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Abstract
This paper uses empirical data collected on street to provide insight into how real traffic systems are behaving.  The data are fitted to statistical models and these statistical models show how traffic systems respond when the capacity of the system is reduced.  This research follows on from the general interest in highway capacity reduction following Cairns et al (1998).  

A great deal of effort has been spent on models (mathematical and computational) that simulate the day-to-day behaviour of road traffic.  Many of these models include parameters that adjust how quickly users will respond by changing their behaviour.  This paper provides a starting point for the calibration of such models by careful statistical analysis of real-life data collected on street in the city of York (UK).  The data were collected to track two real-life capacity reducing events that occurred in the city (a bridge closure and a partial road closure).  The paper begins with a discussion of the context of the research, other studies providing evidence in this area and the modelling context.

In the second section of the paper the two surveys performed are described.  These surveys took place in the morning peak and collected licence plate data.  The first survey looked at the closure of a bridge (part of the city’s inner ring road).  Unfortunately, this survey was adversely affected by other events (the UK fuel crisis).  The second study considers the effect of a road closure.  In both cases before and during data are available for several days at several sites to establish the ambient variability in the system and then to compare this with the response to the change in the system.  The data collected are freely available to other researchers.

The third section of the paper considers day-to-day variability in the traffic pattern and models “recurrence rate” (the percentage of drivers seen on one day who reappear on another day).  A statistical model is fitted to the data showing that the recurrence rate starts lower than many researchers might expect for a morning rush hour and falls off quickly with subsequent days.  A marked day of the week effect is noted showing that recurrence is higher on the same day of the week.  This can be thought of as the “See you next Wednesday” effect, that is, the effect on the traffic system of a pool of drivers who travel on the same day or the same set of days. 

The fourth section of the paper considers the transient response of the drivers to a change in a road system.  The data studied show a “healing” effect. The initial (day one) response to the change is strong but the effect becomes weaker in subsequent days.  This response can be seen in both travel times and link flows.  This can be thought of as analogous to the road traffic engineering rule of thumb that a change that seems disastrous on Monday will “be alright by Friday”.

The final section of the paper considers the effects of rerouting as seen in the data and measures the route choice response to an incident. Again this can be separated into an initial response and a later “settling down” consistent with the “It’ll be alright by Friday” rule.

While the results presented here are just on one road system, the analysis is intended as a starting point for people wishing to calibrate network models in which drivers change route in response to congestion and changes to the network.  The conclusion section of this paper describes how these results could have implications for modelling and further research.

InTRODUCTION

The aim of this paper is to make a rigorous statistical examination of an urban road traffic network.  The statistical analysis takes account of the behaviour down to the individual vehicle level.  In particular the real-life effect of reduction in road capacity is analysed.  To this end two surveys were undertaken in the city of York looking at interventions leading to road capacity reduction.  Note that throughout this paper the term intervention is used to refer to a planned alteration to a road network such as a road or bridge closure.  

It should be stressed that the motivation of the surveys undertaken and of this paper is not to provide insight into the detailed effects of specific interventions in a specific town. It is hoped that in the future, through technologies such as GPS and licence plate recognition, large data sets that can identify individual vehicles will become more readily available.  Methods such as those used in this paper could be used to identify general characteristics of road traffic networks and, in turn, to provide insight for mathematical and computational modelling.  The techniques given in this paper could be applied such data set and this statistical analysis could do much to inform efforts in creating accurate simulation models of the urban traffic environment.

The data set considered here is also examined in Clegg (2005), chapter five of Clegg (2005b) and Clegg (2006).

Background and Previous Research

Responses to congestion and to road capacity reduction are of great interest both to the road traffic engineer and to the modeller.  Cairns et al (1998) reviewed on-street evidence from over ninety cases of road capacity reduction (in some cases this was deliberate reduction due to a planned scheme and in some cases due to accidents which closed roads for long periods).  What was striking was that it was only in a very few cases that a systematic attempt had been made to measure the effects to the network.  In particular, almost none of these cases attempted to measure the responses of drivers in a quantitative manner.  Two important conclusions of this report were, “...overall, the two responses - changing route and changing journey time - seem to be the most universal” (Cairns et al 1998 p28) and also that in the “short term...it is the common experience that, after an adjustment period, traffic alters to take account of the new conditions.  Reference to a ‘settling down’ period has been made” (Cairns et al 1998 p36). However, few attempts were found in the literature to quantify these effects on data gathered from real road networks.

Ambient Variability

Before considering the response to a change to a network it would be useful to know how much to expect networks to be in a state of change anyway.  Do drivers habitually travel at the same time via the same route most days or are drivers constantly experimenting with new routes and travelling at different times of day?

One important result comes from Huff and Hanson (1986) who studied data from individual drivers collected over a 35 day period.  A major conclusion of their work is that “observations taken for a single day in the travel history of an individual are not likely to be representative of the range of daily travel patterns exhibited by that person over a more extended time period, and we are led to reject the view that travel is highly routinized in the restricted sense that every weekday is assumed to look much like every other weekday” (p108).

Bonsall et al. (1984) report on the collection of a large number of licence plates from road-side surveys undertaken in Leeds.  An interesting outcome of their report was the unreliability of number plates collected in this way.  They report that, when looking at the number of matches they “assume a 15% increase in the number of matches” (p387) due to missed matches from incorrectly recorded data.  Given this caveat they report that over the hours they surveyed then considering only those drivers who travelled at the absolute height of the morning rush hour, only 45% (figure is without the 15% increase mentioned) of those drivers were seen in a two and a quarter hour period around the rush hour on a subsequent day.  Over the course of the full rush hour it seems that, for these survey results at least, more than half the drivers seen will not travel on the next day.  Their results also showed that of those drivers who were seen on a subsequent day, many of them were not travelling within a quarter of an hour window of the journey on the original day. 

However, Stephenson and Tepley (1984) conclude that when comparing two days from the before-period: “60% of drivers travelled at the same time (+/- 5 minutes) every day during uncongested conditions”  but it is unclear from their paper if they intend this to mean 60% of those drivers seen on both of the two days or 60% of the drivers seen on the first day.

Jan et al. (1999) report on the use of GPS data to understand route choice.  Their data set was GPS data from 100 households (216 drivers) over a one-week period.  They reported that “the path chosen on a trip most often differs considerably from the shortest time path across the network” (p1) and also that “travelers habitually follow the same path for the same trip’” (p12).  

