
A SET THEORETIC FRAMEWORK FOR ENUMERATING

MATCHES IN SURVEYS AND ITS APPLICATION TO

REDUCING INACCURACIES IN VEHICLE ROADSIDE

SURVEYS

Richard G. Clegg,

Department of Mathematics, University of York,

York, YO10 5DD, United Kingdom

Email: richard@manor.york.ac.uk

Abstract

This paper describes a method for enumerating the ways in which combinations of
vehicles can be observed at different survey points. The framework described is quite
general and can be applied to a variety of problems where matches are to be found in
data surveyed at a number of locations (or at a single location over a number of days).
As an example, the framework is applied to the problem of false matches in licence plate
survey data.

In this paper, a method for representing the possible types of match is outlined using
set theory. The phrase types of match will be defined and formalised in this paper. A
method for quickly calculating Mn, the set of all types of match over n survey sites, is
described and it is shown that the number of types of match can be simply calculated.
The method is applied to the problem of correcting survey data for false matches using a
simple probabalistic method. An algorithm is developed for correcting false matches over
multiple survey sites and its use is demonstrated with simulation results.

1 Introduction

In the analysis of roadside survey data, it is often desirable to analyse matches between
several data sets simultaneously. For example, we might wish to answer questions of the
general type “How many drivers are seen at point A, point B and point C?” or “How
many vehicles are seen on all five survey days?” This paper attempts to create a general
framework for the analysis of matching between data from more than two surveys. The
framework is then applied to the specific case of false matching in partial licence plate
surveys (that is non-matches which are mistaken for matches because only part of the
licence plate is observed). It should be stressed throughout that the framework outlined
is applicable to any data series where matches are sought between two or more distinct
data sets.

Licence plate surveys are commonly used in the study of traffic systems, particularly
when measurements of the same vehicle are required more than one point (for example,
calculating travel times or the routes of vehicles). Although automated techniques are



becoming more common (GPS, toll-tags and automated recognition cameras) the manual
licence plate survey remains an important tool for the road transport engineer. If a road
with a high volume of traffic is being surveyed then it often the case that only part of
the licence plate is recorded. When this is the case, the possibility of spurious matches
occurs. To take an example, standard British licence plates used to be of the following
form: single letter, three digits, three letters: e.g. A123BCD 1. If a surveyor only recorded
the first letter and three digits, then a vehicle A123ABC would not be distinguished from a
vehicle A123XYZ since the disambiguating information (the final three letters) would not
be recorded.

While the chances of such a false match are low, quite often the combinatorics of the
problem means that the actual recorded number of false matches remains high. To math-
ematicians, this is familiar as the celebrated Birthday Paradox. The Birthday Paradox
asks the question “How many people must we have in a room before we might expect
that two share the same birthday?” Intuitively, we might expect this to be quite a high
number (since it is unlikely that any two people share a birthday). However, the number
of pairs of people in a room goes up with the square of the number of people in the room
(n2 − n)/2. If we made the assumption that the chance of two randomly selected people
sharing a birthday is one in 365 then we only need twenty three people in the room before
it becomes likely (probability above 50%) that two will share a birthday. Combinations in
multiple point surveys work similarly. If we had two survey sites, each with one thousand
observations then this is one million pairs of observations. If the chances of a false match
in a given pair are only one in a ten thousand, we will still get (on average) one hundred
false matches. This could well be larger than the actual number of genuine matches in
the data set and will certainly be a significant bias.

This paper attempts to provide a sound theoretic backing (using the well-known frame-
work of set theory) to matching problems across multiple data sites. In section two, a
general background of matching problems in licence plate data is given to put the problem
into context within the transport field. In section three, the concept of types of match
is formalised using the standard set theoretic concept of an equivalence class. In section
four, a simple method is given for constructing the set Mn, the set of every possible type
of match across n survey sites. In section five, partial ordering is introduced to apply the
problem to false matches due to incomplete observations. In section six, an algorithm is
given for correcting false matches using the framework developed in sections three, four
and five. Finally, in section seven, computational results are given on artificially generated
survey data. To save space, some proofs are omitted from this paper. These are available
from the author on request.

2 THE FALSE MATCH PROBLEM IN LICENCE PLATE DATA AT MUL-

TIPLE SITES

It is often the case that on-street traffic surveys collect partial vehicle licence plate
information 2. This information can then be used to reconstruct travel times and to

1This form will be used throughout the paper, however, it must be stressed that this method would

work with partial observations of any type given the assumptions stated in the paper.
2The reason for collecting partial rather than full licence plate information is that the recording and

transcription of the data is often done manually and time constraints would preclude recording a full



infer route information about drivers. In partial plate data, however, problems can occur
from false matches as discussed above. Of course, false matches could also occur through
recording or transcription errors. While this paper will not discuss these problems, it is
in principle possible to extend this framework to cover recording and transcription errors.

