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UNIVERSITY OF YORK

MSc Examinations 2004
MATHEMATICS

Networks

Time Allowed: 2 hours.

Answer all four questions.

Standard calculators will be provided but should be unnecessary.
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1. (i) Draw a graph showing the arrivals and departures against time
τ for a FIFO queue assuming that the system starts empty.
Mark on your graph:

• The arrival time of the first three customers, t1, t2 and t3.

• The queuing time of the first three customers, T (1), T (2)
and T (3).

• The curve α(τ) showing arrivals to the system in [0, τ ]
and the curve β(τ) showing departures from the system in
[0, τ ].

• The number of customers in the system N(s) for some
chosen time s.

(5 marks)

(ii) Prove, Little’s theorem N = λT where N is the average num-
ber of customers in system, λ is the average arrival rate per
unit time and T is the average number of time units a customer
spends in the system. You may assume that the system is ini-
tially empty N(0) = 0, that the system is FIFO and that for
any time τ there is always some time t > τ such that N(t) = 0.
State clearly any other assumptions you make in your proof.

(15 marks)

(iii) Assume that a person browsing the web site looks at a page for
an average of P seconds and then gets a new page which takes
R seconds on average to display (from the time the user makes
the request to the time they can start looking at the page). If
N people are browsing the web then use Little’s Theorem to
calculate λ the number of pages per second served. If the web
server can serve up to λm pages per second then calculate Nm

the maximum number of people who can can browse the site.

(5 marks)
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2. (i) Name and briefly (one or two sentences) describe the layers of
the TCP/IP reference model. (4 marks)

(ii) Consider a queuing system for a computer which processes
files in discrete time periods. If the computer is idle at the
beginning of a time cycle then there is a probability pa it will
begin to process a new file. If te computer is busy processing
at the beginning of a time period then there is a probability
pb that it will complete processing the file at the end of the
time period (this is independent of how many time periods of
processing the computer has been working for already). Draw
a two state Markov process representing the process.

(5 marks)

(iii) If pa = 2/5 and pb = 2/3 then the transition matrix of the
chain is given by

P =

[

3/5 2/5

2/3 1/3

]

.

Find the eigenvalues of the matrix λ1 and λ2. (5 marks)

(iv) Assuming that the states of the chain are numbered 0 (rep-
resenting the idle state) and 1 (representing the busy state)
then find an equation for the n-step transition probability from
state 0 to itself. p

(n)
00 using the eigenvalues previously calcu-

lated. What does this imply about the long term probability
of finding the system empty?

(7 marks)

(v) Write down the balance equations for the chain and, from
these, calculate π0 and π1 (the equilibrium probabilities of the
chain) from these.

(4 marks)
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continued from previous page 0580024

3. Consider the network shown below where the packets leaving the
output queue of one computer Q1 feed directly into the input queue
of a second Q2. Both queues are served as Poisson processes with
rates µ1 and µ2 respectively. There are a total of K packets in the
system. Assume the packets can travel between the output of one
queue and the input of another instantaneously.

Q1 Q2

(i) Draw a Markov chain where the states 0 to K represent the
number of packets at Q1 as a birth-death process.

(4 marks)

(ii) The transition matrix for the chain in the previous question is
given by P =






















1 − µ2 µ2 0 . . . 0 0

µ1 1 − µ2 − µ1 µ2 . . . 0 0

0 µ1 1 − µ2 − µ1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 − µ2 − µ1 µ2

0 0 0 . . . µ1 1 − µ1























.

In standard queuing theory notation, what type of queue is Q1
equivalent to?

(1 mark)

(iii) Write down the balance equations for states π0, πK and πi

where 0 < i < K.

(3 marks)

(iv) Hence, or otherwise, show that

πk =
(µ2/µ1)

k

∑K
i=0(µ2/µ1)i

,

for 0 ≤ k ≤ K.