A review from the point of view of Global Positioning System (GPS) data is given by Pendyala (2003) and the author analyses several small data sets of between sixteen and thirty-two individuals, concluding that, “The percentage of individuals in each sample who exhibit the same characteristic across all days...is extremely small... [often] zero.”

Evidence about Road Capacity Reduction

As mentioned, Cairns et al, (1998) investigated over ninety reports of capacity reducing incidents, but few of these reports produced quantitative results about changes to driver behaviour. Stephenson and Tepley (1984) is a notable exception.  They examined data obtained in Edmonton after the closure of the Kinnaird Bridge.  They considered how drivers changed their route as a result of the closure and showed a “knock-on” effect of drivers not directly affected by the closure shifting their route to avoid the congestion.  In addition the paper makes reference to a settling down period, that is an initial response of the closure that lessens as time goes on.  However, the paper does not provide any quantification of this effect.

Daugherty et al. (1999) reports on a number of bus priority schemes implemented in Great Britain.  They conclude that drivers often change their route in response to these schemes and this can cause problems if the new routes are unable to absorb the traffic.  Unfortunately, the reports tend to be qualitative not quantitative in nature.  

Many authors report peak-spreading as a response to increased congestion, but offer little in the way of evidence.  Such peak-spreading, could be either a result of a departure time choice response on the part of the drivers or a result of changes in travel time in other parts of the network as a result of the intervention.

Summary of Surveys

While not of general interest, description of the surveys performed is included here in order to provide context for the following discussion.  If desired, a fuller description of the surveys can be found in Clegg (2005), Clegg(2005b) and Clegg(2006).  The modelling here supersedes the modelling performed in those references.  The data can all be downloaded from http://www.richardclegg.org/route/
Two surveys took place and both of these recorded licence plate data for the morning rush hour for several days over several sites.  The data recorded is in the form of partial licence plates from all vehicles at sites.  The Lendal Bridge survey monitored the temporary closure of one of only three town centre bridges crossing the river Ouse in York.  Unfortunately the survey was interrupted by the UK “fuel crisis” (protests which blockaded refineries and caused a temporary petrol shortage throughout the UK) and later by flooding.  The Fishergate survey monitored the temporary closure of one lane of the inner ring road in York.  Because of the problematic nature of the Lendal Bridge survey, almost all of the results presented here are from the Fishergate survey.

General Survey Information

Both surveys took place over the course of several weeks.  The surveys focused on morning rush hours on weekdays.  Several sites were simultaneously monitored and licence plates of all vehicles recorded over those sites.  The plates were recorded manually (audio recording with a phonetic alphabet for commonly confused letters) and transcribed later.  (Note: One site in the Lendal Bridge survey was transcribed data from an existing video camera).

The timing of the surveys was chosen to meet several aims.  It was important to get a good estimate of the ambient variability of traffic over days and weeks by monitoring the traffic before the intervention.  It was considered important to estimate the transient response of the traffic to an intervention in the weekdays immediately following.  It was desirable to get some estimate of the longer-term impact over more than one week.  Weekdays only were monitored.  While it was recognised that day of the week effects do occur the difference in traffic patterns between weekdays are widely recognised to be less than the differences between weekdays and weekends.  The morning rush hour was picked over the evening rush hour as, in York, this has more traffic and occurs at a more predictable time of day.
Other considerations were taken into account when picking the geographical location.  It was of primary importance to survey those sites directly affected by the closure.  Secondarily, those sites that would have knock-on effects by being directly before or after the closure should be monitored.  It was important to try to monitor potential rerouting locations where possible.  There was a recognised trade off between monitoring sites close to the site of the intervention and monitoring sites far from the site.  Nearby sites would have more vehicles which were affected by the intervention but more distant sites would provide more information per vehicle matched with a vehicle seen at the intervention site.  A compromise between these two cases was sought.

For both surveys the time was recorded at intervals of approximately five minutes. Surveyors were supplied with synchronised watches at the beginning of the surveys. The times for data between each time stamp are interpolated so, for example, if there are ten plates between a time stamp at 8:10 and one at 8:19 they will be split so that one plate is seen in each minute. Because of this interpolation and possible rounding of the time, the times recorded can only be assumed to be accurate to within five minutes, however, it is hoped that the timing is accurate to a much greater resolution than this.

The surveys were mainly undertaken by audiotape (that is, surveyors recording licence plates onto audio tape which were later transcribed).  The possibility of recording or transcription errors should be taken seriously (this is discussed in a later section).
The Lendal Bridge Survey
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Figure 1: York Lendal Bridge survey showing survey sites.
Figure 1 shows the survey sites for the Lendal Bridge survey.  All sites were surveys in the direction of the arrows shown.  The aim was to monitor traffic moving across the river from west to east (the bridge was closed in both directions but insufficient surveyors were available to monitor both).  During the closure surveyors from site H were redeployed to site N.  At all sites the surveys were from 8:00am to 9:00 am.  The days surveyed in the Lendal Survey were as follows:

1. Two early before days 27th and 28th June 2000.

2. Three before survey days 6th, 7th and 8th Sept 2000.

3. Two during days affected by fuel crisis 11th and 13th Sept 2000.

4. Two during days 27th Sept and 18th Oct 2000.

Because of the difficulty of working with this data set almost none of the modelling presented here uses this survey.

The Fishergate Survey
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Figure 2: Fishergate Survey showing survey sites.
Figure 2 shows the survey sites used for the Fishergate Survey.  All sites are monitored only in the direction of the arrows given.  This survey was based around works to repair a collapsed sewer at site A.  The repair work involved a partial closure of site A, essentially one lane being removed from the road. 

The closure was originally scheduled to last only two weeks and therefore the plan was to survey for one week before, one week during and one week after the closure.  However, the closure was extended to four weeks and therefore no true after survey data is available. A possible exception is the 13th of July when the closure was suspended for one day to allow for the increase in traffic due to a major horseracing event that weekend (the extra traffic due to the race-goers is thought not to have had a great effect on traffic during the morning peak).  The days surveyed were as followed:

1. 25th, 26th, 27th, 28th, 29th June and 2nd July – before surveys.

2. 3rd, 4th, 5th, 6th, 11th, 12th July – during surveys.