In the case of two survey sites and no recording or transcription errors the situation
is relatively clear. If our data shows that a match occurs between two observations (one
from each site) then, this must mean that either the same vehicle has been observed at
both, or that two different vehicles have been observed which happened to have the same
partial licence plate. At multiple sites the situation is much more complex. An apparent
match at four survey points may be any of the following: a true match (the same vehicle
seen at all four points); a different vehicle at each of the four points which (by coincidence)
have the same partial plate; a vehicle at survey point one and two which has the same
partial plate as a second vehicle at survey points three and four; or any other of fifteen
total possibilities. The problem becomes more difficult as the number of sites increases.
Indeed it is not immediately clear how to enumerate the number of ways in which a match
as described above can occur over multiple data sites.

A number of researchers have approached the false matching problem for licence plates.
[Hauer, 1979] provides an early approach for two sites. [Maher, 1985] describes sev-
eral methods including the possibility of two point matches between vehicles observed
at pairs of sites selected from several survey sites (for example entering and leaving a
cross-roads). [Watling and Maher, 1988] gives a graphical procedure which is highly rec-
ommended for visualising matches between two sites. In fact, this procedure is a good
starting point for any analysis of journey time data whether it contains false matches or
not. [Watling and Maher, 1992] and [Watling, 1994] describe further refinements. How-
ever, all of these methods concentrate on matches between pairs of sites and the majority
of them also assume that journey time information can be used to aid in finding false
matches, which is not the case if, for example, we are interested in correcting false matches
at the same site over different days. The method described in this paper concentrates
on matches between observations at more than two sites, particularly where journey time
information is not available or cannot be used.

3 EQUIVALENCE CLASSES FOR TYPES OF MATCH

Before examining the types of match we must first define exactly what we mean when
we say that matches are of the same type. Assume that we have a set of n survey sites
S = {S1 . . . Sn}. At each site Si we have a set of unique observations 3 L(Si). For the
moment, the assumption will be made that these observations include enough information
to uniquely identify an individual. Later we will introduce a censoring function which
represents partial observations. We will refer to an n-tuple (or n dimensional vector) of
observations over S with the notation xn(S) = (x1, x2, . . . , xn) and the set of all such
n-tuples over S as Ln(S).

plate.
3The requirement that the observations are unique is necessary in set theory. However, if we wish to

include the possibility that our observations are not unique at a single site, we could simply tag each

observation with a number, say the order in which the observation was made, and not use that in further

comparisons.



We can say that Ln(S) is the Cartesian product (or product set) of the sets of obser-
vations from each site. That is Ln(S) = L(S1) × L(S2) × . . . × L(Sn) =

∏n

i=1 L(Si)

Take the following observation n-tuples made at three sites:

x3(S) = (A123XYZ, B256ABC, B256ABC)

y3(S) = (A123XYZ, A123XYZ, B256ABC)

z3(S) = (C789ABC, A543OPQ, A543OPQ)

It is clear that in some sense x3(S) and y3(S) are not the same type of match whereas
x3(S) and z3(S) are the same type of match. We would therefore like to express the
notion that two n-tuples of observations are the same type of match if a match between
two sites in the first n-tuple is also a match between the same two sites in the second
n-tuple and if two observations in the first n-tuple do not match then they also do not
match in the second. Formally we express this notion using the concept of an equivalence
class (see, amongst others [Halmos, 1970]). Very loosely speaking, an equivalence class is
a generalisation of the familiar concept of equality.

Definition 3.1. xn(S) ∼ yn(S) iff xi = xj ⇔ yi = yj ∀i, j ∈ N : 1 ≤ i, j ≤ n 4

It can be trivially proved that this obeys the necessary conditions for an equivalence
relation (reflexive, symmetric and transitive). Thus, from our example above, we can now
say: x3(S) ∼ z3(S) since the second and third elements of x3 are equal but not the first
and the same is true of z3. We can also say x3(S) 6∼ y3(S) with similar reasoning. This
has formalised the earlier notion of two n-tuples of observations being the same type of
match. Two n-tuples, can be said to be the same type of match if they are part of the
same equivalence class.

If we can create a set containing exactly one representative from each of these equiv-
alence classes, then this set will have one representative for each type of match. Such a
set is known as a transversal. Let Mn be a transversal of the equivalence relation defined
in 3.1. Let xM

n = (x1, x2, . . . , xn) be an n-tuple which is a member of Mn. If we can
construct such a set Mn, then we have a set of all the different possible types of matches
which can occur over n survey sites.

