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Abstract. There has long been a need for a robust and reliable sys-
tem which distributes traffic across multiple paths. In particular such
a system must rarely reorder packets, must not require per-flow state,
must cope with different paths having different bandwidths and must be
self-tuning in a variety of network contexts. PREFLEX, proposed herein,
uses estimates of loss rate to balance congestion. This paper describes
a method of automatically adjusting how PREFLEX will split traffic
in order to balance loss across multiple paths in a variety of network
conditions.
Equations are derived for the automatic tuning of the time scale and
traffic split at a decision point. The algorithms described allow the load
balancer to self-tune to the network conditions. The calculations are
simple and do not place a large burden on a router which would imple-
ment the algorithm. The algorithm is evaluated by simulation using ns-3
and is shown to perform well in a variety of circumstances. The resulting
adaptive, end-to-end traffic balancing architecture provides the necessary
framework to meet the increasing demands of users while simultaneously
offering edge networks more fine-grained control at far shorter timescales.
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1 Introduction

Traffic engineering, whether applied intradomain [1, 2] or interdomain [3–5], fo-
cuses on distributing traffic across multiple paths whilst reducing an explicit
cost, typically by minimizing the maximum link load observed over a period of
time. Most research within traffic engineering however has been limited to opti-
mizing traffic distribution from the vantage point of a single domain [6], failing
to take into consideration the wider impact such actions may have on end-to-end
performance. This myopic view of traffic has become a severe limitation as end-
hosts become increasingly able to pool multiple paths according to their own
preferences, optimizing for throughput, latency or reliability. While such trends
are already noticeable due to peer-to-peer applications such as Bittorrent, it is



expected that resource pooling will further tip toward the end-host with the
deployment of multipath transport protocols such as MPTCP [7].

As a consequence of traffic patterns becoming more dynamic, traffic engineer-
ing has been forced to remain static. Since both congestion control and traffic
engineering are intrinsically tied but unaware of each other by nature, there is a
justified concern that updating routing too often may lead to oscillations in de-
mand as hosts shift traffic to paths with better end-to-end performance. Coupled
with an aversion to costly upgrades, this conservative approach to traffic man-
agement has meant that despite proposals for dynamic, online traffic engineering
[8, 9], such solutions have remained both untested and undeployed.

While interest in traffic engineering has steadily waned within the research
community due to these perceived limitations, the demand for fine grained traffic
management tools remains high, as demonstrated by the continued proliferation
of tools such as deep-packet inspection in order to shape traffic explicitly. Such
mechanisms illustrate the continued tussle to circumvent the opaqueness inher-
ent to the Internet’s layered architecture. Networks frequently attempt to act
on information contained within the transport or application layer in order to
override resource allocation as performed by TCP. Conversely, the transport
layer often makes incorrect assumptions due to the limited information con-
tained within the network layer. With no explicit information on the path taken
by each packet, TCP assumes a single path is maintained for the entire flow,
and as such has grown to expect in-order delivery from the IP layer [10].

PREFLEX [11] is an architecture which addresses this information asym-
metry by providing hosts with explicit knowledge of paths and networks with
insight into the loss rate experienced by TCP. PREFLEX provides the means
by which edge networks can assign flows to paths, but has not yet defined a
method for such an assignment. In this paper we formulate an autonomous tun-
ing mechanism for balancing traffic according to expected congestion rather than
load.

2 PREFLEX overview

PREFLEX (Path RE-Feedback with Loss EXposure) [11] is an architecture
which redraws the boundaries between transport and network layers in an at-
tempt to make both aware of each other’s actions. PREFLEX relies on three
components:

1. Hosts provide the network with an estimate of loss using LEX (Loss EXpo-
sure).

2. Edge networks provide hosts with information on which outgoing path to
use through PREF (Path RE-Feedback).

3. A mechanism which assigns “flowlets” [12] to paths in order to balance loss.

The latter is the focus of this paper. In the following sections we will briefly
review the first two components.



2.1 Loss Exposure

Loss exposure is a mechanism by which hosts signal transport semantics at the
network layer by marking the IP header, in a similar fashion to re-ECN [13]. If a
host does not support LEX, all traffic is unmarked and will appear to the network
as legacy traffic. For LEX-capable traffic, there are three possible codepoints:

Codepoint Meaning

Not-LECT Not Loss Exposure Capable Transport
LECT Loss Exposure Capable Transport
LEx Loss Experienced
FNE Feedback Not Established

Table 1. LEX markings.

