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Abstract

The aim of this paper is to use a very simple queuing model to compare a number of
models from the literature which have been used to replicate the statistical nature
of internet traffic and, in particular, the long-range dependence of this traffic. The
four models all have the form of discrete time Markov-modulated processes (two
other models are introduced for comparison purposes).

While it is often stated that long-range dependence has a critical effect on queuing
performance, it appears that the models used here do not well replicated the queuing
performance of real internet traffic. In particular, they fail to replicate the mean
queue length (and hence the mean delay) and the probability of the queue length
exceeding a given level.

Key words: long-range dependence, Markov chains, Markov-modulated processes,
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1 Introduction

Markov chains (MC) and Markov-modulated processes (MMP) are well-known
modelling techniques which are successful in a wide variety of fields. They are
also a traditional tool for queuing theory and for investigating networks and
queues of networks. In the last ten years several models have been introduced
for the purposes of modelling internet traffic based on MMP. These models are
often motivated by the idea of capturing the long-range dependence (LRD)
which is seen in real internet traffic and replicating the Hurst parameter H
which characterises long-range dependence. The models have a common form,
they produce a process which is one or zero (on or off) and work in discrete
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time. The on/off process can then be seen as a time series of packets and
inter-packet gaps. Obviously such a simplistic model of network traffic cannot
be expected to capture all the behaviour of a real traffic network. However, in
exchange for this loss of realism, the analytic simplicity of the models means
that mathematical insights into their performance can be gained which might
not be seen in simpler models. Additionally, the computational performance
of such simple models is typically good allowing for fast modelling of large
systems or large numbers of packets in small systems.

There is a considerable body of work on MMP to analyse the queuing of inter-
net traffic ([13], produces some useful results for analysing queuing of MMP
type models). This paper concentrates on those MMP models using on/off
processes with the intention of capturing LRD. Four different MMP based
models which were introduced with the aim of modelling LRD are described
in this paper. Certainly many other models are possible. In the case of one
model (the pseudo-self-similar traffic model) some new results (both theoreti-
cal and computational) are presented which question whether this model can
produce traffic with a known Hurst parameter.

The models are then compared in simulation with 100,000 packets from two
real traffic traces. The traces are both easily available from the internet for
research. The data sets chosen represent an older but extremely well-studied
packet trace (from 1989) and a more modern data set likely to be more rep-
resentative of modern internet traffic (from 2003).

It is found that not all the models examined can reliably generate traffic with
the required mean and Hurst parameter (a standard measure of the degree of
LRD present in data). Even when they do, the models fail to reproduce the
queuing performance of the real traffic in almost all cases.

1.1 Long-Range dependence in internet traffic

The introduction to LRD given here is, by necessity, brief. For a fuller intro-
duction see Beran [4] and for an introduction in the context of internet traffic,
see Clegg [5, Chapter one]. For a summary of work on LRD in internet traffic
see Willinger et al[20].

Let Xt be a weakly-stationary time series {Xt : t ∈ N} with mean µ and
variance σ2. The autocorrelation function (ACF) as a function of lag k is
given by

ρ(k) =
E [(Xt − µ)(Xt+k − µ)]

σ2
.

Definition 1 A weakly-stationary time series is said to be long-range de-
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pendent (LRD) if the sum of its ACF is not convergent. That is, the sum∑∞
k=0 ρ(k) diverges. Note that sometimes the weaker condition that

∑∞
k=0 |ρ(k)|

diverges is given.

Often a specific asymptotic form for the ACF is assumed,

ρ(k) ∼ cρk
−α, (1)

where k, cρ > 0 are constants, α ∈ (0, 1), and ∼ here and throughout this pa-
per means asymptotically equal to as k →∞. This form is used to define the
Hurst parameter which is given by H = 1− α/2. Note that not all LRD pro-
cesses necessarily have a definable Hurst parameter but the Hurst parameter
where H ∈ (1/2, 1) is usually considered the standard measure of LRD. For
a discussion of measuring the Hurst parameter in the context of LRD see [6].
Long-Range dependence is also sometimes expressed in terms of asymptotic
second order self-similarity.

A related topic is that of heavy-tailed distributions.

Definition 2 A random variable X is heavy-tailed if, for all ε > 0 it satisfies

P [X > x] eεx →∞ as x →∞. (2)

Again, often a specific form is assumed

P [X > x] ∼ Cx−β, (3)

where C > 0 is a constant and β > 1.

From Heath et al [9, Theorem 4.3], heavy tails and long-range dependence
are related. An on/off process with heavy-tailed on periods of the form given
in (3) and off periods which fall off faster is a long-range dependent process.
Note that if a process has heavy-tailed off periods and on periods which fall
off faster then this, then theorem can still be applied since the ACF of an
on/off process is unchanged if on and off are reversed.

The area of long-range dependence became of interest to internet researchers
when LRD was discovered in measurements of packets per unit time on an
Ethernet segment [11]. It was later shown that the data sources for the traffic
exhibited heavy tails in their on periods [21]. These heavy tails are speculated
to be the cause of the LRD in internet traffic. These measurements have been
repeated many times since. The reason this is important is that LRD can have
severe implications for queuing performance. Traffic exhibiting LRD can have
much longer delays although the relationship is not a simple one [14,18].
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1.2 Markov-modulated on/off processes

A Markov-modulated on/off process can in general be written in terms of an
underlying MC process {Xt : t ∈ N} (where Xt is a discrete time homogeneous
MC) and a derived process {Yt : t ∈ N} where

Yt =

1 Xt ∈ A

0 otherwise,

where A is some subset of the states of the chain.

Because it is often desired that the model capture the LRD observed in internet
traffic, then the underlying MC for the process Xt will usually be infinite. The
simplest example is probably the topology used by the Wang model [19] and
the Clegg/Dodson model [7] shown in Figure 1. The model produces a series
which is on (that is Yt = 1 or alternatively the model emits a packet) when
the underlying MC (the process Xt) is in a non zero state. Conversely it is
off (Yt = 0 or does not emit a packet) when the underlying MC is in the zero
state. A number of authors have used models of this form. Four models from

OFF ON

0 1 2 . . . n . . .
f1

f2

fn

f0

Fig. 1. A topology used by models which generate LRD for particular choices of fi.

the literature are discussed here.