Definition 3.2. xM
n ∈ Mn iff:

xi =

{

1 i = 1

xj or 1 + max(xj) j < i

This is most easily understood as the following procedure:
a) Label the first vehicle with a 1.
b) Label subsequent vehicles in turn either with the number of a previous vehicle which
they match or with the next available integer if they match no previous vehicles.

4Note that for simplicity, such limits on indices will be omitted in future definitions where they can

be trivially inferred by the reader.



It is not difficult to prove that:

∀xn(S)∃yM
n ∈ Mn : xn(S) ∼ yM

n

(that is to say any n-tuple of observations is equivalent to a member of Mn) and also
that:

∀xM
n ,yM

n ∈ Mn xM
n ∼ yM

n ⇒ xM
n = yM

n

(in other words Mn contains no duplicates — if two n-tuples are members of Mn

and are equivalent then they must be the same member). Thus Mn is a transversal
and has exactly one representative of each type of match. It is worth emphasising that
these types of matches would apply to any observations where we can define an equality
relation between observations — the framework would be just as applicable to discrete
sets of colours or shapes as it is to vehicle number plates.

To give an example, it is now possible to express our three earlier n-tuples in terms of
equivalent members of this matching class.

x3(S) = (A123XYZ, B256ABC, B256ABC) ∼ (1, 2, 2)

y3(S) = (A123XYZ, A123XYZ, B256ABC) ∼ (1, 1, 2)

z3(S) = (C789ABC, A543OPQ, A543OPQ) ∼ (1, 2, 2)

This further formalises the notion of type of match. It is now possible to represent the
type of match of any n-tuple of observations over n sites by saying that its type is the
member of Mn to which it is equivalent. That is, the type of match of a given n-tuple
xn(S) is yM

n where yM
n ∈ Mn : yM

n ∼ xn(S).

Define the height of a type of match xM
n as H(xM

n ) = max(xi). It should be clear from
the definition that the height of a type of match is the number of different observations
which are in the n-tuple (the number of unique vehicles observed) — for example, a match
of type (1, 2, 1, 3) has a height of three and contains observations of three unique vehicles.

4 CONSTRUCTING THE SET OF EVERY TYPE OF MATCH

Having defined Mn, the set of all possible types of match over n observation sites, it
will now be useful to create a rule for constructing the set Mn. The set Mn+1 can be
easily constructed from the set Mn using definition 3.2. Given xM

n ∈ Mn then we can
construct y1,y2... ∈ Mn+1 from xM

n by adding an n + 1th element to the n-tuple. From
3.2 we can see that yn+1 (the n + 1th element of y1) can take any integer value from 1 to
H(xM

n ) + 1.

To construct Mn+1 from Mn:
a) Take each element of Mn in turn.
b) To each n-tuple xM

n construct a vector by adding the integers from 1 to H(xM
n ) + 1 as

the n + 1th element of the n-tuple.
c) These vectors (n+1-tuples) together form the set Mn+1.

Therefore, given that M1 = (1) we can easily construct computationally Mn by build-
ing up M2, M3 and so on. This process is illustrated in figure 1.



(1)

(1,1) (1,2)

(1,1,1) (1,1,2) (1,2,1) (1,2,2) (1,2,3)

(1,2,1,1) (1,2,1,2) (1,2,1,3)

M1

M2

M3

M4(partial)

Figure 1: Creation of Mn+1 from Mn.

It can be simply shown that there is a one-to-one correspondence between the members
of Mn and the partitions of the set of the first n natural numbers. A partition of a set is
the division of that set into subsets. For example, we may partition the first three numbers
in any of the following five ways: {1, 2, 3}, {1, 2}{3}, {1, 3}{2}, {2, 3}{1} and {1}{2}{3}.
The one-to-one correspondence is easily seen by the following mapping between members
of Mn and the partitions given. For a given xM

n ∈ Mn, take the numbers from 1 to
n. Two numbers are part of the same set if and only if the elements in xM

n with those
numbers are equal. So, for example, xM

n = (1, 2, 1, 1, 3) maps to {1, 3, 4}{2}{5}. This
mapping can be trivially shown to be one-to-one. Thus there are as many elements of
Mn as there are ways to partition the first n natural numbers. Therefore we can count
the members of Mn using Stirling numbers (see [Biggs, 1961] for more information on
Stirling numbers).