Hint: It may help to prove by recursion that πi+1 = (µ2/µ1)πi

for 0 ≤ i < K.

(10 marks)

(v) If µ1 = µ2 = µ then find the value of N , the expected value
of the queue size at the first computer. Hence, or otherwise,
write down the expected queue size at the second computer.
Comment briefly on your answer.

(5 marks)

(vi) Consider the case when there is only one packet in the whole
system (K = 1). According to the answer to the previous part,
the expected queue at the first computer is 1/2. However, there
is only one packet in the system and the packet will, therefore,
always find the queue empty. Explain (briefly) this seeming
paradox

(2 marks)
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4. (i) Describe Dijkstra’s algorithm for finding shortest paths in a
weighted digraph G = (N ,A) with arc weights wij for each arc
(i, j) ∈ A and with the notational convenience that wij = ∞
if (i, j) /∈ A.

(10 marks)

(ii) Prove that Dijkstra’s algorithm does find a shortest path.

(10 marks)

(iii) Consider Dijkstra’s algorithm for the path from O to D in the
network pictured below. Complete the following table where
the figure in brackets is the cost to the node.

Permanent Nodes Temporary Nodes

O (0) 2 (3), 5(5)

O(0), 2(3) 5(5),1(11),3(17)

Table 1: Nodes for Dijkstra’s Algorithm

1O

2 3

D

45

3

5

14

8

5

21

10

12

20

14

Figure 1: Weighted graph for Dijkstra’s algorithm
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SOLUTIONS 0580024

1. This question is mostly standard book work and should present no
problem for students who have revised well. The final part is new
but trivial.

(i) (One mark each for the four items in the question and one
point for the diagram itself).

time τ

arrivals α(τ)
departures β(τ)

t1 t2 t3 t4 t5 t6 t7 t8

1

2

3

4

5

6

7

8

α(τ)

β(τ)

T (1)

T (2)

T (3)

N(s)

Figure 2: Little’s Theorem in a FIFO System

(ii) Choose t is some time such that N(t) = 0.

Let Nt be the mean number of customers in the system in the
period [0, t]. Therefore

Nt =

∫ t

0

1

t
N(τ)dτ.

Let λt be the mean number of arrivals in the system in the
period [0, t]. Therefore,

λt = α(t)/t.
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Let Tt be the mean time in the system experienced by all the
customers who have arrived up to time t (since N(t) = 0 these
customers have also left). Therefore,

Tt =

α(t)
∑

i=1

T (i)

α(t)
.

Note that this is only defined when at least one customer has
entered the system.

Assumptions are:

(a) N(0) = 0. (stated in question)

(b) ∀τ,∃t > τ : N(t) = 0. (stated in question)

(c) limt→∞ Nt = N exists.

(d) limt→∞ λt = λ exists.

(e) limt→∞ Tt = T exists.

Let A(t) be the area between the curves α(τ) and β(τ) up to
time t.

A(t) =

∫ t

0

α(τ) − β(τ)dτ =

∫ t

0

N(τ)dτ.

Also

A(t) =

α(t)
∑

i=1

T (i).

Dividing these by 1/t and setting them equal gives,

∫ t

0

1

t
N(τ)dτ =

α(t)
∑

i=1

T (i)

t
=

α(t)
∑

i=1

T (i)

α(t)

α(t)

t
.

Therefore
Nt = Ttλt.

Taking the limit as t → ∞ (which exists for all quantities by
hypothesis) gives the theorem.

(iii) Consider the whole system (users and web site as a queue).
There are N people in the queue and it takes each of them
R + P seconds to be served (at which point they rejoin the
queue). Therefore from Little’s Theorem, λ = N/(R+P ) and,
Nm = λm(R + P ).
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2. (i) The four layers are: Application (software running the inter-
net), Transport (layer provides reliabily and mediates end-to-
end connections), Internet (layer provides basic ability to get
packets from a source to a destination) and Host-to-network
(layer provides basic connectivity between logically connected
computers).