The FNE codepoint is set by the host when feedback on the path has not yet
been established, and therefore there is no congestion control loop. This applies
to the first packet of a flow, such as TCP SYN packets, or the first packet after a
long idle time, such as keep-alives. An important distinction is that FNE marks
the beginning of a “flowlet” [12], rather than a flow. We define flowlets as a
burst of packets which the sender does not wish to be reordered. As such, it is
the end-hosts decision on how and when to divide traffic into flowlets. While a
flow is a transport association between two endpoints, a flowlet is a sequence of
packets which is expected to follow the same path. As an example, an IMAP
connection may remain open several hours, but is composed of several distinct
flowlets each time a client requests data from the server. Operating on flowlets
rather than flows allows networks to balance traffic at a finer granularity and in
a transport agnostic manner.

The remaining two codepoints, LECT and LEx in table 1, are used to signal
path loss. By default, traffic is marked as being Loss Exposure capable, and
for every loss experienced by a host, the ensuing packet is marked with the
Loss Experienced codepoint. In reliable transport protocols such as TCP this
corresponds to marking every retransmitted packet accordingly, but can also be
applied to non-reliable transport protocols with some form of feedback on loss,
such as DCCP [14].

2.2 Path Re-Feedback

With LEX, hosts provide information on both path loss and flowlet start at
the network layer. We now focus on how edge networks specifically, which are
naturally multi-homed, can reflect path diversity back to hosts.

In PREF (Path RE-Feedback) the network selects a preferred outgoing path
for each incoming FNE packet (fig. 1(a)). Upon receiving the first packet of
a flowlet, the host performs a reverse lookup on the source address (step 1)
and selects a path according to the perceived performance (2). The router then
associates the chosen path identifier to the packet and forwards the packet toward
the host (3).



The treatment of outbound traffic by PREFLEX is illustrated in figure 1(b).
The host, having received indication of the preferred path, tags all traffic deemed
sensitive to reordering with the given path identifier. As the PREFLEX aware
router receives this marked traffic it updates statistics associated to path, ag-
gregating loss for each destination prefix (4). It then discards the path identifier
(5) and forwards traffic along the appropriate path (6).
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Fig. 1. PREFLEX architecture.

The resulting architecture provides many benefits. The balancing is both
transport agnostic and allows flow state to be kept to a minimum, requiring
policing at the edges only if congestion accountability is required. Additionally,
path selection is receiver driven, aligning the stakeholder who can decide when
to issue FNE packets with the stakeholder who benefits the most. The key to
path selection is the information provided by the sender (point 7), which allows
the network to calculate the percentage of path loss. We assume for the entirety
of this paper that each flow follows a single path and that a host does not
override the path selected by its network, although neither is strictly necessary.
The implications of both assumptions being broken and the incentives involved
are briefly reviewed in [11].

3 Balancing congestion

While PREFLEX provides an architecture within which transport and network
layers exchange relevant information, it does not yet define how networks select
outgoing paths. In this section we present a solution for balancing traffic accord-
ing to expected congestion which works in a wide variety of network conditions.

3.1 Model

Consider LEX-capable traffic, that is explicitly marked as either being retrans-
mitted or non-retransmitted, from a single origin prefix to a single destination
prefix, with a number of possible paths and within a single time period. Let N
be the number of paths (numbered 1, . . . , N). Let Ti be the number of bytes sent



down path i for the previous time period. Let Ri be the number of bytes marked
as retransmissions down path i for the previous time period. Let R =

∑
iRi and

T =
∑
i Ti. While Ri does not strictly represent the number of lost bytes, the

ratio of Ri/Ti should be a good approximation of the loss rate within period i.
A starting assumption is that it is desirable to equalise the proportion of lost
bytes on all interfaces – that is make Ri/Ti equal for all i – and by doing so loss
is balanced.