Let S(n, k) be the number of members of Mn with height k (where 1 ≤ k ≤ n). Clearly
S(n, 1) = 1 — the only member with height 1 is (1, 1, . . . , 1). Also S(n, n) = 1 — the
only member with height n is (1, 2, . . . , n).

We can also show that S(n, k) = S(n − 1, k − 1) + kS(n − 1, k). A sketch of such a
proof is that using our constructive method above, every member of Mn−1 with height
k − 1 will construct one member of Mn with height k and every member with height k
will construct k members with height k (by adding the final elements from 1...k). From
this recursive formula we can calculate the number of elements in Mn of a given height
and, by summing, the number of elements in Mn.

5 INTRODUCING FALSE MATCHING INTO THE FRAMEWORK

In order to introduce false matches into this framework, it is necessary to introduce
two things: the idea of false matches caused by part of the data being unobserved and
the idea from set theory of a partial ordering.

To include partial observations in the framework, the notion of a censoring function is
introduced — this function is to simulate the observation of only part of a unique identifier
(in this case, the recording of only part of a unique licence plate).

Definition 5.1. A censoring function acts on an n-tuple of observations and produces
another n-tuple. If observations at two sites within the n-tuple are seen to be the same,



then they will remain the same in the n-tuple produced by the censoring function. Con-
versely, however, if two observations are not the same then the censoring function may
cause them to become the same.

This is equivalent to the common-sense notion that two vehicles which have the same
licence plate will never appear to be different if we correctly record only part of their
plates. However, two vehicles with different licence plates may appear to be the same if
we correctly record only part of their plates. The censoring function is introduced with
the notation C(xn(S)) meaning the censored n-tuple of observations produced by partial
observation of the uncensored n-tuple xn(S). It is clear that the censored n-tuple may
not be in the same matching class as the uncensored n-tuple. However, it is also clear
that only certain transitions are possible (since it is not possible for a censoring function
to make observations appear different). It is therefore important to investigate in which
ways n-tuples can move between matching classes because of a censoring function. (This
is the same as investigating in which ways an observation can appear to be a different
type of match if we only observe part of the data).

To investigate this problem it is necessary to introduce the concept of a partial ordering
of a set. The partial ordering can be very loosely thought of as an extension of the
notion of less than and greater than (a partial ordering also allows two elements to be
incomparable). See [Halmos, 1970] amongst others for more details. A partial ordering
can be induced on the set Mn as follows:

Definition 5.2. xM
n % yM

n iff xi = xj ⇒ yi = yj

In words, an n-tuple is a successor of (loosely, greater than) or equal to a second n-tuple
if and only if, wherever two elements of the first are equal, the same two elements of the
second are equal. For example: (1, 2, 1) % (1, 1, 1). To be a partial ordering, the relation
must be reflexive, anti-symmetric and transitive. These properties are easily shown. Note
that this definition is the same as that for the equivalence relation in definition 3.1 except
that the implication only goes one way. This partial ordering defines exactly how the
matching class of an n-tuple of observations may move into a different matching class if
only partial observations are taken.

Theorem 5.1. If yM
n ∼ xn(S) and xM

n ∼ C(xn(S)) then yM
n % xM

n .

In words, the match type of the censored data is a predecessor of or equal to the match
type of the uncensored (complete) data using the partial ordering defined above.

This can be seen by comparing the above definition of a censoring function and our
definition of a partial ordering. Having defined a partial ordering, the set Mn can be
visualised using a Hasse diagram. A Hasse diagram is a depiction of a finite partially
ordered set where the elements are represented by points in a plane and a directed arrow
from element x to element y indicates that x ≺≺ y. (x immediately precedes y — that
is 6 ∃z : x ≺ z ≺ y). The diagram of Mn has discrete levels defined by H(xM

n ) and
will have singular upper and lower levels defined by xM

n = (1, 2, ...n) and xM
n = (1, 1...1)

respectively. The Hasse diagram for M4 is shown in figure 2. Note that, from theorem
5.1, if we take a complete or uncensored observation, then censoring it (taking only partial



(1,2,3,4)

(1,1,2,3) (1,2,1,3) (1,2,3,1) (1,2,2,3) (1,2,3,2) (1,2,3,3)

(1,1,1,2) (1,1,2,2) (1,1,2,1) (1,2,1,2) (1,2,1,1) (1,2,2,1) (1,2,2,2)

(1,1,1,1)

H(xM
n ) = 4

H(xM
n ) = 3

H(xM
n ) = 2

H(xM
n ) = 1

Figure 2: Hasse diagram for M4.

observations) can move the observation to any matching class which can be reached by
moving along one or more arrows (or, obviously, the censoring can leave the observation
in the same class).

