Introduction 00 Experiment description

Topologies and metrics

Results 000000 Conclusions and further work

The performance of locality-aware topologies for peer-to-peer live streaming

R. G. Clegg (richard@richardclegg.org), D. Griffin, R. Landa, E. Mykoniati, M. Rio, Dept. of Electronic and Electrical Engineering, UCL

UK Performance Engineering Workshop, Imperial College 2008

(Prepared using LATEX and beamer.)

Introduction ●○	Experiment description	Topologies and metrics	Results 000000	Conclusions and further work
Problem	area			

Motivation

- Current research interest in peer-to-peer live streaming.
- Peer actions must be largely distributed.
- Want low start-up and end-to-end delay.
- Network co-ordinates give a distributed delay estimation tool.
- Given delay info, how should peers choose partners?
- Preliminary research: simple, low parameter simulation of overlay network.
- Easily measured approximate metrics no dependence on exact peer details.
- Experiment with number of peers and assumptions about the network.

Introduction ○●	Experiment description	Topologies and metrics	Results 000000	Conclusions and further work
Peer-to-p	eer live stream	ning		

Terminology

- Stream the data to be sent live.
- Peercaster peer from which the stream is originating.
- Delay space a space (not metric) where the distance between peers is their delay.
- Churn the turn over (leaving and joining) of peers.

Given a distribution of peers on a delay space.

- Want good end-to-end (peercaster to peer) delay, not throughput.
- Want good reliability even in high churn.
- Want "fair" load on peers.
- Want to explore a reasonable amount of the simulation parameter space.

Introduction 00	Experiment description •००	Topologies and metrics	Results 000000	Conclusions and further work
Delay sp	ace			

Delay estimate here distance in 2D Euclidean space.

- Flat peer distribution $N_F (x_i, y_i)$ with x_i and y_i chosen from flat distribution (-D, D).
- Loosely clustered peer distribution N_L (x_i, y_i) = (X + εⁱ_X, Y + εⁱ_Y), plus a small probability of
 moving flatly distributed (X, Y).
- Tightly clustered peer distribution N_T as above with smaller variance on ε .

Introduction 00	Experiment description	Topologies and metrics	Results 000000	Conclusions and further work
Experime	ent details			

- Distribute N + 1 peers (0,..., N) in the delay space and pick subset n ≤ N + 1 for experiment.
- The stream has fixed bandwidth B.
- Peer 0 is the peercaster and has capacity u_i . (Only one value tried.)
- Peers i > 0 randomly allocated some upload capacity u_i from a distribution. (Only one distribution tried.)
- Peers join in order (for local topologies) and attempt to download *M* streams of bandwidth *B*/*M*. (Only one value for *B* and *M* tried here.)
- Distribution must be such that $\overline{u_i} > B$ and $\sum_{i=1}^{j} u_{i-1} \ge Bj$ for all $j \le n$.

- As every peer joins it chooses *M* peers (not necessarily distinct) with spare capacity to upload from.
- Algorithm for choosing peers is a strategy for creating a topology.
- After *n* peers join, then output the resultant overlay network and measure metrics on it.
- Vary *n*, the peer distribution and the topology creation strategy.
- Repeat each experiment ten times to create a mean and a 95% confidence interval.
- In the full paper global topology strategies are also described (all peers present before peer selection).

Strategies referred to as *local fixed topologies* TLF (for peer *i* nodes with spare upload selected from j < i).

- Local random $T\mathcal{LF}_R M$ random peers selected.
- Local closest first $TLF_{C1} M$ peer(s) with least delay to this peer.
- Local closest with diversity TLF_{C2} as above but M distinct peers if possible.
- Local minimum delay first $TLF_{D1} M$ peer(s) with least delay to peercaster.
- Local minimum delay with diversity TLF_{D2} as above but *M* distinct peers impossible
- Local small world TLF_S This topology has M 1 using TLF_{C2} and one peer using TLF_R .

 $\begin{array}{cccc} \text{Introduction} & \text{Experiment description} & \text{Topologies and metrics} & \text{Results} & \text{Conclusions and further work} \\ \text{oo} & \text{oo} & \text{oo} & \text{oo} & \text{oo} & \text{oo} \end{array}$

Ten nodes connected with TLF_{C1} and TLF_{C2}

Introduction Experiment description Topologies and metrics Results Conclusions and further work OCOO OCOUNT OF TOPOLOGIES AND METRICS USED – delay and fairness

Let $D_i(j)$ be the delay from peer *i* using first hop on connection *j* and then shortest delay path. Let O_i be the outgoing bandwidth used from node *i*.

- Mean minimum delay $D_{\min} \sum_{i=1}^{N} \max_{j} D_{i}(j)/N$, this is the mean of the minimum delay to the peercaster.
- Mean maximum delay $D_{max} \sum_{i=1}^{N} \max_{j} D_{i}(j)/N$, this is the mean of the maximum (shortest path) delay to the peercaster.
- Bandwidth variance $\mathcal{B}_{v} var(O_{i})$ (for nodes with $u_{i} > 0$) reported in full paper.

Let V_i (node vulnerability) be the maximum number of paths along $D_i(j)$ from *i* cut by the removal of one other node. Let S_i (system vulnerability) be the number of paths along $D_k(j)$ cut by the removal of node *i*.

- Maximum system vulnerability $S \max_i S_i / NM$ this is the proportion of routes which could potentially be damaged by the removal of a single node. (Related to max Betweenness-Centrality).
- Mean node vulnerability $\mathbf{V} \sum_{i=1}^{N} V_i / NM$ this is the mean proportion of its connections which each node could potentially lose by the removal of a single node.

Э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Results Conclusions and further work 000000 Results for **S** (system vulnerability) versus D_{max} all topologies n = 10,000

э

Sac

Introduction 00	Experiment description	Topologies and metrics	Results 000000	Conclusions and further work ●○
Conclusi	ons			

- The particular distribution of nodes seemed of little importance.
- The vulnerability measures had a high variance across runs.
- Topology strategies emphasising diversity performed better in most tests.
- Delay and vulnerability measures seem to scale well with size for the best policies.

- Strategies which aggressively minimise delay to peercaster locally do not minimise global delay.
- See full paper for further details www.richardclegg.org/pubs.

Introduction 00	Experiment description	Topologies and metrics	Results 000000	Conclusions and further work ○●
Further	work			

- Explore effects of node upload distribution and *M* parameter.
- Improve metrics, better delay and (possibly) more robust vulnerability estimates (it may be vulnerability is variable).
- Explore \mathcal{TLR} re-evaluating local topologies which begin as \mathcal{TLF} but are allowed to change connections later.
- Add mathematical analysis can the local and global problems be formulated as proper optimisation problems.
- Compare results with a more realistic simulation.
- Other suggestions (particularly related to mathematical rigour) welcomed.