The loss rate ρi = Ri/Ti is an unknown function of Ti and Bi the bandwidth
of the link. It is, however, likely that the loss rate is increasing (or at least
non-decreasing) with Ti. Similarly, the loss rate is decreasing (or at least non-
increasing) with the unknown Bi. Assume then that whatever the true function,
for a small region around the current values of Ti and Bi then it is locally linear
ρi = kiTi/Bi where ki is an unknown constant. Substituting gives

Bi/ki = T 2
i /Ri. (1)

Now consider the next time period. Use the dash notation for the same
quantities in the next time period. In typical time periods E [T ′] = E [T ] (since,
for example, if the next time period on average had more traffic, the overall
amount of traffic would be growing – while this is true in the year-on-year setting,
this effect is negligible in the time scale discussed here). Now ρ′i = R′i/T

′
i =

kT ′i/B
′
i. Choose the T ′i to make all R′i/T

′
i = C (hence all equal) where C is

some unknown constant. Therefore T ′i = CB′i/k
′
i but if this is still near our

locally linear region then B′i/k
′
i ' Bi/ki and Bi/ki is determined by (1) hence

the predicted distribution is T ′i = CT 2
i /Ri. Now it is necessary to calculate C

by summing over i. T = C
∑
i T

2
i /Ri and hence C = T/

∑
i T

2
i /Ri. This gives

the final answer:

T ′i =
TT 2

i

Ri
∑
j(T

2
j /Rj)

. (2)

There is, of course, a problem when Ri = 0. Because of the assumption that
the traffic is assigned in inverse proportion to loss rate then a branch with no loss
would naturally have all the traffic assigned to it. To correct this, we increment
Ri for each path by one maximum segment size (MSS). This problem will be
further discussed in subsequent sections.

3.2 Understanding the design space

Because only local linearity is assumed then large adjustments of the traffic
split are likely to cause problems. It is also useful to send a small amount of
probe traffic down each route even if the loss rate is high [15]. In the absence
of other information (for example when there is no loss) it is useful to assign
traffic according to the current traffic throughput split. Therefore there are three
tendencies to be accounted for, the loss-equalisation tendency from (2), the con-
servative tendency to keep the traffic split the same as the throughput split in
the previous period and the equalisation tendency to keep the traffic equally split
on all interfaces. Call the traffic split assigned to path i by each of these schemes
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Fig. 2. Simulation using PREFLEX to balance traffic over two paths. Each simulation
demonstrates the dynamics of a single mode, except for (d) which balances between
conservative and loss-driven components.



T (E)i, T (C)i and T (L)i where E, C and L stand for “equal”, “conservative”
and “loss-driven”.

Then our final distribution of traffic across all links is:

T ′i = βET
′(E)i + βCT

′(C)i + βLT
′(L)i,

where the β• are user set parameters in (0, 1) such that βE + βC + βL = 1. Now
T ′(C)i = Ti and T ′(E)i = T/N where N is the number of interfaces. This gives
a first equation for the desired flow split f ′i , which represents the probability
with which path i will be assigned to a new flow:

f ′i =
T ′i
T

= βE
1

N
+ βC

Ti
T

+ βL
T 2
i

Ri
∑
j(T

2
j /Rj)

. (3)

While (3) describes a very broad design space, we provide some intuition on
how each component acts through a simple example, which is described in full
in section 4.1. Consider a network balancing traffic to a given prefix between
two paths with equal bottleneck capacity L1 = L2 = 120Mbps. For the duration
of the experiment, a source sends traffic according to the same distribution. At
t = 300s, cross-traffic is generated towards client C through L1. At t = 600s,
a greater quantity cross-traffic is generated towards client C through L2. The
results for this example are shown in figure 2 in four different guises, and in each
case we show the throughput, loss rate and the proportion of flows assigned to
each path as computed by the PREFLEX balancer.

We first investigate the effect of equalisation, which is necessary to ensure all
paths are continually probed. Equalisation alone however leads to an inefficient
use of the network if there is a mismatch in path capacity, as is clearly visible in
figure 2(a) as congestion arises on either link. Such behaviour arises in traditional
traffic engineering, which resorts to equalising traffic weighted by a local link’s
capacity. Where a bottleneck is remote and distinct however, such behaviour will
lead traffic across all links to be roughly bound by the capacity of the slowest
path, as can be seen between t = 300s and t = 600s where throughput over the
first path is dragged down by congestion on a second path.