Obviously this introduces a huge simplification into the modelling. The traffic
model produced has uniform length packets and which can only have arrival
times n∆t where n ∈ N and ∆t is a characteristic of the system. Amongst
those features not captured by such a model are

• The distribution of packet lengths shown by real life systems.
• The seasonality shown by real life systems (daily and weekly cycles).
• System behaviour arising from TCP feedback mechanisms.
• Usually packets are not constrained to arrive within some multiple of ∆t.

Set against this, there is the analytical simplicity of such models. By investi-
gating toy models where the behaviour can be understood it may be possible
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to gain an insight which is not possible in more complex models which capture
more realistic features of the behaviour of network traffic.

2 Traffic generation models considered

Four models have been found in the literature of which two use the same
topology but different parameters. In order to simplify the explanations given
in this paper, the models will be described using the same notation even where
this will differ from the notation given by the authors in the papers cited. While
the Wang model was not actually suggested as a model for internet traffic, it
is included here as it is the oldest model the author has found in the literature
which associates on/off MMP with LRD.

The notation used is:

• P — the transition matrix of the underlying MC.
• fk — the transition probability to some state k (in the models discussed it

will usually be obvious where the transition was from).
• πk — the equilibrium distribution of some state k.
• µ — the mean number of packets generated per iteration (E [Yt]).
• α — a parameter giving the degree of LRD and related to the Hurst pa-

rameter H by H = (2− α)/2.

The physical interpretation of these parameters is important to understand.
The interpretation of fk and πk depends on the topology of the model. For
example, in the topology of the Wang or the Clegg/Dodson model then fk is
the probability that a zero will be followed by exactly k ones. The probability
π0 is the probability that (at equilibrium) the series will have the value zero —
hence µ = 1− π0 is the mean number of arrivals per unit time for the model.
Similar interpretations can be made for the Arrowsmith/Barenco model.

The value of µ is critically important since it controls the amount of traffic
the model will produce. The parameter α (not relevant for the PSST) which
relates to the Hurst parameter also has important effects for queuing.

2.1 Wang model

The Wang model [19] grew out of the problems associated with calculating
the invariant density of certain non-linear maps. In particular, it arises from a
piecewise linearisation of the Manneville-Pomeau map [15] which is itself used
in internet traffic modelling [8]. The topology of the MC is given in Figure 1
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and therefore the transition matrix is

P =



f0 f1 f2 . . . fn . . .

1 0 0 . . . 0 . . .

0 1 0 . . . 0 . . .

0 0 1 . . . 0 . . .
...

...
...

. . .
...

. . .


(4)

The finite version of this matrix is sometimes known as a companion matrix.
The MC can be shown to be ergodic if f0 > 0, if the sum

∑∞
i=0 ifi converges

and if, for all m ∈ N there is n > m : fn > 0. For the Wang model, the
transition probabilities are given by

fk =


a

kα+1 − a
(k+1)α+1 k ∈ N

1− a k = 0,

where a ∈ (0, 1) and α > 0 are parameters of the model. It has been shown
[19] that if α ∈ (0, 1) then the process will have LRD with

ρ(k) ∼ k−α.

The mean µ is given for this topology (assuming the conditions for ergodicity
are met) by

µ = 1− π0 = 1−
[
1 +

∞∑
k=1

kfk

]−1

, (5)

where the expression in brackets comes from the mean first return time time
for state 0. For the other states it can be easily shown that

πk = π0

∞∑
j=k

fj.

Substituting into (5) for the specific values this becomes

µ = 1−
[
1 +

∞∑
k=1

a

k(α+1)

]−1

= 1− [1 + aζ(α + 1)]−1 , (6)

where ζ(α + 1) is the Riemann zeta function. While this model allows the
Hurst parameter to be set, there is no closed form for the mean, though,
given a value for α one could estimate the correct value for a by an iterative
procedure. It is easy to get expressions for the other equilibrium densities

πk =
(1− a)π0

1− [k/(k + 1)](α+1)
k ∈ N.
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This model has the advantage that the LRD has been shown analytically
and can be set with a single parameter — choice of α determines the Hurst
parameter of the simulated traffic. Computational modelling is relatively easy.
There is no closed form for the equilibrium density of any of the states but
the calculation is not difficult. There is no closed form solution for the value
of a corresponding to a particular mean once α has been set, however, such a
value can be approximated using (6) rearranged to

a =
µ

1− µ
ζ(α + 1)−1.

2.2 The Pseudo-Self-Similar Traffic (PSST) model

The PSST model [17] was introduced to capture the LRD in packet traffic
(they use the phrase self-similarity). In fact the model suggested is a finite
model which would not generate self-similarity but the authors hope it would
approximate it. The model is further investigated in [10] and criticised as
providing unrealistic estimates for queuing performance. The topology of the
PSST model is shown in Figure 2.

ON OFF

0 1 2 . . . n . . .

Fig. 2. The topology of the PSST model.

The transition matrix for the model truncated after n states (numbered 0 to
n− 1) is given by.

Pn =



Σ0
1
a

1
a2 . . . 1

an−1

q
a

Σ1 0 . . . 0(
q
a

)2
0 Σ2 . . .

...
...

...
. . .

...(
q
a

)n−1
0 0 . . . Σn−1


,

where

Σ0 = 1− (1/a)− (1/a2)− · · · − (1/an−1)
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and Σi = 1−(q/a)i for i = 1, . . . , n−1. Note that for this to be a valid ergodic
MC a− a−(n−1) > 2 and a > q > 1. In the original model

Yt =

1 Xt = 0,

0 otherwise ,

This is a slightly strange choice because such a model would produce runs
of packets which have a length which decays exponentially and runs of inter-
packet gaps which are heavy-tailed. In this paper, this model will be referred
to as PSST(a) and PSST(b) is the same model with on and off reversed (that
is Yt = 1 if Xt 6= 0).

Previous references have used a truncated finite version of this model. How-
ever, there seems no particular reason to use this approximation and here the
infinite model will be used. For Σ0 the sum becomes

Σ0 = 1− 1− (1/a)n−1

a− 1

which for the infinite chain reduces to Σ0 = a/(a− 1).