3. 13th July – temporary removal of roadworks (could be seen as after).

4. 16th July – during survey (roadworks back in place).
For the Fishergate survey, for most sites, the traffic was monitored at most sites from 7:45 to 9:15.  This was in order to catch all of the rush hour traffic and a quarter of an hour window either side. However, at selected sites, this window was adjusted to monitor from 8:00 to 9:30. This happened at those sites that would be reached last on a journey (for example, in Figure 1 site J would always be reached after site A). This was decided since the travel time between some pairs of sites was of the order of half an hour. Without such an offset some of the survey time would otherwise be wasted since the earliest (or latest) parts of the data could not be expected to match with data at any other site. The sites that were surveyed from 8:00 to 9:30 were sites A, I and J.  

Data and Analysis Techniques Used

In any project of this nature considerable pre-processing of data is necessary before fitting models.  The details of this pre-processing are not of general interest but are briefly recorded here as a guide for other researchers who might undertake similar work.  Since the aim of this work is to consider the behaviour of individuals it is necessary to infer matches between observations.  These matches may, for example, be a car seen on two different days at the same site or a car seen on the same day at different sites.

Statistical methods used

The statistical methods used in this paper are the standard t-tests and linear modelling. Both of these are well-known techniques and are only summarised briefly here.  Full descriptions can be found in most standard statistical text, for example. Comparisons between sample means are done using the t-tests, these work with the null hypothesis that the mean of two samples is equal. Here the two-sided Welch t-test is used (this allows small sample sizes and the possibility that the first mean may be smaller or larger than the second).  Assuming that the conditions of the test are met, the p-value for a t-test gives the probability that a sample of data generated from the same distribution was at least as contradictory to the null hypothesis as the data measured.  A low p-value (near zero) indicates that the null hypothesis is likely to be false (the means are different).  A high p-value (near one) indicates that the null hypothesis is likely to be true.  The t-test can also provide a confidence interval for the data.

The linear models used are general linear models (not generalised linear models, although the results do not differ if generalised linear models are used instead).  The models take the form
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where the observed variable y is dependent on the observed variables x1,x2…xk, and the (i are the parameters of the model (to be fitted).  The errors ( are assumed to be independent and identically distributed with a normal distribution, mean zero and with variance independent of the xi.  Note that the xi need not be independent.  So, for example, it might be assumed that x2=x12.  Often the xi are indicator variables, that is they are variables which are 0 if a certain condition is not met and 1 if that condition is met.  Several parameters are measured on the model.  

The R2 statistic measures the variability explained by the model with 1 indicating a “perfect” model where the error term vanishes and 0 indicating a model with no explanatory power.  The Ra2 statistic (adjusted R squared) is similar but compensates for the fact that a model can be forced to fit by adding more and more parameters.  The p-value is similar to that of the t-test but the null hypothesis is that all the beta parameters of the model are identical and zero.  It is usually the case that a p-value near zero indicates a “good” model.  In addition a significance can be assigned to each of the individual parameters of the model.  This can be thought of as a p-value for the null hypothesis that the parameter in question is zero.  In this paper significances are assigned at the 10%, 5%, 1% or 0.1% levels indicating that the significance of that parameter is at the level given or lower. If a result is stated as having “low” significance then that parameter is not significant at the 10% level and should probably be left out of the model.  

A note on errors in recording and transcription of data

In any data gathering experiment some sources of error are to be expected.  Attempts have been made to compensate for some sources of error.  In other cases, the errors have been ignored and no systematic attempt has been made to deal with them.

In some cases surveys began late, ended early, had missing data or no data due to failures of the surveyors or their equipment.  On these occasions data for that site and day were completely removed from the results presented here.  In addition analysis of modelling residuals showed that Fishergate survey site H had an unusually high flow of traffic (50% more than usual) on 16/7/01.  No particular reason is known for this anomalous high flow.  While it did not appear to change modelling results a great deal, that day of data at that site was omitted from analysis.

Secondly, errors could be made either in the recording or transcription process either by vehicles being omitted or recorded or transcribed incorrectly.  The surveyors were encouraged to use a phonetic alphabet to reduce such errors.  In addition, any plates that appeared to have been only partly recorded and foreign plates (likely to be recorded inconsistently by different surveyors) were removed from the data.  However, no systematic method has been used to estimate such errors.  As previously mentioned, Bonsall et al. (1984) estimate that in looking at matches on their licence plate data, one must “assume a 15% increase in the number of matches” (p387) due to missed matches from incorrectly recorded data.  In the data reported here, it would be inappropriate to assume a particular percentage increase should be applied across the board.  It is certain that these recording errors will have occurred and will affect the absolute levels of the figures measured.  However, the models fitted are fitted in terms of trends and increases and decreases which would be less affected by such errors.  

False matches

A final source of error even if the data is correctly recorded is that of false matches.  Since the licence plates recorded are only partial number plates then a match may not necessarily indicate that the same vehicle has been seen but, instead, that two different vehicles with the same partial licence plate have been seen.  This problem is something of a classic problem in road traffic surveys. For more details on possible solutions see Hauer (1979), Maher(1985), Watling and Maher (1988 and 1992) and Watling (1994).  For this paper, two approaches are used.  When it can be assumed that vehicles have journeyed between two sites on a single day then a maximum likelihood estimation method based upon assumptions about journey time following Watling (1994).  When an estimate of a number of matches between two sites is required and journey time information is irrelevant (for example, when wanting the number of matches between one site on two different days) then a simple probabilistic correction is applied similar to the approach in Hauer (1979). 

Adjustment of times considered
Sometimes the particular times considered can be of critical importance.  Consider, asking the question “what percentage of traffic at site A is seen again at the downstream site B?” Assume that under “normal” conditions it takes 20 minutes to get between site A and site B.  If the comparison is made from all data between 8:00 and 9:00 at both sites then the vehicles seen at site A between 8:40 and 9:00 are unlikely to be seen at site B not because they do not get there but because they do not get there in the time considered.  Now, if this percentage as measured on two different days and is seen to go down on the second day it could indicate that a smaller percentage of the vehicles at site A travel on to site B on the second day.  However, it could also indicate that the same percentage will eventually reach site B on the second day but they took longer to get there. This effect can be avoided by not considering the final half hour of data at site A (assuming half an hour is the maximum time that could be expected to be taken from site A to site B).  This process of omitting data will be referred to in this paper as “trimming”.  