(ii) The situation can be represented by the Markov chain below.

0 1

pa

pb

1 − pb 1 − pa

(iii) The standard method of finding eigenvalues gives |P −Iλ| = 0.
Therefore, (3/5−λ)(1/3−λ)− 4/15 = 0 and, in turn, the two
solutions are λ1 = 1 and λ2 = −1/15.

(iv) The general equation p
(n)
00 = A+B(−1/15)n. From inspection,

p
(0)
00 = 1 and p

(1)
00 = 3/5. Substituting gives A + B = 1 and

A − 1/15B = 3/5. Solving the simultaneous equations gives

A = 5/8 and B = 3/8. Thefore, p
(n)
00 = 5/8 + 3/8(−1/15)n.

This implies that as n → ∞ the probability of the system
being empty is 5/8.

(v) The two balance equations are

π0 = 3/5π0 + 2/3π1,

and
π1 = 2/5π0 + 1/3π1,

plus the probabilities must sum to one,

π0 + π1 = 1.

Of course (as expected) the first two are dependent. Solving
these in the usual way gives π0 = 5/8 and π1 = 3/8.
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3. (i) The process is represented by the Markov chain shown below
(note that the transition from a node to itself is omitted in
this diagram though the students may draw this in as well).
Note that students who have any intelligence whatsoever can
just “copy” this from the transition matrix given in the next
part even if they have no insight into the system.

0 1 2 . . . M
µ2 µ2 µ2 µ2

µ1 µ1 µ1 µ1

(ii) The queue is equivalent to an M/M/1/K queue.

(iii) The balance equations are

π0 = (1 − µ2)π0 + µ1π1,

πi = µ2πi−1 + (1 − µ1 − µ2)πi + µ1πi+1,

πK = µ2πK−1 + (1 − µ1)πK .

Also
∑K

i=0 πi = 1.

(iv) First show by recursion that πi+1 = (µ2/µ1)πi for 0 ≤ i < K.

This is trivially true for i = 0 from the first balance equation.
Assuming that πi = (µ2/µ1)πi−1 then from the second balance
equation,

πi = µ2πi−1 + (1 − µ1 − µ2)πi + µ1πi+1,

πi = µ2(µ1/µ2)πi + (1 − µ1 − µ2)πi + µ1πi+1,

µ2πi = µ1πi+1,

πi+1 = (µ2/µ1)πi,

as required. Hence, πk = π0(µ2/µ1)
k for 0 ≤ k ≤ K. Now,

since
K

∑

i=0

pii = 1,
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then

K
∑

i=0

π0(µ2/µ1)
i = 1

K
∑

i=0

(µ2/µ1)
i =

1

π0

π0 = 1/
K

∑

i=0

(µ2/µ1)
i

πk =
(µ2/µ1)

k

∑K
i=0(µ2/µ1)i

,

which is the required answer

(v) If µ1 = µ2 then the previous equation simply becomes

πi = 1i/
K

∑

i=0

1i = 1/(K + 1).

Let Q1 be the size of the queue. The expected queue size N is
therefore given by

N = E [Q1] =
K

∑

i=0

iP [Q1 = i] =
K

∑

i=1

i/(K + 1) = K/2.

The expected queue size at the second computer is therefore
also K/2 since there are always K packets queuing. If the
service rates are equal then there is no reason why more pack-
ets should be being processed by one computer or the other.
Therefore, it is no surprise to find that the mean queue size
is simply half the packets. Indeed, it would have sufficed to
observe this to get all five marks (a quick solution for brighter
students).

(vi) The packet travels instantaneously between computers. At
the instant the packet is in transit, there is no queue at either
computer. However, because this is an instant, it has not con-
tributed to the time average of the queue size. Therefore, the
queue size at any given computer is, at any given moment, on
average 1/2 even though the packet will never arrive at the
computer and see a queue.
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4. (i) The algorithm finds the shortest path to all nodes from an
origin node, on a graph G = (N ,A). It requires that all arc
weights are non-negative ∀(i, j) ∈ A : wij ≥ 0.