For PSST(a) model the mean is given by

µa = π0 =
qn − qn−1

qn − 1
,

which in the infinite model becomes

µa =
q − 1

q
.

For the PSST(b) model the mean is given by µb = 1− µa = 1/q. This can be
rearranged to q = 1/(1−µa) or q = 1/µb. The equilibrium probabilities of the
states are given by

πk =
π0

qk
.

However, there is no obvious interpretation of the a parameter which, in some
way, in combination with the ratio q/a, controls the long term decay of the
model. Lower values of q/a will lead to longer sojourn times in higher num-
bered states as q/a becomes smaller. So it might be expected that lower val-
ues of q/a would lead to higher correlations over large lags. The long-term
behaviour of the model is discussed in section 2.5.
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2.3 Arrowsmith/Barenco model

This model [2,3] was introduced to capture the LRD seen in packet traffic and
as a development of the Wang model. The topology is shown in Figure 3.

OFF ON

R1 R2 . . . Rn . . .L1L2. . .Ln. . .
fR
1

fR
2

fR
n

fL
1

fL
2

fL
n

Fig. 3. The topology of the Arrowsmith/Barenco model.

The expected sojourn time on the left hand side of the model SL is given by

SL =
∞∑

k=1

kfL
k ,

and a similar expression can be given for the sojourn time on the right hand
side SR. This gives the expected number of packets per iteration as

µ =
SR

SR + SL

.

Because the model is a double-sided version of the Wang model then the
decay of consecutive runs of zeros and ones can be individually controlled. An
important result with this topology is [3, Theorem 4].

Theorem 1 Let

fL
k ∼ KLk−αL+1

fR
k ∼ KRk−αR+1

where αL, αR > 0 and KL, KR > 0 are all constants (here we will restrict
αL, αR to (0, 1). Then

ρ(k) ∼ Kkβ,

where β = min(αL, αR) and K is given by

K =


KR(1−µ)
S(αR−1)µ

αR < αL

KLµ
S(αL−1)(1−µ)

αL < αR

KR(1−µ)KLµ
µ(1−µ)S(αL−1)

αL = αR,

where S = SL + SR.
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In fact, no specific form for the values of fk are given in [3] and a variety of
methods for choosing parameters for this model are given in [2].

2.4 Clegg/Dodson model

The Clegg/Dodson model [7] uses the same topology as the Wang model but
different transition probabilities. The model has two parameters π0 ∈ (0, 1)
which is related to the mean by π0 = 1 − µ and α ∈ (0, 1) which determines
the Hurst parameter. These are used to give the transition probabilities

fk =
1− π0

π0

[
k−α − 2(k + 1)−α + (k + 2)−α

]
, (7)

for k > 0 and for k = 0,

f0 = 1− 1− π0

π0

[
1− 2−α

]
. (8)

From these it can be shown that the model has equilibrium probabilities given
by

πk = (1− π0)[k
−α − (k + 1)−α] k > 0. (9)

which gives the sum

∞∑
i=k

πi = (1− π0)k
−α k > 0. (10)

This can be interpreted as the probability of a randomly chosen Yt being one
and being followed by at least k − 1 ones.

The model is only valid with α, π0 ∈ (0, 1) if,

π0 >
2α − 1

2α+1 − 1
. (11)

If this condition is not met the model does not form a valid Markov chain.
This rules out combinations with high Hurst parameter and high occupancy,
near one (fortunately, these are unrealistic parameter sets for most networks).

It can be proved that the time series Yt generated by this model exhibits LRD
with the Hurst parameter H = 1− α/2.
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2.5 Long-term behaviour of the PSST model

It has been speculated but not shown that the PSST model generates traffic
which exhibits long-range dependence. Further, the traffic from the PSST
model has been analysed by measuring its Hurst parameter. However, there
may be some reason to question this method. Consider R0 the first return
time to the zero state of the model. From the transition matrix it can be seen
that,

P [R0 > k] =
n∑

i=1

1

ai
(Σi)

k. (12)

Since Σi ∈ (0, 1), for any finite n then as k → ∞ this will fall off faster than
some xk with x ∈ (0, 1) and therefore, this distribution cannot be heavy tailed.
Only the infinite model can exhibit heavy tails in the return times to zero and
hence the sojourn time of zeros in the PSST or ones in the PSST(b) model.

It can be simply shown that the infinite model does have heavy tails in the
return time to zero. Recall that

Σi = 1− (q/a)i,

and since q/a < 1 then as i → ∞ values of Σi can be found arbitrarily close
to one. To show that a distribution has a heavy tail we must prove condition
(2) holds for all ε > 0. For a given ε > 0 there must be some N : ΣN > e−ε/2

(N is a function of ε and gets larger as ε → 0). Taking just the term for i = N
in (12) gives

P [R0 > k] >
1

aN
(e−ε/2)k, (13)

and therefore, the condition for the distribution of R0 being heavy tailed is a
condition on P [R0 > k] eε and a lower bound is given by

P [R0 > k] eεk >
1

aN
e−εk/2eεk =

1

aN
eεk/2.

and for a fixed ε > 0 and N (which is a function of ε) this will become infinite
as k →∞. This shows that for the infinite PSST the length of the OFF period
has a heavy-tailed sojourn time (or the ON period for the PSST(b) model).
However, the form of the asymptotic fall-off may not be the often-assumed
form of (3). This would mean that theorem from [9] could not be applied and
the LRD of the model could not be assumed.
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The expression can be further expanded to give

P [R0 > k] =
n∑

i=1

k∑
j=0

(
k

j

)
(−1)j

(
qj

aj+1

)i

=
k∑

j=0

(
k

j

)
(−q)j(1− qjn/a(j+1)n)

(aj+1 − qj)
.

As n →∞ then qjn/a(j+1)n → 0 and this becomes

P [R0 > k] =
k∑

j=0

(
k

j

)
(−1)j

a(a/q)j − 1
. (14)

For k odd the series can also be written as

P [R0 > k] =
(k−1)/2∑

j=0

(
k

2j

)[
1

a(a/q)2j − 1
− 1

a(a/q)(k−2j) − 1

]
.

