
Scalable Peer-to-Peer Streaming
for Live Entertainment Content

E. Mykoniati, R. Landa, S. Spirou, R. Clegg, L. Latif, D. Griffin, M. Rio

Department of Electronic and Electrical Engineering
University College London

Abstract
We present a system for streaming live entertainment content over the Internet originating from a
single source to a scalable number of consumers without resorting to centralised or provider-
provisioned resources. The system creates a peer-to-peer overlay network, which attempts to
optimise use of existing capacity to ensure quality of service, delivering low start-up delay and
lag in playout of the live content. There are three main aspects of our solution. Firstly, a
swarming mechanism that constructs an overlay topology for minimising propagation delays
from the source to end consumers. Secondly, a distributed overlay anycast system that uses a
location-based search algorithm for peers to quickly find the closest peers in a given stream.
Finally, a novel incentives mechanism that encourages peers to donate capacity even when the
user is not actively consuming content.

1 Introduction
Live content delivery over the Internet is highly desirable, but challenging. Removing the need
for deploying specialised resources would allow anyone to broadcast and reach consumers
anywhere in the world. This facility could be used by many applications – the most obvious being
IPTV (Internet Protocol Television) for the distribution of live audio-visual content, but other
applications such as real-time multi-user 3D environments and games could also be envisioned.

While multicast and QoS (Quality of Service) mechanisms at the network layer seem ideal for
delivering live entertainment content, deployment is still limited. Lack of multicast can be
overcome, although not efficiently, by using unicast connections to consumers. Lack of network
layer QoS however, inevitably impacts QoE (Quality of Experience) observed as interruptions to
the playback of many currently deployed client/server applications. Borrowing from traditional
CDNs (Content Delivery Networks) for web content, IPTV service providers currently fence off a
small portion of the Internet and deploy native multicast, traffic differentiation, abundant
capacity, and dedicated infrastructure. Although this walled garden gives acceptable results –
even for 8Mb/s HD (High Definition) H.264 TV channels – it is neither scalable nor cheap.

Application-layer, multicast-like solutions typically rely on organised distribution trees [1], so
they are sensitive to churn (frequent peer arrivals and departures). On the other hand, file
distribution systems like BitTorrent [2] achieve high resilience to churn with swarming: splitting
the file into small data units and ensuring that these pieces are distributed amongst the set of peers
participating in the download. In this way peers obtain parts of the file from many peers in
parallel, increasing resilience. However, content delivered in this way can only be consumed once
the full download has been completed.

Variations of BitTorrent for on-the-fly consumption of swarmed content such as PPLive [3]
suffer from relatively long start-up delay and playout lag. In addition they often require provider-
provisioned resources (super peers) to assist content distribution by providing supplementary

upload capacity beyond the capacity provided by the consuming peers.

Our solution is a peer-to-peer live streaming system where all resources are provided by the peers
themselves. All peers participate in the distribution and consumption of one or more streams
produced at a single source – the peercaster. Upon joining a stream, peers attach themselves to
other peers according to distributed topology management and capacity allocation algorithms that
aim at minimising start-up delay and playout lag across the entire swarm.

The paper is organised as follows. The main aspects of the system are considered independently
in Sections 2 to 6. Section 2 discusses the problems to be addressed by a swarming system
delivering real-time content. Section 3 discusses the construction of overlay networks to deliver
swarmed media streams with Quality of Service considerations. Section 4 discusses how the peers
participating in a stream can be discovered in a scalable way. Section 5 discusses how the
participation of non-consuming peers can be organised to increase the capacity of the system.
Section 6 describes an incentives mechanism that enables claiming past contributions from peers
with no prior interaction. Following this description of the main components of our solution,
Section 7 goes on to describe how they fit together to form an overall system for streaming live
media content over a fully distributed peer-to-peer network. Finally, Section 8 presents our
conclusions.

2 Real-time Swarming
Peer-to-peer live streaming systems overcome lack of native multicast and QoS by implementing
such functionality at the application layer. The resultant overlay receives the live stream from an
encoding element (e.g. a capture device) at the peercaster, distributes it through the peers, and
delivers it to a decoding element (e.g. a player) at the consumer. The system performance
generally differs across consumers and is correlated to QoE through three metrics:

• Start-up delay: The time between a consumer's request to view a particular stream and the
stream beginning to play. Low start-up delay allows quick switching between channels.