Dijkstra’s Algorithm involves the labelling of a set of perma-
nent nodes P and node distances Dj to each node j ∈ N .
Assume that we wish to find the shortest paths from node 1
to all nodes. Then we begin with: P = {1} and D1 = 0 and
Dj = w1j where j 6= 1. Dijkstra’s algorithm then consists of
following the procedure:

(a) Find the next closest node. Find i /∈ P such that:

Di = min
j /∈P

Dj

(b) Update our set of permanently labelled nodes and our
nodes distances:
P := P ∪ {i}.

(c) If all nodes in N are also in P then we have finished so
stop here.

(d) Update the temporary (distance) labels for the new node
i. For all j /∈ P

Dj := min[Dj, wij + Di]

(e) Go to the beginning of the algorithm.

(ii) At the beginning of each iteration of Dijkstra’s algorithm then:

(a) Di ≤ Dj for all i ∈ P and j /∈ P .

(b) Dj is, for all j, the shortest distance from 1 to j using
paths with all nodes (except, possibly j) in P .

If this proposition can be proved then we can see that, when
P contains every node in N then all the Dj are shortest paths
by the second part of this proposition. Therefore proving the
above proposition is equivalent to proving that Dijkstra’s al-
gorithm finds shortest paths.

The proposition is trivially true at the first step since P con-
sists only of the origin point (node 1) and Dj is 0 for j = 1,
is wij ≥ 0 for nodes reachable directly from node 1 and ∞
otherwise.

The first condition is simply shown to be satisfied since it is
preserved by the formula:
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Dj := min[Dj, wij + Di]

which is applied to all j /∈ P when node i is added to the set
P .

We show the second condition by induction. We have estab-
lished already that it is true at the very start of the algorithm.
Let us assume it is true for the beginning of some iteration
of the algorithm and show that it must then be true at the
beginning of the next iteration.

Let node i be the node we are adding to our set P and let Dk

be the label of each node k at the beginning of the step. The
second condition must, therefore, hold for node j = i (the new
node we have added) by our induction hypothesis. It must
also hold for all nodes j ∈ P by part one of the proposition
which is already proven. It remains to prove that the second
condition of the proposition is met for j /∈ P ∪ {i}.

Consider a path from 1 to j which is shortest amongst those
with all nodes except j in P∪{i} and let D′

j be the correspond-
ing shortest distance. Such a path must contain a path from
1 to some node r ∈ P ∪ {i} and an arc(r, j). We have already
established that the length of the path from 1 to r must be Dr

and therefore we have:

D′
j = min

r∈P∪{i}
[Dr + wrj] = min[min

r∈P
[Dr + wrj], Di + wij]

However, by our hypothesis Dj = minr∈P [Dr + wrj] therefore,
D′

j = min[Dj, Di + wij] which is exactly what is set by the
fourth step of the algorithm. Thus, after any iteration of the
algorithm, the second part of the propostion is true if it was
true at the beginning of the iteration. Thus the proof by in-
duction is complete.

(iii) The table shown below answers the question

The final route is O → 5 → 1 → 4 → D with a cost of 36.
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Permanent Nodes Temporary Nodes

O (0) 2 (3), 5(5)

O(0), 2(3) 5(5),1(11),3(17)

O(0), 2(3), 5(5) 1(10),3(17), 4(26)

O(0), 2(3), 5(5), 1(10) 3(17), 4(22)

O(0), 2(3), 5(5), 1(10), 3(17) 4(22), D(37)

O(0), 2(3), 5(5), 1(10), 3(17), 4(22) D(36)

Table 2: Nodes for Dijkstra’s Algorithm
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