFP is slightly better than best .
For clustering coefficient no models are correct.

3.3 RouteViews AS data set
For the present paper we define the RouteViews AS data

set as the view of the Internet AS topology from the point
of view of a single RouteViews data collector. The raw data
used to construct it comes from the University of Oregon
Route Views Project6. A fuller description can be found in
[5]. The best pure PFP model was θp(0.005) and the best
model found which was 0.81θp(0.014) + 0.17θR(1) (PFP +
“recent”) to connect new nodes and 0.71θd + 0.22θR(1) +
0.07θS (preferential attachment + “recent” + singleton) to
connect edges between existing nodes. The PFP model
θp(0.005) had c0 = 4.81 and the best model had c0 = 8.06.
This suggested that best would be better than PFP which
would be better than random.

For most statistics, the models were in the order expected
but for γ and r PFP was slightly better than best . For d1

and max d the PFP model was little different to random
although in the case of max d, random predicted unrealisti-
cally slow growth. Overall, however, the model order was
that predicted by the c0 values.

3http://irl.cs.ucla.edu/topology/
4http://www.ripe.net/db/irr.html/
5http://abilene.internet2.edu/
6http://www.routeviews.org
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Figure 1: Results for arXiv network
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Figure 2: Results for UCLA network

3.4 Fitting the gallery data set
The website known simply as “gallery”7 is a photo sharing

website. To be able to upload pictures and have some control
over the display of pictures, users have to create an account
and login. From webserver logs, the path logged in users
browse as they move across the network can be followed.
Thus, images become nodes in the networks, and a user
browsing between two photos creates a link between the two
nodes that represent them. These links are overlaid for all
users in order to form the network analysed here.

7http://gallery.future-i.com/

The best pure PFP model for the gallery data was with
δ = −0.4, however, unusually, this model was worse than
random with c0 = 0.8515. The best model had, for its con-
nections to new nodes, 0.57θS + 0.24θd + 0.19θR(3) (single-
ton + preferential attachment plus “recent”) and for its con-
nections between existing nodes 0.61θp(−0.05) + 0.39θR(5).
This model had a per choice likelihood ratio c0 = 12.93.

Figure 3 shows the results for the gallery network. From
the c0 values we would expect random to actually be slightly
better than PFP and best to be much better than either.
This order is followed for d1, d2 and d2 and seems to be for
γ although all models are incorrect here. For assortativity
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Figure 3: Results for gallery network

r PFP is unexpectedly the best model and for max d it is
better than random. In all cases apart from r the best model
is closest to the real data. Again the c0 statistic seems to
be a good reflection of the closeness of network statistics,
particularly “first order” statistics.

3.5 Fitting the Flickr data set
The Flickr8 website allows users to associate themselves

with other users by naming them as Contacts. In [9] the au-
thors describe how they collected data for the graph made
by users as they connect to other users. The first 100,000
links of this network are analysed here. The graph is gen-
erated by a web-crawling spider so the order of arrival of
edges is the order in which the spider moves between the
users rather than the order in which the users made the
connections. Thus, the evolution dynamics of this network
will be determined in part by the spidering code.

The best pure PFP model for the Flickr data was with δ =
0.015 and this had c0 = 28.29. The best model had as the
model for new node connections simply 0.99θR(1) + 0.01θd
and for connections between existing nodes the best model
was 0.52θp(−0.22)+0.48θR(1). This model had the very high
per choice likelihood ratio of c0 = 430.5 – this is because the
new node model is almost entirely deterministic, new nodes
follow by browsing from old nodes. It is because the network
was from a browsing pattern that gave the high proportion
of θR(1) “recent” especially in the new node model.

Figure 4 shows the results for the Flickr network. From
the c0 values we would expect the best model to be much bet-
ter than the PFP model which is in turn much better than
the random model. In fact this is not reflected as strongly
in the statistics as in the previous modelling. For d1, d2 and
r the statistics are as expected and best is relatively close.
For γ, PFP is worse not better than random. For max d
and d2 no models are good and the order is not that pre-
dicted – PFP is slightly better than best . This may be due

8http://flickr.com/

to the presence of a single extremely high degree node (de-
gree 11,053 when the network has only 46,557 nodes) more
than ten percent of the links in the network are to this single
node.

3.6 Discussion of model fitting
In general the FETA model assessment performed ex-

tremely well in these tests. The models were fitted solely
with regard to the likelihood value, without measuring net-
work statistics in advance. In all cases, we believe an im-
partial observer would rank the models in the same order
as the c0 values. FETA was much faster than growing and
testing many models. A GLM (generalised linear model)
procedure as described in [5] allows optimisation of linear
parameters and dozens of potential sub model combinations
can be tested in the space of an hour or so. Growing artifi-
cial networks and testing network statistics can take longer
than this to assess a single model. The submodels used fo-
cused on first degree node properties (mainly degree) and
this may explain why γ and r were not always well fitted.

Some common observations can be made about the mod-
els fitted. PFP and “recent” were the most commonly used
model components. As expected, PFP models had a nega-
tive δ (sublinear growth) when the node might be subject
to overloading (an author can only author so many papers
a Flickr user can only have time for a certain number of
friends) but positive in systems where no such overloading
was likely (an AS will become more efficient at adding con-
nections as more people add them). The “spidering” nature
of the Flickr data produced an unusual model for new node
connections which were almost always connected from the
most recently connected node, this makes sense in a “crawl-
ing” environment. (The likelihood of θR(1) on its own was
zero since at least once this was not the behaviour observed).
The two AS data sets ended up with quite similar models
which is extremely encouraging as the fitting was done in-
dependently.
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Figure 4: Results for Flickr network

4. CONCLUSIONS
The FETA framework demonstrated in this paper is an

excellent way to test hypothesised models of network evolu-
tion if the data set allows this (evolutionary data must be
available). In the tests here the model likelihood c0 was an
excellent predictor of how close network statistics would be
to those same statistics measured on the target network. In
addition the statistics usually behaved in the same way as
the network evolved. The framework has proved a useful
tool for the investigation of five real target networks.

The model components here did a reasonable but far from
perfect job of replicating the real model statistics. However,
the aim of the paper was to show that the framework could
assess models not to design perfect models. In this case the
models most common failure was failure to replicate cluster-
ing coefficient and assortativity. This is perhaps inevitable
as the models were built from components which relied on
first order statistics. Altering the inner model to include sec-
ond order statistics or altering the outer model (for example
to allow addition of cliques) could improve this behaviour.

Overall though, the FETA framework is an advance in
assessment of network topology models. It accounts for the
evolution of the network rather than trying to match a static
snapshot. It provides a single statistically rigorous likeli-
hood for a model rather than relying on trying to match a
large number of possibly correlated statistics. It is computa-
tionally cheaper than growing an artificial test network and
measuring statistics to compare with the target network.

Much remains to be done with FETA to improve it. The
outer model needs attention next and it seems that a simi-
lar likelihood procedure would prove successful here. Many
different sub models can be tried, in particular focussing on
second and higher order statistics seems important. The
authors welcome collaboration and all software and data
used here can be found at http://www.richardclegg.org/

software/FETA.
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