• Playout lag: The delay between a stream data unit being sent by the peercaster and the same
data unit being viewed by the consumer. Low playout lag means that stream viewing is more
“live”.

• Playout continuity: the percentage of stream data units successfully played at the correct time
by the consumer. High playout continuity enables viewing with minimal distortion.

Early peer-to-peer streaming systems mimicked native multicast and organised peers in a tree
with the peercaster at the root. After an initial consumer request, the entire stream would be
pushed to the consumer from a peer with available upload bandwidth and probably in close
network proximity [1]. This scheme gives good start-up delay and playout continuity if the tree is
stable under churn, and good playout lag if the tree is also short (low number of peers between
peercaster and consumer). The highly dynamic Internet environment has so far kept tree/push
systems within research settings.

Recent deployments of peer-to-peer live streaming systems [3] are based on the fundamentally
different and inherently resilient mesh/pull (swarming) scheme: a stream is segmented at the
peercaster into data units called chunks and each consumer independently optimises its playout by
selecting which chunks to pull from which peers. The resultant interconnection graph, as shown
in Figure 1, is not a regular grid nor fully connected, but it is called a mesh nonetheless.
Mesh/pull streaming systems have built on the success of the BitTorrent file distribution
mechanism, and owe their resilience to local optimisation of delivery and free selection of peers
and chunks. Similar to BitTorrent, the set of peers exchanging chunks constitute a swarm. Unlike
BitTorrent, chunks must leave the overlay and reach the decoder at the consumer in order and in

real-time. Furthermore, unlike VoD (Video on Demand), all chunks are not available at the time a
peer selects the stream; rather they are created in real-time at the peercaster.

Figure 1 – Real-time swarming

A mesh/pull peer, requests and receives chunks from different peers in the swarm. To absorb the
variance in chunk reception over different sources, and to cope with peer failures in times of high
churn, a consumer maintains a playout buffer. The playout buffer contains chunks yet to be
played out and slots for chunks yet to be retrieved. It is marked by the playout point, which
indicates the next chunk to be delivered to the decoder. Playout begins once the number of
received consecutive chunks is considered sufficient to support playout continuity at the stream
rate, marking the start-up delay and the initial playout lag.

A large playout buffer increases playout continuity because it absorbs more jitter but it also incurs
higher start-up delay and playout lag. The variance experienced in chunk reception is typically
smaller for less “live” chunks, as these are already distributed across a large set of peers. More
“live” chunks on the other hand are harder to find, and so retrieving them in time to preserve
continuity requires a very aggressive strategy. The particular choice in the trade-off between
playout lag and playout continuity depends on the capabilities and the position of each peer in the
swarm, and must follow the preferences of the user, it is therefore subject to local optimisation by
the peer.

The best performance of currently deployed swarming systems can be summarised as having 20
seconds start-up delay and 1 minute playout lag with acceptable playout continuity for streams of
350Kbit/s. This is far from even the average performance of current IPTV walled gardens that
exhibit 2 seconds of start-up delay and 2 seconds playout lag with good playout continuity for
streams of 3.5Mbit/s.

The following section discusses principles for selecting peers to retrieve chunks from, with the
objective to improve both playout lag and continuity for all the peers in the system, irrespectively
of their position in the trade-off between playout lag and playout continuity.

3 A QoS-Based Overlay
The data connections for retrieving chunks, determined by the local strategies of the individual
peers, form an overlay network. The delay and throughput (QoS) over each connection and along
the end-to-end path have a direct impact on the QoE experienced by each consumer. The total
throughput achieved over all the incoming connections of a consumer must be enough to sustain
the stream rate to ensure playout continuity. Also, minimising the playout lag is achieved by
minimising the delay over the end-to-end path from the peercaster to the consumer. We define
this path delay as the accumulated link propagation and the processing/queuing delays at each
sending peer.