Normalisation by site

Finally, it is sometimes necessary to compare measurements between different sites.   For example, it might be necessary to measure whether a particular effect increases or decreases traffic flow.  However, the flows would naturally be expected to differ considerably between sites and this effect could overwhelm the effect being considered.  Therefore, where appropriate, the data has been normalised, in this case by, for each site, taking the raw measurement and, for each site, subtracting the mean at that site and dividing by the standard deviation over that site.  This means that the measurement for each site will be mean zero and variance one.  When this has been done the data will be described in the text as having been “normalised by site”.

Initial data analysis

Basic information about the data including the number of vehicles recorded on every day surveyed and histograms showing the distribution throughout the survey period can be found in Clegg (2005b).   
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Figure 3: Matches for Lendal Bridge sites I and J on 28/6/00.

Figure 3 shows a cross at times where the same licence plate has been observed at site I (y axis) and J (x axis) for the Lendal Bridge survey.  This gives a good idea of the nature of the data being dealt with.  As can be seen from the map, the sites are close together and it would be expected that a considerable proportion of the traffic seen at I would later be seen at J.  This traffic is seen on the main diagonal in this plot.  Those crosses off the main diagonal are likely to be false matches as discussed above although there is a possibility they represent a traveller who took an unusual journey.

Analysis of Recurrence Rate

Consider two sets of observations made at two disjoint time periods T1 and T2 (it does not matter, for the purposes of this definition, whether the observations are made at the same geographical location).  The recurrence rate R is given by
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where V(T1,T2) is the number of vehicles seen in both sets of observations and V(T2) is the number of vehicles seen in time period one.  In other words R is the percentage of vehicles seen in the set of observations at time period T1 also seen in time period T2. In the case of the data observed here, due to the problem of false matches the quantity V(T1,T2) can only be estimated.  The simple probabilistic correction method is used.  To increase the reported recurrence rate, “trimming” is performed as described earlier so the first site is only measured between 8:20 and 8:40 whereas the second site is analysed over the whole data period. 

	
	 27/6/00 
	 28/6/00 
	 6/9/00 
	 7/9/00 
	 8/9/00 

	27/6/00
	 107.6 (99.7) 
	 47.3 (39.0) 
	 24.3 (17.8) 
	 24.6 (18.1) 
	 25.2 (18.8) 

	28/6/00
	 44.5 (36.7) 
	109.8(101.5) 
	 25.3 (18.7) 
	 25.1 (18.6) 
	 22.0 (15.6) 

	6/9/00
	 29.1 (21.3) 
	 32.2 (23.9) 
	 105.1 (98.6) 
	 45.4 (38.9) 
	 39.9 (33.6) 

	7/9/00 
	 29.6 (21.8) 
	 32.1 (23.7) 
	 45.6 (39.0) 
	107.9(101.4) 
	 43.2 (36.9) 

	8/9/00 
	 31.0 (23.2) 
	 28.8 (20.5) 
	 41.1 (34.5) 
	 44.3 (37.8) 
	 105.5 (99.2) 

	11/9/00 
	 29.7 (21.9) 
	 29.7 (21.4) 
	 37.4 (30.8) 
	 37.9 (31.4) 
	 37.2 (30.9) 

	13/9/00 
	 26.8 (19.0) 
	 30.6 (22.3) 
	 34.0 (27.5) 
	 33.6 (27.1) 
	 34.3 (27.9) 

	27/9/00 
	 31.4 (23.6) 
	 32.7 (24.4) 
	 34.8 (28.2) 
	 32.5 (26.0) 
	 32.4 (26.0) 

	18/10/00 
	 25.9 (18.1) 
	 30.7 (22.3) 
	 29.1 (22.6) 
	 30.9 (24.4) 
	 29.4 (23.0)

	
	11/9/00
	13/9/00
	27/9/00
	18/10/00
	

	27/6/00 
	 25.5 (18.8) 
	 20.2 (14.3) 
	 26.8 (20.1) 
	 22.2 (15.5) 
	

	28/6/00 
	 23.9 (17.2) 
	 21.7 (15.8) 
	 26.2 (19.6) 
	 24.7 (18.0) 
	

	6/9/00 
	 38.3 (31.6) 
	 30.7 (24.8) 
	 35.5 (28.8) 
	 29.9 (23.2) 
	

	7/9/00 
	 39.1 (32.4) 
	 30.5 (24.6) 
	 33.3 (26.6) 
	 31.8 (25.1) 
	

	8/9/00 
	 39.3 (32.6) 
	 31.9 (26.0) 
	 34.0 (27.3) 
	 31.0 (24.3) 
	

	11/9/00 
	108.4(101.6)
	 36.0 (30.1) 
	 37.5 (30.8) 
	 30.3 (23.6) 
	

	13/9/00 
	 40.9 (34.2) 
	110.0(104.1) 
	 34.6 (27.9) 
	 32.8 (26.1) 
	

	27/9/00 
	 37.6 (30.9) 
	 30.6 (24.7) 
	106.7(100.0) 
	 39.2 (32.5) 
	

	18/10/00 
	 30.3 (23.6) 
	 28.9 (23.0) 
	 39.0 (32.3) 
	 104.1(97.4) 
	


Table 1: Recurrence rate as percentage at Lendal Bridge site L.