While these expression are in a closed form they are not particularly convenient
to work with computationally. The binomial coefficient becomes large for large
k as does the value of (a/q)j for large j this makes the two expressions above
hard to work with numerically and an arbitrary precision arithmetic library
must be used to investigate large values of k.
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Fig. 4. Plot of P [R0 > k] versus k for PSST model.

Figure 4 shows three different plots for (14) which all produce the same mean
traffic (controlled by the q parameter) but vary the q/a ratio which controls
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the dependence. If the system has a power-law sojourn time then the log-log
plot would tend to a straight-line as k → ∞. However, as can be seen, this
is not the case for two of the three lines here and for the range of k plotted
(although arguably might be the case for the q/a = 1/2 line). These plots look
at sojourn times of up to 1000. It may be that the plot would become linear.
However, the case where k = 1000 is the case where 1000 or more consecutive
zeros (or ones in the PSST(b) model) appear and must be at the limits of
what would be expected in even exceptionally long computational runs. In
other words, this is the region of the model which computational runs will
“see”.

In short, while the PSST model has a heavy-tail distribution in the sojourn
time of the off state, it does not appear to have the expected power-law fall off.
The author knows of no theorem which would prove the LRD or otherwise of
the generated time-series. Even if the time-series generated did exhibit LRD
it could be expected that it is the case that the LRD would appear in the
summation of the autocorrelation of Definition 1 but not necessarily with the
power-law fall of of (1). If this were the case then the model would not have a
well-defined Hurst parameter. Measurements of the Hurst parameter on traffic
produced by the PSST model vary greatly depending on the estimator used.
This is discussed in section 3.4 and does not seem to have been noted by other
investigators.

2.6 Computer implementation

These MMP described are relatively simple and fast to implement. For this
paper, they have been implemented in the computer language python. By
necessity a robust computational implementation of such routines must deal
with very small probabilities. The phenomenon of LRD generated by such
chains relies on the robust computation of the probability of some long run
of ones or zeros. However, numerical rounding issues become important in
practical implementations and a naive implementation would be subject to
rounding errors. The rounding error problem is described here in relation to the
Clegg/Dodson model. The full details are given in [7]. A robust implementation
of any of these models is must overcome similar rounding problems and a
similar approach can be used.

For example, a direct computation of fk for large k in models using the topol-
ogy 1 would lead to a very small number which may be hard to deal with
computationally. Assume that the chain is in state zero at time t (Xt = 0).
It is now necessary to find P [Xt+1 = k] using the values of fk. A naive imple-
mentation would choose the state to move to from the zero state by picking
a single random number and comparing it with the probability distribution
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function. For low k a direct computation of P [Xt+1 = k] is well within the
computational accuracy of the computer. For higher values then calculations
of P [Xt+1 ∈ [k, 2k]|Xt+1 ≥ k] keep the numbers in a manageable range. This
technique is employed for all four models here.

It should be noted that LRD is a difficult subject to work with computation-
ally. Hurst parameters near unity (α near zero) cause great problems. The-
oretically, the nearer one the Hurst parameter, the slower the sample mean
will converge to the mean. To give a concrete example, 106 iterations of the
Clegg/Dodson model with µ = 0.5 and α = 0.1 (H = 0.95) gives for the first
three samples, Y = 0.563, Y = 0.401 and Y = 0.426. This does not indicate
a problem with the computational model rather this slow convergence of the
sample mean is inherent in the nature of LRD itself. Naturally, this has a
critical importance to real experiments.

3 Experimental setup

The experiments performed in this paper are extremely simple. The input
data for one simulation is a set of arrival times and packet lengths. These
data may originate from real measurements or from the models described. The
packets are then simulated as arriving at a queue of known output bandwidth.
The properties of the queue and the output traffic are then measured. The
experiment may then be repeated with a smaller output bandwidth to see how
this affects the queue. Obviously as bandwidth decreases it would be expected
that the mean queue length and queuing delays would increase but the exact
behaviour depends upon the statistical nature of the traffic.

3.1 Data sets used

Two data sets are used for the simulation in this paper. In both cases, only
the first 100,000 packets were investigated. The names and origin of the ex-
act sources used are given here so that other researchers can make similar
measurements.

CAIDA data: This data set is taken from a trace approximately an hour long.
It is referred to as 20030424-000000-0-anon.pcap.gz and was captured on
the 24th April 2003. It was captured on an OC48 link with a rate of 2.45
Gb/s. The average packet length was 493 bits. The data is freely available to
researchers who fill in a request form. More information about this data can
be found at:
www.caida.org/data/passive/.
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Bellcore data: This much-studied data set is described in [12]. The data here
is taken from an August 1989 measurement referred to as BC-pAug89.TL.
The data was collected on an Ethernet link which connected a LAN to the
outside world. Note that in this case the data did not record the true length
of packets, only the length less the Ethernet header (which is variable). The
average packet length recorded was 464 bits. Hence, the experiment in this
paper is only using an approximation of the real data. The data is freely
available for researchers. More information about this data can be found at:
ita.ee.lbl.gov/html/contrib/BC.html.

3.2 Queuing model, pre-processing and digitisation of real data

The queuing model used in this paper is extremely simple. The system has
a given bandwidth b (bits/sec). Items join the back of the queue. If a packet
of length L bits arrives at the queue then it will take a time L/b to process.
It is output from the queue at this time. Until this time the entire packet is
considered to be part of the queue for purposes of calculating mean queue
length (which can be calculated in terms of packets or bits).

A starting point for modelling is to establish a base case for comparisons.
The real data simply consists of arrival times of packets and packet lengths.
In order to attempt to match this data with real models, then a bandwidth
b was selected. This was chosen to create an occupancy near ten percent as
this was thought to be a reasonable occupancy for a congested network. The
Bellcore data was reported as being taken from a network with an occupancy
of twenty percent at peak times. The CAIDA data almost certainly had an
occupancy much lower than this since it is from a modern high-speed link.
The actual figure chosen is not really important since the data are then to be
queued through lower and lower bandwidths.

For the Bellcore data the baseline bandwidth was chosen as 1.96Mb/sec and
for the CAIDA data 128Mb/sec this gave occupancies of and 0.094 and 0.098
respectively. Traffic with the recorded arrival times and packet lengths was
then passed through this queue and the output times from this queue were
taken as the base case to simulate. The data referred to as “raw” for the rest
of this paper is the output of this queue with either the Bellcore or CAIDA
packet lengths as an input.