A poor overlay topology is one where traffic traverses long overlay links disregarding direction or
locality. In addition to the negative impact on playout lag for the peers this also increases traffic
in the underlying network. If the overlay is designed more intelligently, by interconnecting local
peers whenever possible, this has the side-effect of benefiting the ISPs who will experience less
traffic over expensive inter-domain links.

Peers need an estimate of network delay to other peers to determine which ones are in proximity.
It is impractical to establish a connection, probe and measure the delay to every peer before
selecting only the nearest few. To address this issue, recently developed techniques can obtain
delay space coordinates based on only a few prior measurements [4]. Network delays are mapped
to a synthetic coordinate space using metric space embedding (see Figure 2); delay between any
two peers can be approximated with their geodesic metric distance in delay space.

Figure 2 – Mapping peers to synthetic delay coordinates

A star (client/server) topology where all peers directly connect to the peercaster is the ideal for
minimising delay. However, this is unrealistic as it implies that the peercaster has sufficient
upload capacity to serve all peers. The best approximation of ideal direct connections to the
peercaster is achieved when peers establish connections with their closest peers in the direction of
the peercaster. Always favouring short connections, though, results in paths with a large hop-
count, thus potentially long delays due to accumulated processing and queuing times at each hop.

Our simulation results indicate that a compromise of establishing a few longer connections to
serve as “jumps” towards the peercaster is beneficial in terms of reducing hop-count without
requiring increased capacity at the peercaster.

Peers are not uniformly distributed across the delay space. Rather they tend to cluster following
population density but modified by the Internet topology and associated delays. Connections
within the same domain have small delays, whereas one satellite inter-domain link is enough for
the delay to soar. Peers that only select fast local connections may fail to reach other peers that
are close enough to the peercaster to actually get the stream. Therefore, a cluster of peers needs to
have enough long distance (slow) connections to reach other remote peers with the required
upload capacity and access to the stream data.

Once a peer has determined the set of feasible peers it prefers on topological and delay grounds it
will usually request and receive data from only a subset. Decisions on which peers to download a
particular chunk from depend on the potential senders’ playout lag and chunk availability and
other factors such as the actual network delay experienced over the links, their available upload
bandwidth, stability, trust, and past performance.

The following section elaborates on the distributed discovery of peers to establish the required
connections in the direction of the peercaster.

4 Scalable Peer Discovery
A critical aspect of our system is the search for other peers that are available to send chunks of
the stream. When first connecting to a stream a peer wishes to quickly determine which other
peers can provide chunks and are also close in terms of delay. To achieve this we introduce the
concept of a local tracker (LT). Local trackers are ordinary peers that have the additional function
of listing peers carrying a stream in their local area. The scope of local areas is fluid: they split or
merge as they become over/under-loaded as peers join/leave the stream. Figure 3 shows an
example of three streams, their local areas and the underlying distribution of nodes on all streams.

Figure 3 – Peer clustering in local areas across multiple streams

As already mentioned a low start up delay is an important goal for the system and this involves

peers being able to quickly obtain a list of nearby peers carrying the stream it is interested in. To
achieve this task we developed a Distributed Overlay Anycast Table (DOAT) inspired by the
Chord DHT system [5]. The role of the DOAT is, when queried by a peer about a stream, to
quickly return the address of an LT which is near to that peer in terms of delay.

To facilitate the search task within the synthetic coordinate domain, network coordinates are
transformed to a single dimension. This is achieved using a space-filling curve which has the
property that if two locations are “close” on the curve they are also close in the original space (but
not vice versa). One particular curve that has been shown to have this property is the H curve [6].
Figure 4 shows a space-filling curve, generated with three iterations, and how nodes map to it. In
our system, this space-filling curve replaces the ring structure of a typical Chord DHT and, thus,
the distance in the DOAT ring structure corresponds to the distance in the network delay space
(with the potential error introduced by the space-filling curve).