	
	 25/6/01 
	 26/6/01 
	 27/6/01 
	 28/6/01 

	25/6/01
	 123.7 (107.7) 
	 57.5 (42.2) 
	 55.8 (40.3) 
	 55.4 (39.1) 

	26/6/01
	 54.7 (38.8) 
	 116.0 (100.7) 
	 61.0 (45.5) 
	 62.6 (46.3) 

	27/6/01
	 54.9 (38.9) 
	 55.3 (40.0) 
	 116.6 (101.1) 
	 64.2 (47.9) 

	28/6/01
	 56.3 (40.3) 
	 59.2 (43.8) 
	 61.0 (45.5) 
	 130.5 (114.2) 

	29/6/01
	 54.1 (38.1) 
	 48.6 (33.2) 
	 53.9 (38.4) 
	 57.8 (41.5) 

	2/7/01
	 56.2 (40.2) 
	 55.1 (39.8) 
	 54.0 (38.5) 
	 57.7 (41.4) 

	3/7/01
	 50.6 (34.7) 
	 61.0 (45.7) 
	 55.9 (40.5) 
	 59.0 (42.7) 

	4/7/01
	 50.0 (34.0) 
	 54.7 (39.4) 
	 56.2 (40.7) 
	 58.9 (42.6) 

	5/7/01
	 50.4 (34.4) 
	 49.6 (34.3) 
	 50.4 (34.9) 
	 61.0 (44.7) 

	6/7/01
	 44.5 (28.5) 
	 51.4 (36.1) 
	 50.9 (35.4) 
	 52.4 (36.1) 

	11/7/01
	 44.1 (28.2) 
	 49.7 (34.4) 
	 54.5 (39.0) 
	 56.9 (40.6) 

	12/7/01
	 43.9 (27.9) 
	 46.4 (31.0) 
	 48.6 (33.1) 
	 52.8 (36.5) 

	13/7/01
	 42.7 (26.8) 
	 39.6 (24.3) 
	 46.3 (30.8) 
	 46.7 (30.4) 

	16/7/01
	 50.4 (34.4) 
	 44.4 (29.1) 
	 46.9 (31.4) 
	 48.9 (32.6) 


Table 2: Recurrence rate as percentage at Fishergate site A.

A typical site from the Lendal survey (site L) with recurrence rates is shown in Table 1 a partial table for Fishergate site A is also shown in Table 2.  The raw recurrence rate is the main figure and the figure in brackets is adjusted by the probabilistic correction. The diagonal (in bold) is the match of a day with itself and should (after correction) be exactly 100%.  The reason it is over 100% in the uncorrected data is that a plate may match with more than one plate in the other data set.  The shaded rows and columns are those days affected by the fuel crisis.  Note that the recurrence rate of a day with itself is not considered in the analysis in the next section.

A number of features are evident from these tables.  Even considering the unshaded cells, the recurrence rates are markedly low, dropping to around 15% when days observed are several months apart and to 25% even when the days are less than three weeks apart.  Even for days close together the recurrence rate is always lower than 50%.  The majority of the rush hour in a relatively congested city does not seem to consist of the same drivers travelling day after day.   This corresponds with the work of other authors as reported in the introduction.

Modelling recurrence rates

A linear model is fitted to the recurrence rate data, 
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where R is the recurrence rate, d is the number of days separating the two surveyed days (not including weekends), Iw is an indicator variable which is 1 if the two survey days are in different weeks and Id is an indicator variable which is 1 if the two survey days are on the same day of the week.  

	Site
	(0
	(1
	(2
	(3
	R2
	Ra2
	p-value

	A
	42.2 (0.1%)
	-0.800 (0.1%)
	-3.35

(1%)
	5.41 (0.1%)
	0.560
	0.545
	1.73e-15

	B
	24.6 (0.1%)
	-0.476

(low)
	-3.40 (low)
	0.0966 (low)
	0.060
	0.022
	0.198

	C
	37.6 (0.1%)
	-0.510 (0.1%)
	-3.00

(5%)
	4.39 (0.1%)
	0.407
	0.386
	6.79e-10

	D
	37.4 (0.1%)
	-0.780 (0.1%)
	-2.35 (10%)
	5.18 (0.1%)
	0.567
	0.556
	1.32e-11

	E
	53.5 (0.1%)
	-0.731 (0.1%)
	-5.36 (0.1%)
	2.90 

(1%)
	0.656
	0.644
	<1e-15

	F
	34.2 (0.1%)
	-0.597 (0.1%)
	-2.46 (low)
	2.01 

(low)
	0.267
	0.242
	5.36-6

	G
	40.1 (0.1%)
	-1.00 (0.1%)
	-4.32 

(1%)
	5.11 (0.1%)
	0.630
	0.614
	6.18e-16

	H
	25.5 (0.1%)
	-0.360 

(1%)
	-1.23 (low)
	3.35 

(1%)
	0.234
	0.203
	0.000180

	I
	35.9 (0.1%)
	-0.831 (0.1%)
	-3.23 

(1%)
	3.70 

(1%)
	0.562
	0.540
	1.36e-15

	J
	39.2 (0.1%)
	-0.412 

(1%)
	-5.41 (0.1%)
	2.49 (10%)
	0.413
	0.389
	1.27e-8

	K
	42.7 (0.1%)
	-0.719 (0.1%)
	-4.87 (0.1%)
	3.49 

(1%)
	0.650
	0.636
	<1e-15

	All 
	39.0 (0.1%)
	-0.666 (0.1%)
	-3.71 (0.1%)
	3.72 (0.1%)
	0.226
	0.222
	<1e-15


Table 3: Model fitting for Fishergate matches 8:20-8:40 am against full data.

The results of the model fitting are shown in Table 3. At the majority of sites, all modelled parameters were significant. The exceptions are site B which has extremely low traffic and sites F and H. Apart from these sites, the models all have quite high R2 values indicating that the model, simple as it is, explains a good deal of the variability of recurrence rate.  The exception is the final row.  The model parameters all have the signs expected, that is, recurrence rates are higher if the two days are on the same day of the week, lower if they are significantly far apart in time and lower still if they are in different weeks.

The final row shows a combined model for all sites.  This has all parameters significant but a lower R2 value than the other successful models.  This could indicate that some of the variability in recurrence rate is site dependant and the final model does not capture this. This hypothesis is backed up by the fact that the intercept parameter is very different across the different sites.   It is possible that some particular geographical features make some sites more likely to have higher recurrence rates.

Discussion

The modelling in this section shows evidence for an effect that might be thought of as the “see you next Wednesday” effect.  That is to say, the consistency of traffic is higher if the two days considered are the same day of the week.  This could be a pool of drivers who are “Wednesday drivers” or it could be a pool of drivers with a consistent working pattern that happens to have a daily component (for example, they drive to work on Mondays through to Thursdays but car share as a passenger on Fridays).  There is certainly not enough information available to definitively settle this issue with this data set.  

The recurrence rate of traffic falls off extremely quickly even in the short period of time measured.  The model shows a reasonable fit to a linear fall off with weekday and an additional term if the days are in separate weeks. It cannot be told whether this is due to route choice, departure time-choice that moves the driver outside the measured period or some other choice element such as destination choice, mode choice or even a choice not to travel.