The traffic generation models are all digitised in a way that the real data was
not. The models all simply produce a string of ones and zeros corresponding
to a packet or a gap. To convert these into packets and departure times a
timescale dt must be established and also a fixed packet length. The timescale
dt is the length of time between packets in a packet train or the length of
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one inter-packet gap. The packet length l bits was chosen as the mean packet
length of the real data (464 bits for the Bellcore data and 496 bits for the
CAIDA). The timescale was then chosen related to the bandwidth as the time
taken to transmit one packet of this length, that is dt = l/b.

Obviously this is a considerable simplification and it is therefore useful to
investigate to what extent the real data would be altered if it were subject to
this digitisation. Therefore a digitised version of the real data was produced
where all the packets are of length l and broadcast at fixed multiples of dt. This
data is referred to as the digitised data. It was created simply by simulating
a queue where the packets arrival times and packet lengths were taken from
the real data. At every time ndt : n ∈ N, if the queue contained l or more
bits then a packet of length l was sent from the queue at this time. The data
referred to as digitised throughout the rest of this paper is the results of this
process with the input as the raw data and queued using the same bandwidth
b as the raw data.

Figure 5 shows the differences introduced by this digitisation process. These
results are produced by queueing the Bellcore raw and digitised data in a queue
with half the original bandwidth (b is reduced from 1.96Mb/s to 0.98Mb/s).
The top figure shows the distribution of the queue size in bits and the bottom
figure shows the distribution of the queue in packets. As can be seen on the
data in bits, the real data has a much more complex graph, simply because
packets can have a variety of different lengths. Interestingly the raw data tends
to have a higher queue length in terms of bits but lower in terms of packets.
The reason for this is not known. The digitised data certainly shows differences
to the raw data but the queuing performance is not greatly dissimilar. Further
comparisons will be shown in the next section.

3.3 Models used to simulate data

Several on/off type models were tested against the real data to compare queu-
ing performance. In addition to the MMP models already described two fur-
ther models were used for comparison. The Poisson model is, perhaps, the
simplest possible model. It either generates or does not generate a packet in
every time period with a probability equal to the required mean. Note that
strictly speaking this is a Bernoulli process but it is well approximated by a
Poisson process. Fractional Gaussian Noise (FGN) is a well known process for
generating data series with LRD. While it produces continuous traces it can
be simply adapted to produce an on/off packet-gap model In practice, the
PSST model was found to be extremely unstable for producing traffic with
the low mean used. Successive realisations produced traces with extremely
different means and the results from the model varied greatly from run to run
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— for example, with q = 1.104 the model should produce a mean of 0.94.
With a = 20 three subsequent runs produced sample means of 0.11, 0.19 and
0.27. With a = 2 (the lowest valid value for a) three subsequent runs produced
sample means of 0.11, 0.11 and 0.07. In other words, the traffic level can in-
crease by a huge amount between runs and it is impossible to get consistent
results. For this reason, only the PSST(b) model results are presented here as
this model produces a more consistent sample mean.

For the Arrowsmith/Barenco model a method was needed for estimating the
fL

i and fR
i parameters. These parameters represent the probabilities of an

inter-packet gap or packet train of length i and this gives an obvious strategy
for tuning them. The parameters are matched to the probability distribution of
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inter-packet gap and packet train lengths in the digitised data for each sample
of traffic. This implies that the Arrowsmith/Barenco model will be producing
traffic traces with the same distribution of packet train lengths and inter-
packet gaps as the digitised data. Another method is described in [3] where
the parameters of the model are tuned using genetic algorithms to match a
given autocorrelation function. Many possible parameter selection strategies
are available for this model and the comments in the rest of this paper should
only be taken as reflective of the particular method of parameter selection.
Note that this method for getting parameter settings means that the model
does not replicate the Hurst parameter.

The Poisson model is a single parameter model, reflecting only the mean of the
data. The Wang, Clegg/Dodson and FGN models are two parameter models
which model the mean and the Hurst parameter. The PSST(b) model is a
two parameter model which models the mean and a parameter related to cor-
relations. The Arrowsmith/Barenco model as used here is a multi-parameter
model which models the probability distribution of the lengths of packet trains
and inter-packet gaps.

3.4 Calculation of Hurst parameter

Calculating the Hurst parameter of real data is not a simple matter. For a
practical guide in the context of telecommunications and descriptions of the
methods used in this paper see [6]. The methods used in this paper are the R/S
estimator, Aggregated Variance, Periodogram, Wavelet analysis and the Local
Whittle Estimator. Software using the statistics package R can be downloaded
from:
http://www.richardclegg.org/lrdsources/software/. An excellent descrip-
tion of various methods and S-Plus code can be found at:
http://math.bu.edu/INDIVIDUAL/murad/home.html.

To calculate the Hurst parameter the data must first be converted into a time
series. This can be done simply by counting the number of bytes processed if
the data is split into sample times of a given period. The question is then which
time period to choose. Too long a time period will give too small a sample
size to work with (a ballpark figure is that several thousand time series points
is a minimum). Too short a time period will give a time series which largely
consists of zeros.

For the Bellcore date time periods of 0.1 seconds, 0.01 seconds and 0.001 sec-
onds were tried. This resulted in 2521, 25208 and 252080 samples respectively.
However, at the smallest sample size more than three quarters of the periods
sampled have no packets at all.
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Data R/S Agg. V. Period. Wav. Loc. W.

Raw (0.1s) 0.757 0.509 0.657 0.689 0.855

Raw (0.01s) 0.75 0.751 0.845 0.769 0.828

Raw (0.001s) 0.798 0.765 0.79 0.809 0.736

Dig (0.1s) 0.756 0.509 0.657 0.689 0.856

Dig (0.01s) 0.748 0.751 0.845 0.769 0.828

Dig (0.001s) 0.787 0.765 0.788 0.81 0.79
Table 1
Hurst parameter estimates for Bellcore data.