Figure 4 – Distributed Overlay Anycast Table

The routing table of a DOAT node is, similarly to Chord, populated with neighbour DOAT nodes
at exponentially increasing distances in either direction of the DOAT ring. A DOAT routing entry
contains the next-hop DOAT neighbour node and the list of identifiers of the streams, for which
LT data can be reached through this DOAT neighbour node. To accelerate the process of
matching a stream identifier to a list, and to reduce the overhead of routing table updates, the list
of stream identifiers is aggregated into a Bloom filter [7]. In this case, the Bloom filter is the
result of setting to logical 1 all the bits corresponding to each of the k hash values of all the
identifiers in the list, and provides an efficient data structure to store and verify set membership.

Whenever a new LT for a particular stream is added, it registers with the closest DOAT node in
delay space and the stream identifier is added to the Bloom Filter of the local routing entry of that
DOAT node. Further, if the DOAT node had no previous route for the stream identifier of the
newly added LT, a routing update is sent to all its neighbours, signalling the existence of the new
route. Upon receiving a routing update from a neighbour node A, a DOAT node B updates the
routing entry associated with A, and further forwards the update to its neighbours that are further
away, in terms of their distance along the space-filling curve, than node A (closer nodes will
receive the update from nodes nearer to them). In order to reduce the frequency of messages, a
minimum interval is introduced over which routing updates are aggregated and sent over a single

routing update message.

To obtain the IP address of the closest LT carrying a given stream, peers issue a query with the
stream identifier to their closest DOAT node. The DOAT node then searches its routing table in
increasing order of distance, and the query is forwarded to the next-hop DOAT node of the first
routing entry whose Bloom filter matches the stream identifier. This is done recursively at each
DOAT node and the query propagates in logarithmically decreasing distances, until reaching the
DOAT node with an LT for the requested stream identifier in its local routing entry. The LT
discovered by this process is the closest LT to the querying peer in the requested stream.

5 Distributed Capacity Provisioning
Traditionally, QoS for multimedia services is provided through capacity over-provisioning and
service differentiation. These are impossible for large-scale, real-time video distribution overlays
with no control over their underlying infrastructure. Instead, the idea is to exploit the large,
aggregate upload bandwidth of the system to serve the consuming peers. This is possible
assuming that some peers will participate in the system without consuming stream content. We
call these non-consuming peers (NCPs). Through our incentives mechanism (see Section 6),
NCPs contribute to the distribution of chunks, in order to “redeem” these contributions later by
“purchasing” chunks for their own consumption.

When an NCP downloads a chunk it uses the upload bandwidth of another peer. To offset this
loss of system resources and to further optimise distribution an NCP conducts bandwidth
multiplication by downloading only a fraction of a stream’s chunks and uploading them as many
times as possible. So, NCPs increase the QoS for consuming peers, instead of just distributing
media traffic between themselves.

Another advantage of NCPs is the reduction of the playout lag when they are deployed
appropriately. This can be accomplished by encouraging NCPs, at stream bootstrap, to join in
order of their delay from the peercaster. The result is an interconnected web of bandwidth
multipliers with low playout lag. Consuming peers inherit this low playout lag when they connect
to a stream containing such organised NCPs.

Figure 5 – Performance enhancement with non-consuming peers

This effect can be seen in Figure 5, depicting the playout lag for a simulation of 100 NCPs and

1000 peers, distributed uniformly across a rectangular delay space with the peercaster at the
centre, and 140ms maximum delay between any peer and the peercaster.

6 Incentives
As it has been shown repeatedly [8], peer-to-peer systems where there is no contribution
accounting and associated incentives mechanism, can suffer from pervasive freeloading and
widespread quality degradation. Additionally, as detailed in Section 5, a QoS-based overlay
network requires peers to contribute resources to the system even if they are not interested in
consuming resources at the same time. This means that peers must be able to make contributions
towards some set of peers, and then redeem those contributions at a later time, and from a
different set of peers.

This problem is usually solved using reputation systems [9], where peers implement extended
“word-of-mouth” recommendation networks. However, most reputation systems are vulnerable to
identity-based attacks where a single peer commands legions of disposable identities, or where
peers lie about the contributions of other peers in an attempt to deny them access to network
resources. We propose an incentives mechanism where peers only keep track of the contributions
that they have given or received from specific neighbour peers, but are potentially able to use
those contributions with all peers. Additionally, our protocol is designed to ensure that peers are
unable to profit from multiple identities, and do not need to rely on possibly false third-party
information about the contributions of other peers.