The implications for modellers developing a simulation model of an urban system are two fold.  Firstly, if the model is a learning model, it may be that the period a driver has to learn about a route is quite short.  The low recurrence rate which falls off quickly may well mean that the typical driver does not have long to learn about a journey before making a change.    Also it may be that there are a considerable number of drivers who are not habitual drivers on that network even in the rush hour.  Of course, the source of the fall off in recurrence rate is unknown.  Some of it may be connected with vehicle replacement and some of it may be associated with shifts in destination and overall vehicle behaviour.  

TRANSIENT rESPONSES TO INTERVENTION

Road traffic engineers often assume that the initial “day one” results of an intervention will lessen in subsequent days.  This is sometimes thought of as the “It’ll be alright by Friday” effect, the idea that a poor performance on Monday may well be acceptable by Friday as the network somehow adjusts to the change.  In this section the changes to flows and travel times as a result of the Fishergate intervention are considered.  For the purposes of the analysis here the 13th July is considered to be a day without intervention (since the closure was temporality removed that day).  

Initial Data Analysis

Firstly the raw flows are normalised by site (so each site has mean zero and unit variance). The question is then does the flow increase or decrease as a result of the intervention.  A t-test is used to compare the mean flow when the closure is in place and when it is not.

The mean normalised flow is -0.0811 with the closure in place and 0.0811 when it is not.  However, a 95% confidence interval for the mean when the closure is not in place is given by (-0.153, 0.478) and the p-value is 0.312 indicating that there is no statistically significant change in flow over all sites as a result of the closure.  This is unsurprising since some sites were chosen as rerouting sites (that is sites where the flow would be expected to increase with the closure in place because drivers switch routes to use that site).

One approach is to separate the sites into those that might be expected to have a decrease in flow, as they would be directly affected by the closure, and those that might be expected to have an increase in flow, as they are potential rerouting sites.  Sites A, C and D were chosen as those most likely to have a decrease in flow and sites F, G and K were chosen as potential rerouting sites.  

A t-test comparing the flow at sites A, C and D during the closure with the flow at other sites and times showed that the mean flow decreased as expected, from 0.121 before closure to        -0.764 afterwards.  The p-value for the test was 8.19e-6 indicated a strongly significant difference in the means indicating that it is likely that due to this closure the flow was reduced overall at these sites.

A t-test comparing the flow at sites F, G and K during the closure with the flow at other sites and times showed that the mean increased as expected from -0.058 to 0.39 with a p-value of 0.031.  This indicates that, overall, the flow seemed to increase over these sites.

Finally, the effects at each site were separated using a linear model as follows:
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where E[f] is the expected value of the flow, the ( variables are the various parameters of the model and IA, IB etc are indicator variables which are 1 at the site in question if the closure in place and 0 otherwise.  The results of fitting a linear model are given in Table 4.

	(0
	(A
	(B
	(C
	(D
	(E
	(F
	(G

	0.081 (low) 
	-0.995      1%
	-0.607     10%
	-0.719      5%
	-0.818      5%
	0.285   (low)
	0.129   (low)
	0.029   (low)

	(H
	(I
	(J
	(K
	R2
	Ra2
	df
	p-value

	0.501   (low)
	0.219   (low)
	-0.428   (low)
	0.785      5%
	0.175
	0.108
	11, 134
	0.005


Table 4: Flow changes by site at Fishergate
A model with so many parameters should be treated with caution. However, from this modelling it seems that sites A, B, C and D both have a statistically significant reduction in flow and site K has a statistically significant increase.  These directions coincide with what might be expected considering their physical location.  Site K is the most obvious rerouting as a result of the intervention and sites A, B, C and D are those sites most directly affected.  The R2 statistic is relatively low indicating that this model explains only a small amount of the variation in flows observed.  However, this would certainly be expected in such a simplistic statistical model.

Modelling Transient Response

In this section the transient response to the intervention is considered with a simple linear model.  This model is fitted to the travel times and flows between site pairs.  These times and flows are calculated using the Maximum Likelihood Estimator method as described earlier.  The site pairs were chosen as those pairs that seem to be likely to be most affected by the intervention.  In making these comparisons the data has been “trimmed” by removing the last half hour of observations from the first site of the pair to avoid the incomplete journeys problem as described earlier.

Flow and travel time data for each site pair was produced using the Maximum Likelihood Estimator and these results then individually fitted to a linear model for each site pair considered.  The model used was
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where y represents either flow or travel time Ic is an indicator variable which is 1 if the closure is in place and 0 otherwise and D is a variable indicating the number of days since the closure occurred (not including weekends) or 0 if the closure is not in place. For clarity, the variable D has the value 1 on the 3rd July, 2 on the 4th July and 10 on the last day surveyed, the 16th July.  It is expected that the parameters (2 and (2 will have different signs since one represents the effect of the closure and the second represents the return to normal effect.