In order to count matches in the particular classes it is useful to define the exact
matching function X(yM

n ,S) (which counts the number of matches in a data set over the
sites S which are in matching class yM

n ) and the relaxed matching function R(yM
n ,S)

(which counts the number of matches in S which are in the matching class yM
n and all its

predecessors in Mn).

Definition 5.3. The exact matching function X(yM
n ,xn(S)) for a single observation is

defined as:

X(yM

n ,xn(S)) =

{

1 iff xn(S) ∼ yM
n

0 otherwise

Definition 5.4. Defined over a set of observations Ln(S) then X(yM
n ,S), the exact match-

ing function is the number of n-tuples in the set of observations which are in a particular
type of match yM

n .

X(yM

n ,S) =
∑

x

X(yM

n ,x)

where the sum is over all x ∈ S.

Similarly we wish to define a relaxed matching function R(yM
n ,xn(S)) for a single

observation.

Definition 5.5. The relaxed matching function R(yM
n ,xn(S)) is defined as:

R(yM

n ,xn(S)) =

{

1 iff yM
n � Mn(xn(S))

0 otherwise



And as before we wish to extend this to the set of n-tuples of observations over the
sites S.

Definition 5.6. Defined over the n sites in S then R(yM
n ,S), the relaxed matching

function is the number of n-tuples in the set of all possible observations Ln(S) for which
equation 5.5 is equal to one. Alternatively:

R(yM

n ,S) =
∑

xn(S)

R(yM

n ,xn(S))

where the sum is over all xn(S) ∈ Ln(S).

Finally, in order to estimate the number of false matches we need an estimate of the
value of p(i) which is defined as the probability that i randomly chosen items which are not
equal in the uncensored data are all equal in the censored data. (For convenience define
p(1) = 1). This can be estimated in real roadside surveys by considering the frequency
distribution of licence plates.

6 SOLVING THE FALSE MATCH PROBLEM

The original problem was to count the number of vehicles which are seen at all sites.
This is the problem of enumerating the number of n-tuples of observations which are in
matching class (1, 1, . . . , 1). This will be referred to as Mn(T ) — a true match across
all sites. At the same time, it is useful to introduce the notation Mn(F) to indicate
matching class (1, 2, . . . , n) which corresponds to a completely false match, n different
vehicles, one observed at each site. In the notation of the previous section this means
evaluating X(Mn(T ),S). However, only X(Mn(T ), C(S)) (the number of matches in
the censored data) can be directly calculated since the original assumption was that only
partial (censored) data was collected.

Clearly it is the case that:

R(Mn(F),S) =
∏

i=1

L(Si) (1)

since every member of Mn is either Mn(F) or a predecessor of it. (This can be
confirmed by reviewing figure 2).

Computationally it is too much effort to evaluate each n-tuple and find out which
exact and relaxed matching class it is part of. Consider that if there are six sites and
100 observations in each then there are 1006 possible n-tuples to consider. This is not
an unreasonable size of problem to consider in vehicle surveys. It is not as difficult to
calculate how many n-tuples are in class Mn(T ) since the matching procedure can stop
whenever a non-match is found (and it is assumed that matches are rarer than non-
matches). Thus it is necessary to estimate X(xM

n ,S) in terms of some set of Xm(T ) on
subsets of sites. The following three lemmas will help us to do this. The proofs of these
lemmas are not given in this paper but are available from the author on request.



Lemma 6.1. The number of exact matches of a given type in a data set is equal to the
number of relaxed matches minus the number of exact matches of all predecessor types.

X(xM

n , Sn) = R(xM

n ,S) −
∑

yM
n

X(yM

n ,S)

where yM
n ∈ Mn : yM

n ≺ xM
n .

An intuitive way to see this lemma is that an exact match, is a relaxed match of the
same class, minus those exact matches of predecessor classes.

It is worth noting a trivial corollary of this:

Corollary 6.2.

R(Mn(T )) = X(Mn(T )) (2)

which follows obviously from lemma 6.1 since there are no xM
n ≺ Mn(T ) and therefore

the subtracted term in the lemma vanishes.

Lemma 6.3.

R(xM

n , Sn) =

H(xM
n )

∏

i=1

X(Mm(i)(T ), Yi)

where m(i) = #Yi and Yi is an m-tuple constructed from the original n-tuple of sites
S using the matching class xM

n . Yi is constructed such that Yi = (Sj1, Sj2, . . . , Sjm
) where

{j1, . . . , jm(i)} is the set of all indices of the n-tuple xM
n such that xjk

= i.