In order to address these identity management issues peers use signed pseudonyms that their
neighbours can verify with public keys exchanged when the peers initially come into contact.
From then on, all communication between peers is digitally signed. Thus, contributions are
always bound to an identity, and peers gain nothing from having multiple identities: their
contributions will be simply split among them. Additionally, we propose the translation of
contributions to an abstract numerical trust value, which can be directly manipulated by the peers
and re-converted into contributions when necessary. The trust a peer A has to another peer B,
corresponds to the contribution peer A has received from peer B in the past, without offering
anything in return, and ought therefore to return to peer B in the future. Note that there is no
explicit interaction for payment. Instead, each peer maintains trust from/to other peers locally.

To enable peers to contribute to a set of peers but receive contributions from another, we propose
trust shifting. Trust shifting enables a peer to receive contribution from a peer it has no previously
established trust with, by shifting trust along a path of trust relationships among other peers.
Thus, any peer can perform contributions towards a given peer and then request to have this trust
shifted to a different peer, from which it can now request any service.

To accomplish this, each peer constructs a local view of the trust network. Its immediate
neighbours are found by direct experience, but neighbours further away are discovered using a
truncated, self-avoiding random walk algorithm that discovers high-trust paths preferentially. In
essence, each peer periodically advertises its local trust accounts. As these advertisements
necessarily traverse the peers who actually performed the contributions represented in their
account values, it is trivial to ensure that only truthful messages are propagated. Messages are
propagated preferentially through links with high trust in a probabilistic fashion. The probability
of messages being forwarded to a given neighbour peer is proportional to the local trust account
of this neighbour. Thus, an announcement has greater probability of traversing paths where trust
links have consistently high trust values.

In order to determine what is the maximum amount of trust that can be shifted to any particular
destination along the discovered trust connections, each peer runs an instance of a MaxFlow-
MinCut algorithm [10]. The shift itself is implemented through trust shift request messages that

are source-routed and execute the trust exchanges in a hop-by-hop basis. Once trust has been
shifted, it is essentially undistinguishable from trust acquired by direct contribution, allowing
peers to flexibly decide where to “spend” their accumulated trust.

7 Putting it all together
As discussed in the previous sections the system consists of multiple independent swarms
carrying different streams of real-time content. Peers participate in one or more streams when
they wish to consume or just distribute their content. To participate in a stream a peer must
discover and connect to other peers in the swarm carrying it and exchange chunks of content.
Knowledge about other peers is obtained from a distributed set of per-stream LTs and knowledge
about the LT per stream is maintained by the DOAT system. The following paragraphs illustrate
the interactions between our system components and the actions necessary for a peer to receive
swarmed content (see Figure 6).

Figure 6 – Peer interactions overview

When a peer wishes to join the system and subsequently participate in particular streams its first
task is to discover its closest DOAT node. The peer must first position itself in delay space by
performing a series of delay measurements to a set of locations, as in Vivaldi [4], and use these to
calculate its synthetic coordinates. Armed with these coordinates the peer queries any known
node on the DOAT overlay for the closest DOAT node in the synthetic coordinate space (A1,
Figure 6). The DOAT node receiving the query forwards it to the node closest in delay space to
the querying peer (A2) and the identifier of the nearest DOAT node is returned (A3). This is the
point of contact for all subsequent queries made by that peer, and, because it is the closest it is the
best in terms of minimising stream start-up delay for that peer.

Before joining a particular stream a peer must first find its LT. It is assumed that peers discover
the identifiers of the streams they wish to view through an out-of-band process (e.g. webpage
hyperlinks, electronic programme guide or gossiped through a social network). The peer will use
the stream identifier to query the DOAT node identified in the previous steps for the closest LT
for that stream (B1). The DOAT system will then route the query to the closest LT, as described
in Section 4. The query is first routed to the DOAT node closest to LT closest to the peer (B2)
who subsequently forwards the request to the LT (B3). The LT then registers the peer in its

database, together with its coordinates and other attributes such as upload capacity, and returns
the list of registered peers back to the peer who originated the query (B4). At this point the peer
has a list of all of the peers participating in the desired stream in the local area together with their
attributes such as coordinates in delay space and their capacity.