Table 1 shows the results for the raw and digitised Bellcore data for the five
estimators and three sampling rates as described above. The value of H would
normally be expected to lie between 0.5 (independent or short-range dependent
data) and 1. As can be seen, at the slowest sampling rate (smallest sample
size) there is little agreement between the estimators. It would be hard to
justify giving more than one significant figure for H given the low agreement
between the estimators. When sampling at the two higher rates the estimators
seem to agree on a Hurst parameter of around 0.8 (the exception being the
Local Whittle estimator which gives 0.736 at the highest sampling rate for the
raw data). The digitisation has made very little difference to the estimated
Hurst parameter of the data in almost all cases.

The same procedure is performed for the CAIDA data. This data has a line
speed and aggregation levels of 1000, 100 and 10 micro seconds were chosen
which gives 3924, 39331 and 392301 samples respectively on the raw data (as
with the Bellcore data, the raw and digitised data were in broad agreement
and the digitised results are not presented here.) The results are shown in
Table 2 and, again, while it is only appropriate to get H to one decimal place
the results broadly agree with a value of H = 0.6. This is a low level of
LRD (indeed it may be there is no LRD in this data) consistent with the rule
of thumb that networks with lower utilisation often exhibit a lower level of
long-range dependence. Hurst parameter estimates were also made for the

Data R/S Agg. V. Period. Wav. Loc. W.

Raw (1000us) 0.567 0.617 0.563 0.641 0.621

Raw (100us) 0.66 0.593 0.607 0.639 0.635

Raw (10us) 0.529 0.626 0.644 0.578 0.529
Table 2
Hurst parameter estimates for CAIDA data.

simulated data. The Wang model and FGN models were uses to simulate the
Bellcore data using a theoretical Hurst parameter H = 0.8 and the same
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Data R/S Agg. V. Period. Wav. Loc. W.

FGN (0.1s) 0.76 0.713 0.85 0.874 0.84

FGN (0.01s) 0.754 0.779 0.798 0.763 0.793

FGN (0.001s) 0.652 0.781 0.786 0.724 0.605

Wang (0.1s) 0.634 0.426 0.381 0.502 0.68

Wang (0.01s) 0.603 0.563 0.653 0.675 0.853

Wang (0.001s) 0.608 0.747 0.802 0.851 0.898

PSST (0.1s) 0.553 0.481 0.451 0.589 0.629

PSST (0.01s) 0.796 0.582 0.617 0.693 0.972

PSST (0.001s) 0.705 0.709 0.868 1.07 1.35

Arr./Bar. (0.1s) 0.553 0.504 0.458 0.448 0.549

Arr./Bar. (0.01s) 0.634 0.52 0.538 0.597 0.619

Arr./Bar. (0.001s) 0.582 0.59 0.605 0.612 0.703
Table 3
Hurst parameter estimates for 100,000 packet realisations of simulated data.

theoretical mean as the Bellcore data. The models are run to produce 100,000
packets and aggregated as before to produce Hurst parameter estimates. The
PSST(b) model is also used with the same theoretical mean as the data and
a=500.

Table 3 shows the Hurst parameter estimates for models attempting to sim-
ulate the parameters of the Bellcore data. As can be seen, despite the theo-
retically sound nature of the FGN and Wang method, the estimators are not
actually in very good agreement with the theory. This is not an unfamiliar sit-
uation to researchers studying the field of LRD estimation. From the table, the
FGN Hurst parameter is estimated reasonably at an aggregation level of 0.1
and 0.01 seconds and rather underestimated at an aggregation level of 0.001
seconds. The Wang model also produces a variety of estimates for H with the
R/S estimator being particularly bad and the estimates at an aggregation of
0.1 seconds being so low that a researcher might conclude there was no LRD
present.

The PSST model is spectacularly inconsistent. Considering the H parameter
is usually expected to be in the range H = (1/2, 1) for LRD and H = 1/2 for
no LRD, the estimates for the model vary across the entire available range and
outside it. The estimates also change completely depending on the aggregation
level considered. This is consistent with the hypothesis that if the PSST model
does indeed produce traffic with LRD it does so in such a way that the traffic
has no Hurst parameter.
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Note that the method for choosing parameters for the Arrowsmith/Barenco
model does not reproduce the Hurst parameter and this can be seen. While
the Bellcore data had a measured Hurst parameter around H = 0.8 the
Arrowsmith/Barenco model tuned to have the same distribution of packet
train lengths and inter-packet gaps has a measured Hurst parameter around
H = 0.6.

If the sample trace is longer then better estimates of the Hurst parameter
are obtained for all models apart from the PSST(b) model. Table 4 shows
a typical set of results for 1,000,000 packet realisations. The Wang model is
producing data with a Hurst parameter of 0.8 and, while all of the estima-
tors but the R/S are overestimating, they are not doing so greatly and are
largely consistent with scales. The Clegg/Dodson model and FGN model also
behave as expected. The PSST(b) model continues to produce widely differing
estimates for H which vary with aggregation scale. The PSST model shows
similar behaviour.

Note that [10] reports that the PSST model was tuned to replicate the value of
H for real data. It is possible that the authors only had a single H estimator
available and thus did not notice these discrepancies. In this paper the a
parameter for the PSST(b) model was chosen simply to be “large” for the
high Hurst case and smaller for the low Hurst case. No more scientific fitting
procedure was available for the model.

Data R/S Agg. V. Period. Wav. Loc. W.

Wang (0.01s) 0.612 0.885 0.858 0.842 0.875

Wang (0.001s) 0.724 0.859 0.840 0.852 0.905

PSST(b) (0.01s) 0.604 0.668 0.682 0.761 0.971

PSST(b) (0.001s) 0.846 0.74 0.88 1.076 1.349
Table 4
Hurst parameter estimates for 1,000,000 packet realisations of simulated data.

4 Results

The experiments performed are all of the same nature. The input to an ex-
periment is data either from a real data source (raw or digitised) or from one
of the models with its parameters tuned to match that of the digitised data.
The input data is then sent through a queue with a given bandwidth b. The
queuing performance of the model is then measured. While many performance
measures could be considered, results are only given here in terms of the ex-
pected queue size E [q]. The experiment is then repeated with a smaller value
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of b until experiments have been performed with occupancies ranging from
0.1 to 0.6 (the latter representing a network with an extremely high degree of
congestion).