Figure 2(b) and 2(c) on the other hand show distinctive behaviour when
using a solely conservative or solely loss-driven approach. Predictably for small
values of loss the loss-driven approach overreacts and flaps between either path.
While the net effect of these oscillations does not result in significant losses,
a conservative approach lends itself more naturally to situations where loss is
too small to provide a reliable indicator on path quality. Once loss becomes
significant however a conservative approach is unable to drive traffic in order to
balance loss across both paths. More worryingly, a pure conservative approach
demonstrates the wrong dynamics, as highlighted between t = 250s and t = 300s.
Despite being saturated, the balancer continues to push more traffic towards path
1 while the second path remains under-utilized, dropping its throughput further.

Note that in figure 2 the conservative approach obtains higher throughput
than its loss-driven counterpart once loss settles in. While this may seem advan-
tageous, in reality we shall show that this behaviour is detrimental to the system
as a whole and only by balancing loss can social welfare be optimized [15].



3.3 Balancing between conservative and loss-driven

We wish to tune PREFLEX to balance between conservative and loss-driven
modes for differing regimes of loss. Equalisation is required in some measure as
every path must attract some traffic if it is not to fall out of use ([15], remark
2). If this is not the case, a path with relatively high loss will never be probed
to determine whether it has improved. The remaining two components must be
adjusted to be able to respond adequately to loss while not being overly sensitive
to statistically insignificant fluctuations in loss. We define γ to replace both βC
and βL in (3) and adjust between conservative and loss-driven modes:

f ′i = βE
1

N
+ (1− βE)

(
γ
Ti
T

+ (1− γ)
T 2
i

Ri
∑
j(T

2
j /Rj)

)
(4)

As a result, βE may now vary between [0, 1]. A simple but effective value for
γ is to define a minimum average loss µmin below which we do not react to loss,
and react increasingly as the average loss µ becomes more significant:

γ =

{
µmin

µ , if µ > µmin

1, if µ ≤ µmin
(5)

This completes the PREFLEX balancer, as shown in figure 2(d). The evo-
lution of γ for the example shown in figure 2(d) is shown in figure 3(left). The
value of µmin was set to 0.005.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  300  600  900  1200

γ

Time (s)

Conservative

Loss-driven

 0

 4

 8

 12

 16

 0  300  600  900  1200

In
te

rv
a
l 
(s

)

Time (s)

Fig. 3. Parameters γ (left) and τ ′ (right) as seen in in example in figure 2(d).

3.4 Tuning update interval

Another issue is how often to update the flow split considering the sparseness
of loss. Assume that for a given prefix packet loss is measured over a given time
period τ . It would be useful to tune this τ per prefix in order that the loss
estimate was “accurate”. If τ is short then only a very small number of packets
will be lost. On the other hand, if τ is long then the control system will be
unable to react quickly to changes. The idea is to set τ sufficiently small that



an accurate measure of loss can be obtained. It is useful therefore, to have a
rough estimate of a time period over which it is necessary to measure in order
that estimates of loss are accurate to a given degree. Because this time period
of measurement is per prefix, this must to some extent take account of how
important a given measurement is to the system as a whole (for example, not
slowing down measurements because one route with a tiny amount of traffic
has an inaccurate measurement). This will be achieved with the concept of a
weighted coefficient of variation.

Let ti be the number of packets transmitted down path i in the time period
τ and let li be the number of packets which were lost in this time period. (To
prevent divide by zero issue set li = 1 if no packets are lost).

Let pi be the probability that a given packet is lost on path i and assume
that packet loss is a Bernoulli process. An unbiased estimate of pi is p̂i = li/ti
(it is important to what follows that p̂i is only an estimate of pi by “chance”
more or fewer packets may have been lost). If packet loss is Bernoulli then li has
a binomial distribution and its variance σ2 is given by tip(1− p). The coefficient
of variation (CV), is a dimensionless measure given by the standard deviation
over the mean cv = σ/µ. Keeping the coefficient of variation within some bound
δ is a measure of the amount by which an estimate is likely to vary from the
true mean. (Note, however, that this is not technically a confidence interval.)

For the number of lost packets on a given prefix i the estimated CV is ˆcv(i) =√
tip̂i(1− p̂i)/tip̂i. Let ri be the rate of packet arrival per unit time on i giving

ti = riτ . Define W the CV weighted by transmitted packets over the prefix as

W =
∑
i ti/t

ˆcv(i) where t =
∑
i ti and this expands as

W =
∑
i

ti
t

√
(1− p̂i)
riτ

.