	Site Pair
	(0
	(1
	(2
	R2
	Rz2
	df
	p-value

	E-A
	214    0.1% 
	-18.5   (low)
	2.72   (low)
	0.228
	0.087
	: 2, 11
	0.241

	E-B
	13.5    0.1%
	-2.56   (low)
	0.257   (low)
	0.122
	-0.054
	2, 10
	0.523

	E-F
	48.0    0.1%
	4.50   (low)
	-0.519   (low)
	0.014
	-0.165
	2,11
	0.926



	E-K
	216    0.1%
	55.4     1%
	-3.47   (low)
	0.658
	0.589
	2,10
	0.005

	A-D
	736    0.1%
	-61.4      5%
	   -1.38   (low)
	0.622
	0.538
	2,9
	0.013

	F-G
	26.8   0.1%
	7.05   (low)
	-0.836   (low)
	0.158
	-0.011
	2,10
	0.424

	C-A
	574    0.1%
	-20.9   (low) 
	-1.55   (low)
	0.292
	0.164
	2,11
	0.149

	A-J
	138    0.1%
	-27.2      1%
	1.28   (low)
	0.587
	0.504
	2,10
	0.012

	G-C
	349   0.1%
	-28.7   (low)
	1.48   (low)
	0.250
	0.100
	2,10
	0.238

	D-I
	77.9    0.1%
	-20.8      5%
	2.29     10%
	0.431
	0.305
	2,9
	0.079

	H-I
	211   0.1% 
	19.2   (low)
	-1.28   (low)
	0.205
	0.028
	2,9
	0.357

	F-A
	83.6    0.1%
	6.24   (low)
	-2.11   (low)
	0.254
	0.119
	2,11
	0.199


Table 5: Linear Model of flow response for Fishergate site-pairs

The results of the modelling for flow across the site pairs are shown in Table 5.  The rows shaded are those models where parameters other than the intercept had statistical significance.  The other site pairs cannot be said to show a statistically significant response to the intervention.  In some ways this is not surprising since a three parameter model is being fitted to at most fourteen data points.  Site pair E-K shows an increase in flow as a result of the intervention which is as expected since E-K is a potential rerouting.  Similarly, site pairs A-D, A-J and F-A show decreases in flow and again, this might be expected since those pairs are directly affected by the closure.  D-I shows a return to normal effect with a 10% statistical significance.  However, this result should be treated with caution, when fitting so many models, some results are likely to show as having statistical significance at this level.

	Site Pair
	(0
	(1
	(2
	R2
	Rz2
	df
	p-value

	E-A
	7.19    0.1%
	3.72      5%
	-0.311   (low)
	0.453
	0.353
	2,11
	0.036

	E-B
	7.92    0.1%
	1.43   (low)
	0.005   (low)
	0.130
	-0.044
	2,10
	0.497

	E-F
	7.36    0.1%
	-0.285   (low)
	-0.037   (low)
	0.299
	0.171
	2,11
	0.142

	E-K
	6.39    0.1%
	-0.814   (low)
	-0.114   (low)
	0.268
	0.121
	2,10
	0.211

	A-D
	0.443    0.1%
	-0.126   (low)
	0.051     10%
	0.321
	0.171
	2,9
	0.175

	F-G
	2.59    0.1%
	-0.927   (low)
	0.008   (low)
	0.380
	0.256
	2,10
	0.092

	C-A
	1.08    0.1%
	2.06    0.1%
	-0.162    0.1%
	0.883
	0.861
	2,11
	<0.001

	A-J
	4.27    0.1%
	-0.393   (low)
	-0.015   (low)
	0.230
	0.076
	2,10
	0.271

	G-C
	1.71    0.1%
	0.650   (low)
	0.062   (low)
	0.591
	0.509
	2,10
	0.012

	D-I
	5.16    0.1%
	-1.57     10%
	0.177   (low)
	0.309
	0.156
	2,9
	0.189

	H-I
	1.22    0.1%
	-0.174   (low)
	0.055     10%
	0.358
	0.215
	2,9
	0.136

	F-A
	3.77    0.1%
	1.67      5%
	-0.130   (low)
	0.441
	0.339
	2,11
	0.042


Table 6:Linear Model of travel time response for Fishergate site pairs.
The results shown in Table 6 show the equivalent results to Table 5 but considering travel time instead of flow.  Again the shaded rows show those models with statistically significant parameters other than the intercept.  Site pairs E-A, C-A and F-A all showed an increase in travel time as a result of the intervention.  These sites were leading up to the intervention and hence such an increase would be expected.  At site pair C-A, one of the pairs likely to be most strongly affected by the intervention, a return to normal effect was observed with a strong significance (0.1% level).  

Site pairs A-D, H-I and D-I showed a decrease in travel time and a “return to normal” effect though only A-D and H-I had statistically significant return to normal effects and at the lowest level of significance considered.  These site pairs were “after” the intervention on the road network and it might be expected that travel times would decrease since the reduced flow would allow those drivers past the intervention to travel more quickly.

Discussion

Overall, the effects of the intervention on flows and travel times were subtle but detectable in statistical modelling.  The statistical models showed that some sites experienced an increase in traffic as a result of the closure and some sites experienced a decrease, however, six of the eleven sites considered had no significant change of flow as a result of the intervention being studied.

Modelling was carried out to attempt to fit a model that contained both an initial response and a “return to normal” effect.  Although the model was only successful on a few of the site pairs considered this would be expected given the small effect on flows previously established.  Four models on site pairs were found with a statistically significant “return to normal” effect and one of these was significant at the 0.1% level.  Further this was an effect on the travel time for a site pair that might reasonably be expected to be amongst the most strongly affected. This provides reasonable evidence for the “it’ll be alright by Friday” effect.  The latest observation here was only ten weekdays after the initial intervention.   Further studies would certainly be necessary to establish the nature of a longer-term effect.  The model here considered only a linear “return to normal” effect.  While this is certainly not the case over a longer period of time, it was not considered that sufficient data were available to consider a more sophisticated model.

The statistical model described here could have considerable implication for simulation modelling of transport systems.  Most of the urban traffic models available today are aimed at answering questions about the results of a change and some would be able to provide an estimate as to how long the results of a change would take to settle down.  However, as far as the author is aware, no models have had the duration of these transient effects calibrated against real data.  If the modelling of transient responses is to be improved then such calibration via studies of this type is vital.

Driver Rerouting Response

Finally, a model was created to attempt to assess the level of rerouting as a result of the intervention.  This problem was assessed by considering the switch of drivers from site A to site K.  These sites were chosen because A was the site of the intervention and K was the only site that had been shown to have a significant increase in traffic after the intervention.  

The rerouting problem was considered by looking at the recurrence rate between site A and K on separate days.  As with the previous recurrence rate experiment, the data is “trimmed” by reducing the data to just that from 8:20 to 8:40 on the first day in order to increase the recurrence rate seen.  That is, the percentage of vehicles seen at site A on one day and site K on a different day.  If this increased after the intervention then this could be a result of drivers from A rerouting to K as a result of the closure.  Let R(d1,d2) be the recurrence rate between site A on day d1 and site K on day d2.  Because no (or extremely few) vehicles would be seen at A and K on the same day then measurements are not made where d1 = d2. The following model was then fitted
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where R is the recurrence rate, Ic1 is an indicator which is 1 if d1 is a closure day D1 is the number of days d1 is since the closure (or 0 if it is an open day) as described in the previous section.  Ic2 and D2 are the equivalent quantities for d2.  The results of the model fitting are seen in Table 7.  