4.1 Bellcore data

All models were run to produce traces 252 seconds long (the length of the
original trace) with packets of length 464 bits. The model parameters were
all chosen to replicated the mean of the original data. For the Clegg/Dodson,
FGN and Wang models the second model parameter was chosen to replicate
the Hurst parameter H = 0.8 (although parameters higher and lower were
tried). For the PSST(b) model q = 10.4 was chosen to capture the correct
mean. Various values of a were tried but, as has been mentioned, tuning the
model to replicate the Hurst parameter was impossible. The results presented
here used a = 500 which was considered to provide quite a high level of
correlations. The model was tested with various other a values with little
more success than that reported here. The Arrowsmith/Barenco model was
tuned to replicate the distribution of the packet-train lengths and inter-packet
gaps of the digitised data as previously described.
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Fig. 6. Comparison of Poisson model versus real traffic for Bellcore data.

Figure 6 shows comparisons of the Poisson model with the real data (both
raw and digitised). Note that the y axis is a logscale on this and all following
figures. The theory line for the Poisson model is provided by the Pollaczek–
Khinchin formula (with the discrepancy being accounted for by the fact that
the model is, strictly speaking, Bernoulli not Poisson). As can be seen, and
as would be expected, the Poisson model hugely underestimates the level of
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queuing in the network. This result is as would be expected from the literature.

Figure 7 shows a comparison of the FGN model versus real traffic. Several
realisations of FGN are tried. Three realisations have H = 0.8, one has H =
0.85 and one has H = 0.75. As can be seen the model produces more or less
the same queuing performance with the same mean and Hurst parameter and
a higher Hurst parameter produces larger queues. This is as would be expected
from the literature. However, both are under predicting the queuing of the real
data.
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Figure 8 shows a comparison of the Wang model versus real traffic. Again
several realisations of the Wang model are used. Again the model is producing
similar queuing performance for the three models with the same mean and
Hurst parameter. Note that the model with a Hurst parameter of H = 0.85 has
higher occupancy simply because this realisation happens to have produced
data with a sample mean greater than the actual mean of the process. This is
a common problem with LRD processes with high H where the sample mean
can converge slowly to the actual mean. The most striking thing though is
that again all the models have failed to capture the queuing performance of
the real data. In this case the models have greatly over estimated the amount
of queuing which will occur.

Figure 9 shows a comparison with all of the models used against the real traffic
trace. What is most striking about this is that none of the models are even
close to replicating the real data. The raw and digitised data are relatively
close together. The Clegg/Dodson and Wang models appear to be similar
in performance (perhaps unsurprisingly since they have the same topology
but different parameters). Both of these models overestimate queuing. The
PSST model produces a higher queue level than these two models and is,
obviously an overestimate of the queuing of the real data. The Poisson model,
as has been mentioned, is an underestimate of the real queuing performance
as is the FGN model. Interestingly, for low occupancies, the Poisson model is
actually giving higher queues than the FGN model even though this model
was motivated by addressing the underestimation of queuing in the Poisson
model. The Arrowsmith/Barenco model is, perhaps, the closest model to the
real data but this particular method must still be regarded as having failed
to successfully model the queuing performance of the Bellcore data. Also the
model used is a multi-parameter model as opposed to a one or two parameter
model like the others and hence would be expected to be a much closer match.

A subtle but important difference in the figure is that in the regions with
higher occupancy (the right hand side of the graph) the slope of the lines
is very different. With the exception of the FGN model, in this region the
models appear to have parallel lines on this figure but these lines have a very
different gradient to the plots for the raw and digitised data. In other words,
not only the level of congestion is different but the way the data responds to
an increase in congestion is fundamentally different.

Another way of comparing the models is to look at the probability of given
queue lengths. Here, a similar graph to Figure 9 is plotted with the y axis
as the probability of the queue being equal to or greater than a given length.
Figure 10 shows the probability of the queue equalling or exceeding five (top)
or twenty (bottom). As can be seen, again none of the models are doing a
good job of approximating these probabilities. The raw and digitised data
remain similar to each other. At low occupancies the Poisson, FGN and Ar-
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Fig. 9. Comparison of all models on Bellcore data looking at the expected queue
length.

rowsmith/Barenco models seem to be the best approximations and at high
occupancies the Clegg/Dodson and Wang models seem to be closer. None of
the models prove accurate over the whole range. The models prove poor ap-
proximations over the whole range of occupancies considered, no matter what
the queue length chosen.

4.2 CAIDA data

All models were run to produce traces 4.02 seconds long (the length of the orig-
inal trace) with packets of length 496 bits. Again the model parameters were all
chosen to replicated the mean of the original data and, for the Clegg/Dodson,
FGN and Wang models the Hurst parameter H = 0.6. For the PSST(b) model
q = 10.2 was chosen to capture the correct mean and a = 30 was used to give
a low level of correlation. The Arrowsmith/Barenco model was tuned as for
the Bellcore data.

Figure 11 shows a comparison of all the models versus the real and digitised
data. In most ways the results are similar to the results of modelling the
Bellcore data. Again the Clegg/Dodson and Wang models are similar but
provide an overestimate of the level of queuing. Again the FGN and Poisson
models provide an underestimate of the queuing in this case with the FGN
model giving a lower estimate of queuing than the Poisson model. In this case,
however, the Arrowsmith/Barenco model has provided a very good estimate
of the queuing lying somewhere between the raw and digitised data. The
PSST model has provided a better approximation although it is still an over
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Fig. 10. Comparison of all models on Bellcore data looking at the probability that
the queue is five or greater (top) or twenty or greater (bottom).

estimate. Again, however, the same feature can be seen as with the Bellcore
data, in the high occupancy region (at the right hand side of the graph) the
artificial models (with the exception of the FGN) seem to have run parallel
(they appear to have approximately the same gradient). However, the real
data appears to have a steeper gradient than any of the models in this region.