The “accuracy” of the measurement of pi is determined by the accuracy of
li and hence, for the prefix as a whole by the CV W . The aim now is to pick the
time period for the next measurement τ ′ such that W ≤ δ for some δ. Assuming
that the loss rates and traffic rates will be the same in the next time period will
give a good indication of how to set τ ′. Therefore for the next time period

δ ≥W =
1√
τ ′

∑
i

ti
t

√
(1− p̂i)
ri

.

This gives an estimated minimum time period to set for the next time period. In
order to get weighted CV of packet loss (and hence loss rate) equal to or below
δ the time period τ ′ is bounded by

τ ′ ≥ τ

(
1

δt

∑
i

√
ti − li

)2

.

This equation gives the smallest value to set the time period of measurement to
in order that the weighted coefficient of variation of the loss measurement is a
given δ.



While a number of simplifying assumptions have been made, such as mod-
elling loss as Bernoulli, the time scale choice is not a critical system parameter so
long as it provides “good enough” estimates of loss. The evolution of τ ′ for the
example in figure 2(d) is plotted in figure 3. As throughput decreases, the time
inbetween updates is inflated to adjust to the lower occurrence of loss events.

4 Performance Analysis

We evaluate PREFLEX through simulation in ns-3 [16]. Since PREFLEX bal-
ances traffic using loss rather than load, there is a need to emulate the end-to-end
behaviour of traffic. This proves more challenging than analysis of existing traffic
engineering proposals which typically only focus on adjusting load, since we wish
to verify the impact of PREFLEX on end-user metrics.

4.1 Methodology

For all simulations we will use the topology displayed in figure 4. The topology
links a client domain C to a server domain S through N paths with equal
bottlenecks Li, and total bandwidth B =

∑
Li. While a domain is represented

as a single entity in figure 4, each domain is composed by a traffic generator
connected to a router. Client C generates G simultaneous HTTP-like requests
(or “gets”) from S according to a specified distribution, described at the end of
this section. As traffic flows from S to C, the router within S is responsible for
balancing traffic over all available paths.

S

D
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L
1

...

L
2

L
N

D
1

D
2
...

Fig. 4. Simulation topology

Across simulations, as the number of paths increases, total bandwidth B
and the number of simultaneous requests G is fixed. In this manner we wish
to analyze how PREFLEX balances traffic as the granularity with which it can
split traffic becomes coarser.

Since we are interested in evaluating how PREFLEX shifts traffic in response
to loss, we introduce additional “dummy” servers Di which are connected to C
through a single path. We partition the total simulation time T into N + 2
intervals starting on si, in which s0 and sN+1 have no traffic to Di. Starting at
time si, client C generates gi requests to Di according to the same distribution
as used to server S. All requests to Di end at time sN+1. Equation (6) sets
the start time si for requests to Di as a function of total simulation time T



and number of paths N . Likewise, equation (7) sets the number of simultaneous
requests gi to Di as a function of G, the total number of requests to S, and N .

si = T
i

N + 2
(6)

θi =
1

N+1−i∑
1

N+1−i
, gi = Gθi. (7)

Figure 5 illustrates the number of simultaneous gets from C to Di for N = 2
(used in the example shown in figure 2) and N = 4. Generating cross-traffic
in this manner serves two purposes. Firstly,

∑
gi = G, so independently of the

number of concurrent paths, the maximum load in the system is 2G. However,
as the number of paths increases, the fluctuation in load for each path becomes
smaller, and so we will stress the sensitivity with which PREFLEX balances
traffic. Secondly, the number of requests for each Di over time is the same. Over
timescale T , equalisation appears to be an acceptable strategy, however within
each interval we will show it performs poorly achieve consistent behaviour. This
is a fundamental limitation of offline traffic engineering, which is calculated over
very long timescales and is unable to adapt as traffic routinely shifts.
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Fig. 5. Number of requests from C to cross traffic servers Di for N = 2 (left) and
N = 4 (right)

We now specify the settings common to all simulations, including those pre-
viously shown in figure 2. Total simulation time T is set to 1200 seconds, while
total bandwidth B is fixed at 240Mbps. The number of requests G sent from C
to S is set to 240. Upon completing, a request is respawned after an idle period
following an exponential distribution with a 15s mean. Transfer size follows a
Weibull distribution with an average value of 2MB. These values attempt to
reflect traffic to a single prefix with a file size that mimics the small but bursty
nature of web traffic, which does not lend itself to being balanced by the end-
host. PREFLEX is configured with βE = 0.05, µmin = 0.01/N and δ = 0.005.