	(0
	(1
	(2
	(3
	(4
	R2
	Ra2
	df
	p-value

	1.15e-4 0.1%
	-1.46e-5

1%
	3.1e-6

0.1%
	2.55e-5

0.1%
	-1.73e-6

5%
	0.223
	0.204
	4,164
	1.87e-8


Table 7:Linear model of recurrence rates from site A to site K.

As can be seen, all the parameters of the model are statistically significant.  The negative value for (1 indicates that the recurrence rate decreases if the first day considered is in a closure period.  The positive value for (3 indicates that the recurrence rate increases if the second day considered is in the closure period.  In other words, the percentage of drivers switching from A to K increases if we look at A before the closure and K during the closure.  This is consistent with drivers switching route from site A to site K as a result of the closure.  Meanwhile the parameters (2 and (4 have the opposite signs to (1 and (3 respectively.  This indicates that the effect becomes less as the closure is in place for longer.  This is consistent with the idea that initially a certain number of drivers swap their route from A to K when the closure occurs but fewer drivers do so as the time continues.  

	(0
	(1
	(2
	(3
	(4
	R2
	Ra2
	df
	p-value

	21.1

0.1%
	-6.33

0.1%
	0.421

5%
	9.90

0.1%
	-0.398 5%
	0.490
	0.478
	4,164
	<1e-15


Table 8: Linear model of travellers from site A to site K.

If the same model is fitted to the estimated number of matches between the two sites instead of the recurrence rate then similar results are seen.  The results are summarised in Table 8. This table gives some idea how small the effects being measured are.  The estimated number of drivers that would take A before the closure and K after the first day of closure would only be approximately 10 according to this model.  As can be seen, the effects being estimated in this model are very small and hard to pick out from the noise.

Discussion

The model fitted here shows evidence consistent with a small number of drivers changing route from site A to site K as a result of intervention.  Perhaps even more interestingly, it shows evidence of a return to normal effect as time goes on.  It provides further evidence for an “It’ll be alright by Friday” effect.  It should be stressed that all these recurrence rate effects may be subject to the decays in recurrence rate described in the previous section about recurrence rate.

The results in this section have an interesting implication for modellers.  These results appear to show an initial “over-reaction” effect followed by a settling down effect.  Some dynamic day-to-day models could well capture this behaviour but more real-life data analysis of this type would be needed to calibrate how many days it would take for this rerouting and settling down to occur. 

Conclusion

The three main sections of this paper look at fitting different statistical models to data gathered on a traffic system.  The aim is to better understand the behaviour of the traffic system.  None of the results described are particularly unexpected but they are, nonetheless, important things to quantify if researchers are to produce calibrated simulation models of urban road networks.  Three separate modelling results were obtained.

Firstly, recurrence rate at a site was shown to reduce sharply as the number of weekdays between the two observations increased.  This recurrence rate reduced further if the days observed were in different weeks and increased if the days were the same day of the week (the “See you next Wednesday” effect.   The recurrence rate was observed to differ between different sites.

Secondly, the effect on flows and travel times of a capacity reducing intervention was investigated.  It was shown that in some cases this effect could be separated into an initial response and a dying down of this initial effect.  This corresponds to the engineering rule of thumb that “It’ll be alright by Friday”, the idea that a change producing a large effect when initially implemented may well settle down within a short space of time.

Thirdly, the effect on rerouting of the intervention was investigated.  Recurrence rates of traffic between two different sites likely to be the main two sites for rerouting was fitted to a statistical model.  The model was shown to be consistent with an initial rerouting and a dying down of this response as the intervention continues.  This is consistent with the idea that the initial rerouting was “too much” and this was subsequently corrected as time continued, as if the system over-reacts and then corrects.

Critical discussion

The models described here are certainly far from perfect.  Due to the relative scarcity of data (and uncertainty in some measurements) the author deliberately kept the number of parameters modelled small and avoided using heavily parameterised models.  For example, the linear dependence of recurrence rate on the difference in weekdays between the two days on which measurements take place is certainly only valid for a short time period (apart from anything else, this model would predict large negative recurrence rates after a few months).  More data could build more sophisticated models of how the recurrence rate falls off in longer time periods.  

All the work here depends on investigation of two interventions in a single city both within a year of each other.  There is no way of knowing how similar such measurements would be if made while studying other cities and other interventions.

The data worked with is prone to a number of measurement errors (as previously described).  This will certainly affect the results given.  While it is accepted that, for example, the absolute level of the recurrence rate will be subject to some correction (perhaps large) due to these recording errors, it is hard to see how this could systematically affect the direction of changes.  Therefore, while the absolute levels of the parameters in this paper may not be correct in all cases, the direction of the changes given seem more certain. 

Finally, it should again be stressed that the author does not expect a general audience to have a particular interest in the exact behaviour of the traffic as a result of this particular intervention in this particular city. Indeed, these studies could be considered as a single data point with very different results would be obtained in different cities or at different times.  A main aim of this paper is to stimulate further modelling and research along the lines described and, in this way, to understand how well these results generalise.

Implications for modelling and further research

Perhaps what is of interest is of most interest in this paper is the techniques used could easily be used on subsequent data sets (as GPS and licence plate recognition cameras become more common it may well become easier to get good data sets for this purpose).  This would establish the generality of these results.  In turn this could then be used to inform the development of models of an urban road network.

In particular it may become very useful for models to be able to predict the transient response of a scheme on the earliest days after implementation and to know, not just what is likely to happen on day one but how long it will take for the situation to improve (assuming that an improvement is predicted).

This paper points to a number of directions for further research.  If, in the future, data sets, from GPS or licence plate cameras become more readily available then this type of modelling can be used to investigate both the ambient variability of road traffic and also how driver behaviour is affected by interventions.

If network modellers truly wish to capture the on-street behaviour of drivers who learn and change their route as a result of changes to the network then those models must be calibrated against real data.  The statistical models in this paper provide a starting point for modellers who want their learning drivers to behave in a realistic way, including the fact that drivers do not travel at the same time to the same destination every day.  Instead driver behaviour will change as time goes on and that day of the week effects may have importance.  

In addition, modellers may wish to be able to model how drivers on a network will respond to an intervention.  If drivers do, as the evidence here seems to suggest, have an initial response and a settling down period then it may be important to know how long this period lasts and how severe the intermediate effects might be.  

If these results could be backed up by further studies they would give a sound empirical basis for setting learning parameters and memory parameters in models that consider how individual drivers reroute as day follows day.
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