Again, the experiments can be repeated looking at the probabilities of the
queue exceeding a given length. As for the Bellcore data, the probability of
the queue length exceeding certain levels are plotted. Figure 12 shows the
probability that the queue equals or exceeds five (top) or twenty (bottom).
In the case of the queue exceeding five, the Arrowsmith/Barenco model gives
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Fig. 11. Comparison of all models on CAIDA data.

an excellent approximation for most of the range of the experiment. Indeed it
lies between the raw and digitised lines. The Wang and Clegg/Dodson (and
possibly even PSST) models could also be seen to be acceptably close. For the
more extreme event assessed by the probability that the queue exceeds twenty,
the Wang and Clegg/Dodson models are clearly overstating the probability of
these extreme queues. The PSST(b) model is a relatively good approximation
of the real data. All other models seem to be underpredicting the likelihood
of large queues at high occupancies.

4.3 Later sections of data

As has been seen, it is a difficult task to replicate the queuing performance
of a sample of 100,000 packets of real data. It might then be asked, if this
sample could, in principle be replicated with one hundred percent accuracy
then would this modelling be appropriate for subsequent data samples from
this data. Figure 13(top) shows the second, third, fourth and fifth samples of
100,000 packets of the Bellcore data queued by the same process (raw data). As
can be seen the queuing performance of the data varies greatly between these
samples. Note that each point plotted corresponds to a different bandwidth for
queuing but the data differs also in the mean packets transmitted and hence
the occupancy differs between samples. However, the differences are far from
being differences purely due to the time over which the packets transmitted.
Consider, for example the first 100,000 packets compared to the third 100,000.
The third 100,000 packets have a lower occupancy (that means they took
longer to transmit and are sampled from a period of time where, on average,
packets were being sent at a lower rate) but a higher queue.
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Fig. 12. Comparison of all models on CAIDA data looking at the probability that
the queue is five or greater (top) or twenty or greater (bottom).

Figure 13 (bottom) shows a similar plot for the CAIDA data. In this case,
while the mean rate of data transmission still differs between samples, the
queuing performance is broadly similar.

4.4 Discussion and criticism of results

The results presented here show an important weakness in a class of MMP
models which have been used to emulate network traffic. Over all the data sets
used, no models gave a good representation of the expected queue or queue
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overflow probabilities for the Bellcore data. It should be noted again that the
model referred to as the Arrowsmith/Barenco model was just one method
for choosing parameters for this model and this is not a general criticism of
using this topology for modelling data. For the expected queue length, the
Arrowsmith/Barenco model gave a good representation of the CAIDA data
and the PSST(b) model gave a fair representation. In the case of the PSST(b)
model there is no good way the author knows of picking one of the model’s
parameters and it may be that this match is little more than coincidence. No
models seemed able to predict the queue overflow probabilities of the CAIDA
data for all queue lengths and all occupancies (although perhaps this would
be demanding too much of such simple models).
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The CAIDA data had a lower degree of long-range dependence. Also the
CAIDA model had a more consistent performance between subsequent sam-
ples of 100,000 packets. It may be suspected that these two facts are related
but it is hard to tell without further investigation.

One obvious criticism of the experiments performed here is that a real network
would not behave like this under queuing. The TCP/IP protocol incorporates
mechanisms which perform crude congestion control. In short, what is de-
scribed here as the real data is not, in fact, how a real network would perform
subject to the capacity constraints. This criticism is an important one and it is
certainly true that a closed loop model incorporating this feedback would be a
better representation of what actually happens when a real network becomes
more congested. However, this said, good open loop models would greatly help
the understanding of what factors in real network traffic impact on queuing
performance. It would be much harder to understand how bandwidth impacted
a closed loop system and it could be reasonably expected that changes to a
network which were positive for an open loop system were also positive for a
closed loop system (although this is by no means guaranteed).

Other models may be capable of producing a better model of the queuing
performance of internet traffic. In [2] a method is described for tuning the
parameters of the Arrowsmith/Barenco model to replicate the ACF of a traffic
sample using genetic algorithms. Wavelets have been used not just for analysis
of traffic traces (as in this paper) but also for simulating traffic [16] [1]. It is
not clear, however, how an individual packet model could be generated from
a time series produced using wavelet.

5 Conclusion

This paper presented a number of MMP models which produce on/off se-
quences. These models have all been suggested as potential models of telecom-
munications data (with the exception of the Wang model which arose in the
field of Statistical Mechanics). In addition the FGN model was included since
this is also a commonly suggested model for telecommunications data and the
Poisson model was included as a baseline for comparisons. It is clear that in all
cases the Poisson modelling was inappropriate and gave misleading queuing
estimates.

While the Wang, Clegg/Dodson and FGN models captured the mean and
Hurst parameter of the data, they did not accurately reflect the queuing per-
formance of the system. Investigation of those models made it clear that,
within those models, the Hurst parameter had a very important effect on
queuing performance with a high Hurst parameter equating to worse queuing
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performance.

The PSST model proved hard to work with and the criticisms of this model by
other authors seem justified [10]. However, this author is sceptical of the claim
in [10] that the model can be fitted to provide a particular Hurst parameter.
The PSST model does not seem to provide a traffic trace with a controllable
Hurst parameter. In addition the original PSST model exhibits a remarkable
degree of instability in its sample mean when the mean is set to produce a
low level of traffic (a value of q near 1). This said, the PSST(b) model was the
only two parameter model to have any degree of success in modelling either
data set.

The Arrowsmith/Barenco model as used in this paper did not model the Bell-
core data well but was a very good model for the CAIDA data. It should be
recalled that in this paper, a particular method for fitting the model param-
eters was used and the Arrowsmith/Barenco model is more general than the
particular model used here. The model used in this paper is a multi-parameter
model and would be expected to provide a better fit than one or two parameter
models.

It is important to note that in the case of the high Hurst parameter Bellcore
data, even if a model were found which accurately represented the queuing
performance of the first 100,000 packets subsequent samples of 100,000 packets
behaved very differently. On the other hand, for the CAIDA data which had
a lower Hurst parameter, subsequent samples of the data performed more
consistently.

In short, the problem of replicating the statistics of real traffic traces is a dif-
ficult one. The models tried in this paper all have their attractions in terms of
computational or mathematical simplicity but none of them proved adequate
to model the queuing performance of a traffic trace taken from a real network.
If researchers are to truly understand what causes and can relieve queuing in
telecommunications networks then an open loop model of this type would be
an important starting point.
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