Given the list of peers participating in the stream and their attributes the peer can determine to
which peers it should connect according to the principles of real-time swarming over a QoS-based
overlay as outlined in Sections 2 and 3. Peers issue requests for chunks to other peers (C1). The
chunks are transmitted to the requesting peer (C2) and payments are made (C3). Payments are
shown in the figure as being passed in the direction of receiver to sender although this is only a
logical transfer as trust is the basis of our incentives mechanism and the establishment of trust
following any transaction happens in the opposite direction: the receiver has more trust in the
sender after a chunk has been received.

Figure 6 also shows an example of an NCP supplying the peer with chunks. The NCP receives
payment (actually the NCP builds trust in the peer receiving the chunk) which is stored and can
be used in other streams at other times, thanks to the trust shifting mechanism described in
Section 6, to pay for chunks in those other streams and therefore to improve experienced QoS.
Although the peer acting in the NCP role is not benefiting directly by consuming the content of
the stream it is incentivised to participate in the local area shown in Figure 6 increasing the
capacity of the overlay for that stream and reducing overall playout lag for the peers. This is an
example of the incentives mechanism working in practice.

8 Conclusions
This article has discussed the problems of delivering real-time content over the Internet and has
outlined a novel approach for swarming such content over peer-to-peer networks in a scalable
manner without resorting to centralised resources. Synthetic network coordinates model the
position of peers in delay space and are used to assist peers in building a QoS-aware overlay
network and to schedule chunk requests and transfers over the overlay so as to reduce playout lag
and increase playout continuity. Scalability and resilience is enhanced by the use of distributed
local trackers, which are, in turn, managed by a novel Distributed Overlay Anycast Table. The
design of the DOAT overlay and the use of Local Trackers is to ensure that queries are resolved
quickly so that start-up delay is kept small. Non-Consuming Peers are encouraged to participate
in streams by use of an incentives mechanism that allows contributions by a peer to be rewarded
in other streams at different times. This is achieved in an entirely distributed manner without
requiring a central currency repository. We have demonstrated how NCPs not only increase the
available bandwidth to a swarm but also reduce playout lag.

9 References
[1] V. Venkataraman, K. Yoshida, and P. Francis, "Chunkyspread: Heterogeneous

Unstructured Tree-Based Peer-to-Peer Multicast," in Proc. IEEE Int. Conf. Network
Protocols, K. Yoshida, Ed. Santa Barbara, CA, USA 2006, pp. 2-11.

[2] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. of the Workshop on
Economics of Peer-to-Peer Systems (P2PEcon'03), Berkeley, CA, June 2003.

[3] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, "A Measurement Study of a Large-
Scale P2P IPTV System", in IEEE Trans. Multimedia, vol. 9, pp. 1672-1687, Dec. 2007.

[4] Dabek, F., Cox, R., Kaashoek, F., and Morris, R. 2004. Vivaldi: a decentralized network
coordinate system. Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols For Computer Communications (Portland, Oregon, USA,

2004). SIGCOMM '04. ACM, New York, 15-26.

[5] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. 2001. Chord: A
scalable peer-to-peer lookup service for internet applications. Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols For Computer
Communications (San Diego, California, United States). SIGCOMM '01. ACM, New
York, NY, 149-160.

[6] Rolf Niedermeier, Klaus Reinhardt, Peter Sanders, Towards optimal locality in mesh-
indexings. Discrete Applied Mathematics, Volume 117, Issues 1-3, , 15 March 2002,
Pages 211-237.

[7] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. ACM
Commun. Mag., 13(7):422-426, 1970.

[8] Hughes, D., Coulson, G., and Walkerdine, J. 2005. Free Riding on Gnutella Revisited:
The Bell Tolls?. IEEE Distributed Systems Online 6, 6 (Jun. 2005), 1.

[9] Resnick, P., Kuwabara, K., Zeckhauser, R., and Friedman, E. 2000. Reputation systems.
Commun. ACM 43, 12 (Dec. 2000), 45-48.

[10] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J.
ACM, 35(4):921–940, 1988.