An example may help understand how Yi is constructed. If xM
6 = (1, 1, 2, 3, 2, 1) then

Y1 = (S1, S2, S6), Y2 = (S3, S5) and Y3 = (S4).

Again, the proof of this lemma is not stated here. It can be thought of as breaking
down a relaxed match into the component exact true matches on subsets of S, which are
necessary conditions for a set of observations to be a relaxed match of the given type.

It is worth noting a trivial corollary of this.

Corollary 6.4.

R(Mn(F),S) =

n
∏

i=1

#L(Si)

Proof. This should be obvious since for Mn(F) = (1, 2, . . . , n) each set of sites Yi consists
of exactly one site i. Since M1 = (1) then there is only one matching class for each of
the sites and X(MSi

(T ),y1Si) = #L(Si).

Lemma 6.5.

̂X(Mn(T ),S) = X(Mn(T ), C(S)) −
∑

xM
n

X(xM

n ,S)p(H(xM

n ))

where xM
n ∈ Mn : x � Mn(T )



Proof. This comes from our observation that H(xM
n ) is the number of separate objects

which are in a match of type xM
n . The probability that an n-tuple of observations which is

a match of type xM
n in the uncensored data is a match of type Mn(T ) in the censored data

is therefore H(xM
n ). It follows that an estimation of the number of n-tuples of observations

which are matches of type xM
n in the uncensored data but appear to be matches of type

Mn(T ) in the censored data is given by:

X(xM

n ,S)p(H(xM

n )) (3)

Lemma 6.5 follows from the observation that X(Mn(T ), C(S)) is the sum of the exact
match, X(Mn(T ), C(S)) and the total contributions of the type described in equation 3
for all xM

n apart from Mn(T ).

It is not immediately obvious, but from the above lemmas 6.1, 6.3 and 6.5 a procedure
can be created to estimate X(Mn(T ), S) — the number of true matches in a set of
observations Ln(S).

Lemma 6.3 allows estimation of X(Mn(T ),S) from X(Mn(T ), C(S)) (which can be
measured directly since it is measured on the censored data) and X(x,S) if it is known for
all x ∈ Mn : x ≺ Mn(T ) assuming that p(i) is also known for any i. Thus the number of
true matches can be estimated from the number of exact matches in all other matching
classes.

From lemma 6.1 these matches can be calculated exactly if the number of relaxed
matches R(xM

n ,S) is known and also the number of exact matches in all successor match-
ing classes is known.

From lemma 6.3 we can calculate the number of relaxed matches of a particular order if
we know the number of exact true matches in a subset of sites. The value of R(Mn(F),S)
is given by equation 1. From 6.2, R(Mn(T ),S) = X(Mn(T ),S), which is the quantity
we are trying to find. For all other values of xM

n , 6.3 allows us to find R(xM
n ,S) in terms

of X(Mm(T ),Sm) where m < n and Sm is a subset of the sites in S. Thus, we can solve
our problem in terms of a problem with a reduced number of sites. This procedure can
be followed recursively until the number of sites is 1 when the problem becomes trivial.
(With one site, X(M1(T )) = X(M1(F)) = L(S1).)

Therefore, if we can estimate p(n) we can solve the problem of estimating X(Mn(T ), S)
by the following procedure.

Step 1: Calculate from our data, X(Mn(T ), C(S)) for our n sites.

Step 2: Use a computer to expand lemmas 6.1, 6.3 and 6.5 to give us an expression
which estimate X(Mn(T ),S) as shown above.

Step 3: Again using a computer, gather all the terms which are X(Mn(T ),S) on the
left hand side — these terms will be multiplied factors of p(k) where 1 < k ≤ n.

Step 4: We now have an equation for X(Mn(T ), S) in terms of p(k), R(Mn(F),S)
(given by equation 1) and X(Mm(T ),Sm where m < n.

Step 5: Decrease n by 1 and go to step 2 to find the terms X(Mm(T ),Sm).



7 RESULTS ON SIMULATED DATA

Table 7 shows simulation results for between two and six observation sites. The table
is to be interpreted as follows. Num. Veh. refers to the total number of observations at
each of the sites (in these simulations, there are the same number of vehicles in each data
set). The five columns of the form 1 – n refer to the number of vehicles which genuinely
went from site one to site n visiting all sites in between. If this column is blank it means
that there was no site n. For example, if 1 – 2 = 100, 1 – 3 = 200 and 1 – 4 is blank. This
means that 100 vehicles travelled between site one and site two, 200 vehicles travelled
between sites one, two and three and there were only three sites. Note that these are
cumulative so that if 1 – 2 = 20 and 1 – 3 = 10 this means that 30 vehicles in total
went from site one to site two and ten of them continued to site three. Thus the first
experiment is two sites, 1000 vehicles at each for which there were ten vehicles which
were genuinely seen at both sites. Note that in every experiment, the number of different
vehicle types was set at 10,000 with a flat distribution (equal numbers of vehicles seen at
each site). It should be clear that the desired answer from the correction process is the
rightmost figure in these columns.

