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Talk plan

What are scaling properties?

Why should we be interested in them?

Why are internet engineers interested in LRD?

How does LRD arise in the internet?
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Some Scaling Properties Roughly Defined

Scaling laws are everywhere.

Statistically Self-Similar: The distribution of a process is the same

after stretching Yt
d
= c−HYct. Examples: coastlines, tree-bark,

internet traffic traces.

Long-Range Dependent: A process has significant correlations even
over long time scales. ρ(k) ∼ k−α for α ∈ (0, 1). Examples: global
temperature, internet traffic traces, Nile river minima.

Heavy Tailed: Distribution where extreme events still have a
significant likelihood. P [X > x] ∼ x−β for β ∈ (0, 2) Examples:
heights of trees, frequencies of words, lengths of file in the internet.

Scale Free Network: k is number of connections. P [k] ∼ k−λ.
(Internet connectivity, airport "hubs", STD transmission).

So many power laws — how do they all interact?
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Some Inter-relations

Statistical 
Self−Similarity

Long Range
Dependence

Heavy Tails

Scale Free
Network
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related
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Causes

?

If Yt is stat. self similar 1/2 < H < 1 with stationary increments Xt = Yt − Yt−1 then Xt

has LRD and same Hurst H [Beran, 1994, page 51].
Aggregation of many heavy-tailed processes is a self-similar process with related parameter
[Taqqu et al., 1997].
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A Markov Chain Exhibiting Scaling
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Tracing the Source of the Nile

[Hurst, 1951] Investigated minima in the Nile river between 622 and
1281 A.D. His goal was to investigate the idea of designing the ideal
reservoir.

The Nile river data is now thought of as a classic “LRD” data set.

This data (and LRD data in general):

Overall appears stationary.

Contains long high and low periods.

Cycles of a number of frequencies seem to appear but in a
random order.

Mandelbrot refers to LRD as “The Joseph effect” (after the “Seven fat
years and seven lean years”).

LRD is also known as long memory. It is characterised by the Hurst
parameter H ∈ (1/2, 1).
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The Horrible Properties of LRD

Computationally, LRD is a nightmare to work with.

Consider ρ(k) — the effect we are looking for is at large k we only
have many samples for small k. Standard estimators for ρ(k) are
biased for large k.

The sample mean converges at a rate proportional to n2H−2 not n−1.

The sample variance S2 is no longer an unbiased estimate of the
variance σ2.

If we take standard techniques for confidence intervals then, as
n → ∞ a statistic will be outside a given confidence interval a.s. no
matter how small that confidence interval.

Only investigate LRD if you have a “large” data set (hundreds are
good, thousands are better, millions are nice).
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How to Dam the Nile
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The R/S statistic

Take R(t, k) (the range beginning at t for time k) and normalise it with
S(t, k).

How does this rescaled range change as k increases?

Given certain conditions [Mandelbrot, 1975]

R(t, k)

S(t, k)

d
→ εkH ,

where H is the Hurst parm. and ε is an r.v.

For large k a log log plot of R/S vs k is straight line of slope H.

Actually this is a terrible measure of H (biased).

Local Whittle and Wavelet based estimators are a better alternative.
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Measuring LRD

Measuring the ACF is not a good way to establish the presence of
LRD.

LRD is detected in the slope at high lags. ACF is only accurate at low
lags. (ACF estimator is biased in presence of LRD).

Some biased estimators with poor convergence performance.

All are vulnerable to some extent to non-stationarities in the data.

Periodicity and trends in particular can be a problem.

While some estimators give confidence intervals, often results from
different estimators do not agree even within 95% intervals.

More information:
http://math.bu.edu/people/murad/methods/index.html
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LRD and the Internet

In 1993 LRD (and self-similarity) was found in a time series of
bytes/unit time [Leland et al., 1993] measured on an Ethernet LAN.

This finding has been repeated a number of times by a large number
of authors (however recent evidence suggests this may not happen in
the core).

A higher Hurst parameter often increases delays in a network. Packet
loss also suffers.

If buffer provisioning is done using the assumption of Poisson traffic
then the network will be underspecifed.

The Hurst parameter is a dominant characteristic for a number of
packet traffic engineering problems.
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Sources of LRD

(1) Data is LRD at Source

Claim arises from measurements on VBR video traffic.

Pictures are updated by sending changes.

A still scene is few changes, a cut or pan is a lot of changes.

(2) Data arise from aggregation of heavy tailed ON-OFF sources.

It can be shown [Taqqu et al., 1997] that ON/OFF sources

with heavy-tailed train lengths leads to self-similarity.

It has been observed that the sizes of files transferred on

the internet follow a heavy-tailed distribution.
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Sources of LRD (continued)

(3) LRD arises from feedback mechanisms in the TCP protocol.

This claim comes from Markov models of TCP timeout and
retransmission.

A Markov model is used to show that the doubling of timeouts can
cause correlations in timeseries of transmitted data.

Modelling shows that this can lead to LRD over certain
timescales (“local” LRD).

(4) LRD arises from network topology or routing.

Consider a simulation on a Manhattan network with randomly
distributed sources and sinks.

The sources produce Poisson traffic.

Packets find their shortest route to the sink (accounting for the
traffic on the next hop).

In this simple situation the aggregated traffic shows LRD.
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Simple experimental network
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Simulation Model

Manhattan network with randomly dispersed hosts.

Hosts may produce Poisson or LRD traffic which is sent to a
randomly selected host.

Packets route based upon a “least hops to destination” algorithm.

However, when routes are equal hops, the least congested hop is
chosen.

Alternatively, a “fixed route” algorithm may be used.

Congestion is all at nodes — nodes send one packet per simulation
step.

Routing seems to increase the amount of LRD. Hurst increases or
becomes present.

Without routing, there should be no LRD present. This seems to be
the case (but is hard to be sure).
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Queuing and the Hurst Parameter

B([s, t)) = A([s, t)) + Q(s) − Q(t) = A([s, t)) + ∆Q(s, t)

Notation νX = var (X(s)) and νX(x) = var (X[s, s + x)).
Assume E [∆Q(s, t)] = 0 and νA(x) = var (A([s, s + x))) ∼ σ2x2H .

How does queuing affect variance and Hurst?

|νB(x) − νA(x)| = |var (A([s, s + x) − ∆Q(s, s + x)) − var (A([s, s + x)) |

= |2cov (A([s, s + x)), ∆Q(s, s + x)) + var (∆Q(s, s + x)) |

≤ 2νA(x)1/2(4νQ)1/2 + 4νQ (Note :var (∆Q(s, s + x)) ≤ 4νQ)

∼ 4σxHν
1/2

Q + 4νQ.

If we assume that the queue has a finite second moment then νB ∼ νA

since 4σxHν
1/2

Q + 4νQ is negligible compared to σ2x2H .
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Conclusions and sources of info

Scaling laws are a ubiquitous phenomenon in nature and

engineered systems.

This subject is of particular concern to internet traffic engineers.

Real-life effects of such (seemingly obscure) properties can be

a real concern.

More info

This talk online www.richardclegg.org/pubs.

Mathematics of LRD [Beran, 1994].

Heavy-Tails (collection of research papers)

[Adler et al., 1998].

LRD (collection of research papers) [Doukhan et al., 2003].

LRD (intro. in context of teletraffic) [Clegg, 2004, chapter 1].
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