4.2 Varying bottleneck distribution

We start by examining the case where all bottlenecks share the same band-
width, Li = B/N , and compare PREFLEX to equalisation, which mimics traffic
engineering techniques based on hashing flow tuples and assigning them to a
path. The goodput, calculated as the total data transfered to client C by flows



completed within T , is shown for both equalisation and PREFLEX methods
in figure 6. While both saturate most available bandwidth, equalisation leads
to disproportionate distribution of goodput amongst competing traffic. As loss
is not equalised over all paths, the amount of goodput achieved by servers Di

differs despite demand being similar.
Equalisation, even when weighted according to local link capacity, is often

prone to remote bottlenecks. We investigate the effect of differing bottlenecks
by repeating previous simulations with the same total bandwidth B, but with
Li set proportionally to B in a similar manner to (7), that is Li = θiB.
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Fig. 6. Goodput relative to B achieved by each server for equal capacity links.

Figure 6 shows the goodput as a proportion of total link bandwidth for the
case where all links have equal bandwidth. We vary the number of links N , and
for each case compare equalisation (as illustrated in 2(a)) and PREFLEX as the
balancing methods used. The bulk of goodput originates from server S, which is
the only domain to be connected to all links. If traffic is correctly balanced, we
expect to see servers D1−N generate the same amount of goodput.

In this scenario, equalisation can be seen as the optimal static TE solution,
yet both approaches bear similar performance. With no knowledge of topology,
link bandwidth or expected traffic matrices, PREFLEX is able to adequately
mimic the performance of the static TE solution for the case where such an
approach is best suited.

Where bottleneck bandwidth is unequal however equalisation proves inad-
equate. Once again comparing goodput (figure 7) we highlight two significant
shortcomings of equalisation which PREFLEX overcomes. Firstly, goodput for
S drops as N increases. Unable to realize it is overloading a path, equalisation
is reduced to sending traffic over each link at approximately the same rate as
the most congested link. In contrast, PREFLEX detects congestion and adapts
accordingly. Secondly, the incorrect distribution of traffic due to equalisation
in S distorts the goodput of others servers. While in PREFLEX goodput from
D1−N is perfectly balanced, with equalisation traffic crossing the most congested
links are directly affected by another domain’s inability to distribute its traffic
appropriately. It may seem unfair to judge equalisation for cases where there
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Fig. 7. Goodput relative to B achieved by each server for different capacity links.

is a mismatch in link capacity, however this mismatch between link weight and
path capacity arises regularly as operators continue to adjust traffic engineering
according to local conditions, with little thought spared for the impact this may
have further downstream.
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This impact is in turn perceived by users, who experience longer flow comple-
tion times, as shown in figure 8. In the equal bandwidth case the flow completion
time is similar for both balancers. Where bandwidth differs however, PREFLEX
outperforms equalisation and maintains a stable performance when balancing
over all six paths. This shows that the algorithm scales well as the number of
available paths increases.

5 Conclusions and further work

In this paper we have introduced congestion balancing using PREFLEX. PRE-
FLEX uses packet marking to estimate and balance loss across multiple paths.
It requires no per-flow state or significant changes at routers, is computationally
simple to implement, and does not cause packet reordering.

PREFLEX has been implemented and evaluated in ns-3 for dynamic traffic
scenarios where it balances traffic using different strategies which are weighted
according to the network conditions it detects. In conditions where loss is deemed
significant, PREFLEX balances congestion between paths. In the absence of sus-
tained loss PREFLEX assigns traffic based on current throughput. By balancing



between these strategies PREFLEX can operate in a variety of dynamic traf-
fic settings and has been shown to perform as well as the ideal static traffic
assignment bandwidths are equal. Where bandwidth asymmetry arises, PRE-
FLEX successfully balances loss with no significant degradation of performance
as both the number of paths and inherent complexity of balancing increases.

By readjusting traffic according to end-to-end metrics, PREFLEX is unique
in proposing congestion, rather than load, as a first-order metric of traffic en-
gineering and signals a novel approach in bridging the widening divide between
traffic engineering and congestion control.
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