Each experiment is repeated twenty times with simulated data being generated anew
each time. The correction process has no random element and will always give the same
result for the same data. The mean raw number of matches is given — this is the total
number of n-tuples which were seen to have the same value for each observation at every
site (averaged over the twenty simulation runs). Note that, because of the combinatorial
nature of the procedure, this could, in principle, be much larger than the number of
vehicles in any of the data sets (since it counts any n-tuple). The sample standard
deviation (σ) is given for the raw matches. The mean estimated correct number of matches
is then given (again averaged over the twenty simulations). The sample standard deviation
σ is then given for the ten corrected matches. It is clear that the most important test is
that the mean corrected number of matches is as near to correct as possible. However,
it should also be kept in mind that in reality, a researcher could only run the matching
procedure once on any given set of data — so it is also important that σ is as low as
possible. A significant improvement to the method would be to estimate the variance as
well as producing an estimate then the researcher could have some idea as to the likely
accuracy of the corrected results. It should also be noted that in every experiment, the
chances of any given two vehicles being a false match is 1 in 10,000 with a flat distribution
(so the chance of three distinct vehicles having the same partial plate is the square of this).
In fact this is an extremely pessimistic assumption since four digits of a licence plate would
be the least that a partial plate survey was likely to capture (in the UK, one letter and
three digits is the most common). A significant weakness of the method is that it requires
a good estimate for p(n). (In fact, it is mainly significant for lower values of n with p(2)
being the most important).

The first five rows are all results on just two test sites. This procedure is not the
ideal one to use for estimates on matches between just two sites and the work of other
authors in the field should be used in such a circumstance. However, these results are
included here for completeness. In the two site case, the average corrected matches is
simple obtained by subtracting n2

10000
from the raw matches (where n is the number of

vehicles at each site) — to take an example, in the first experiment, the average number



of raw matches over the ten runs is 111.4. The average number of corrected matches is
100 less than this (11.4). This is close to the correct answer of 10. However, it should
be noticed that the σ is high in comparison to the actual answer. In this case, the σ is
8.5 which is of the same order of magnitude as the answer. This is to be expected since
we are looking for only 10 true matches in over 110 observed matches. If we increase the
number of vehicles to 2000 then, as would be expected, the number of false matches goes
up (to approximately 400) and the σ also rises (to almost 20).

The next five rows of results are all over three sites. In the first of these, 10 vehicles
travel between all three and all other matches are coincidence. 1000 vehicles are observed
at all sites. The mean corrected match across all sites 9.3 is close to the actual answer of
10 and the σ is lower than in the two site case. However, when the same experiment is
run with 500 vehicles travelling from sites one to two in addition to 10 vehicles travelling
from sites two to three, the σ increases markedly (it almost doubles). In all cases with
three sites, the mean is a good estimate and the σ is generally low enough that a good
estimate can be expected.

The next four rows of results are for experiments made over four sites. The first
experiment has 100 vehicles which visit all four. The mean corrected match is 104 (very
close) and the σ is only 22. It is hard to explain why this σ actually falls in the next
experiment when more vehicles are genuinely seen in common between the other sites.
This fall in σ is puzzling. In all cases the mean of the predictions is approximately correct
(the worst performance being in the case of the fourth experiment when the mean was
106.1 not 100).

The next six rows of results are experiments made over five sites. Again, the mean
corrected results are approximately correct. However, in the worst case, the mean is 11
too high and the σ in the results is 46.7 which is comparable to the level of the effect
being observed. In this case approximately 120 false matches are being removed each
time. However, previous experiments have been able to correct for a greater proportion
of false matches with less σ in the result.

The final four rows of results are experiments over six sites. This was the largest
number of sites for which it was practical to do runs of twenty or more simulations with
the computer power available. Again, the mean corrected estimate of matches was nearly
correct in all cases. The worst performance was an estimate of 92.2 (correct result 100).
The σ was, however, relatively high. This was a surprise in some cases — particularly
the first row of results where the mean number of false matches was only 21.2. In many
senses, the worst results was the final one where a σ of 55.0 was given on an corrected
prediction of only 101.3.

The time taken to do one run over six sites with one thousand pieces of data on each
site was thirty seconds on a Celeron 366 computer running Debian Linux. It is practical (if
time consuming) to do experiments on seven sites, even using such comparatively obsolete
equipment. However, eight sites or more is probably too computationally expensive for
the moment and this is a limitation of the method outlined.

The results given here are certainly consistent with the idea that the method gives
an unbiased estimator for the true number of matches. In some experiments, there were



No. 1 – 2 1 – 3 1 – 4 1 – 5 1 – 6 Av. Raw σ Raw Av. Cor. σ Cor.
Veh. Matches Matches Matches Matches
1000 10 111.4 8.5 11.4 8.5
2000 10 411.8 19.5 11.8 19.5
1000 100 199.2 12.0 99.2 12.0
1000 200 302.3 7.7 202.3 7.7
1000 500 596.6 12.3 496.7 12.3
1000 0 10 21.9 4.6 9.3 3.3
1000 500 10 73.8 7.5 10.2 6.2
1000 100 100 152.1 8.5 101.9 7.5
1000 500 250 388.3 22.7 253.2 20.1
1000 0 500 667.2 24.9 506.0 22.3
1000 0 0 100 154.6 26.6 104.0 22.6
1000 100 100 100 164.4 11.4 97.7 9.3
500 100 100 100 140.7 19.3 105.8 17.4
1000 500 250 100 207.8 29.7 106.1 23.7
500 10 10 10 10 14.2 2.2 10.5 1.8
1000 10 10 10 10 17.4 4.1 9.4 2.8
500 50 50 50 50 71.3 14.3 47.8 12.3
500 100 100 100 100 151.9 26.9 92.0 22.3
1000 0 0 0 100 177.6 29.9 103.4 22.6
1000 100 100 100 100 222.2 61.5 111.0 46.7
1000 0 0 0 0 10 21.2 13.4 12.3 9.9
500 0 0 0 0 100 152.6 45.5 92.2 37.3
1000 0 0 0 0 100 214.6 58.0 103.5 40.2
1000 100 100 100 100 100 289.8 88.4 101.3 55.0

Table 1: Simulation results — all performed over twenty runs with 10,000 distinct vehicle
types.

problems with the standard deviation being higher than would be desirable in real cases.
It is important to bear in mind that these were relatively extreme tests of the method since
p(2) and p(3) were relatively low and the number of samples given were quite high. Often
the method was attempting to predict only ten true matches in a number of observed
matches which might be several hundred.

8 CONCLUSIONS

This paper presented a framework for analysis of surveys where matches are required
over more than two data collection points. The framework given formalises the concept of
a type of match using the concept of the equivalence class. Further a method is given for
evaluating Mn the set of all possible types of match over multiple data sets. An algorithm
is given which shows how, computationally, Mn can be computed and a method is given
for enumerating its elements using Stirling numbers.

The framework given is then applied to the problem of false matches — which is put
into the language of set theory using the concept of a partial ordering. It is shown how
this partial ordering can be used to visualise, by means of a Hasse diagram, the ways in



which false matches can occur in data observed at multiple sites. An algorithm is then
given which shows how survey data over multiple sites can be corrected for false matches.

This algorithm was implemented and tested on simulated data. The results show that
the estimator seems to be unbiased and in the majority of cases tested the standard
deviation on the results is low. The method is suitable for analysis of matches on data
between three and seven test sites but becomes too computationally intensive after this
point. A significant improvement to the method would be the estimation of a variance
as well as a corrected number of matches. A potential weakness of the method is that it
relies on good estimates for p(2) and to a lesser extent p(3). However, the author considers
the method outlined here to be a reliable way to estimate matches in partial surveys over
three or more sites.

References

[Biggs, 1961] Biggs, N. (1961). Discrete Mathematics. Oxford Science Publications.

[Halmos, 1970] Halmos, P. (1970). Naive Set Thoery. Springer Verlag.

[Hauer, 1979] Hauer, E. (1979). Correction of licence plate surveys for spurious matches.
Transportation Research A, 13A:71–78.

[Maher, 1985] Maher, M. (1985). The analysis of partial registration-plate data. Traffic
Engineering and Control, October:495–497.

[Watling, 1994] Watling, D. (1994). Maximum likelihood estimation of an origin-
destination matrix from a partial registration plate survey. Transportation Research
B, 28B(3):289–314.

[Watling and Maher, 1988] Watling, D. and Maher, M. (1988). A graphical procedure for
analysing partial registration-plate data. Transportation Research B, October.

[Watling and Maher, 1992] Watling, D. and Maher, M. (1992). A statistical procedure
for estimating a mean origin-destination matrix from a partial registration plate survey.
Transportation Research B, 26B(3):171–193.


