
Lecture 3 — Basic Probability and Statistics

The aim of this lecture is to provide an extremely speedy introduction to the probability and
statistics which will be needed for the rest of this lecture course. The majority of mathematics
students should already be familiar with this material.

Definition 1. A sample space is the set of all possible outcomes from an experiment. For
example, if we consider tossing two coins, the possible outcomes are HH, HT, TH and TT.
The sample space may be discrete (as in the previous example) or continuous (for example a
measurement of a person’s height in metres). Formally, a discrete sample space is one with a
finite or countably infinite number of possible values. A continuous sample space is one which
takes values in one or more intervals.

Example One: The number of bytes counted past a point in a network in a second is a disrete
sample space with the possible outcomes between 0 and the bandwidth of the link in bytes per
second.

Example Two: The number of bytes counted at the queues of n nodes in a network is a discrete
sample space with the possible outcomes in Z

n
+.

Definition 2. An event is a subset of a sample space amd a simple event is one member of the
sample space. Often an event is described in words rather than by explicit enumeration of the
subspace. For example, if the event is ”getting exactly one head in two coin tosses” then it would
be the subset HT and TT. An example of an event on a continuous sample space is measuring
a height which is between 1.5 and 2.0 metres.

Definition 3. A probability measure P is a real-valued set function defined on a sample space S
which satisfies

1. 0 ≤ P [ A ] ≤ 1 for every event A

2. P [ S ] = 1

3. P [ A1 ∪ A2 ∪ . . . ] = P [ A1 ] + P [ A2 ] + . . . for every finite or infinite sequence of disjoint
events A1, A2, . . . .

Example: The probability of throwing two or more heads when throwing three unbiased coins
is the probability of the event {HHH HHT HTH THH}. This is a union of four disjoint simple
events and is (4/8 = 1/2) since there are eight possibilities in total each with equal probability
1/8.

Example: The Poisson distribution is given by

P [ X = x ] =
λxe−λ

x!
x ∈ Z+.

It is left as an exercise for the student to show that the first and second condition are both met.
That is,

0 ≤
λxe−λ

x!
≤ 1 x ∈ Z+,

and
∞
∑

x=0

λxe−λ

x!
= 1.
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The notation P [ A,B ] refers to the probability that events A and B both occur also known as
the joint probability. The notation P [ A|B ] is the probability that event A occurs given that
event B occurs or the conditional probability.

Example: If A is the event “the first coin shows H” and B is the event “more than two heads
are thrown” then of the above examples, A and B both occur for HHH, HHT and HTH — there
are four possibilities which have A true HTT is the remaining one. Therefore P [ B|A ] = 3/4
— by coincidence P [ A|B ] = 3/4 as well in this case (this is not generally true). In this case
P [ A,B ] = 3/8.

Theorem 1. Bayes theorem states that

P [ A,B ] = P [ B ] P [ A|B ]

The reason for this can be trivially seen. The probability of A and B is the probability of B
multiplied by the probability of A given that B has occurred.

Definition 4. A random variable is a real-valued function defined on a sample space. For
example, X might be the number of heads in two coin tosses or the height of a given measurement
in metres. The domain of X is the sample space and its range is within the real numbers
R. A discrete random variable is a random variable defined on a discrete sample space and a
continuous random variable is a random variable defined on a continuous sample space for which
the probability is zero that it will assume any given value in an interval.

It should also be noted that it follows from these definitions that a real-valued function of a
random variable (or a set of random variables) is itself a random variable.

Definition 5. The discrete density function f(x) for a discrete random variable X is given by
the equation

f(x) = P [ X = x ] .

The distribution function (sometimes called the cumulative distribution function) F (x) for a
discrete random variable X is given by

F (x) = P [ X ≤ x ] =
∑

y≤x

P [ X = y ] .

Definition 6. The continuous density function f(x) for a continuous random variable X is
uniquely determined by the following properties:

1. f(x) ≥ 0 for all x ∈ R

2.
∫ ∞

−∞
f(x)dx = 1

3.
∫ b

a
f(x)dx = P [ a < x < b ] for all a, b ∈ R where a ≤ b.

Example: Consider the so called “flat” or “constant” distribution where the sample space is some
interval (a, b) and P [ c < X < d ] ∝ (d− c) where a ≤ c ≤ d ≤ b. The third part of the definition
will give us that

f(x) =

{

k a < x < a

0 otherwise,

where k is some constant. From the second part we get that

∫ b

a

kdx = 1,
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and hence k = 1/(b − a).

The distribution function (sometimes called the cumulative distribution function) is the sum of
the density function,

F (x) =

∫ x

−∞

f(y)dy,

where f(y) is the density function.

Example: For the flat distribution defined above it is left as an exercise to the student to show
that

F (x) =











0 x ≤ a

(x − a)/(b − a) a < x < b

1 x ≥ b.

Often it is useful to deal with more than one random variable at once. If two variables X and Y
are considered then it is useful to know probabilities about what happens with both variables.

Definition 7. The joint density function of two random variables X and Y is defined by f(x, y).
In the discrete case this is defined by the equation

f(x, y) = P [ X = x, Y = y ] .

In the continuous case it must possess the following properties:

1. f(x, y) ≥ 0

2.
∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1

3.
∫ b

a

∫ d

c
f(x, y)dxdy = P [ a < X < b and c < Y < d ], for all a ≤ b ∈ R and c ≤ d ∈ R.

Definition 8. The random variables X and Y with density functions g(x) and h(x) and the
joint density function f(x, y) are said to be independent if and only if

f(x, y) = g(x)h(y),

for all x and y.

Definitions 7 and 8 can be extended in the obvious way to more than two variables. It should
be noted, however, that merely because each pair of events is independent does NOT mean that
the entire set of events is independent. It is instructive to come up with examples where this is
not the case.

Definition 9. The expected value or expectation of the function g(X) on a discrete random
variable X is given by

E [ g(X) ] =

∞
∑

i=1

g(xi)f(xi),

where xi are all the possible values of X (that is all the members of its sample space) and f(x)
is the density fucntion for X.

For a continuous variable the sum in the above changes to an integral.
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Definition 10. The expected value or expectation of the function g(X) on a continuous random
variable X is given by

E [ g(X) ] =

∫ ∞

−∞

g(x)f(x)dx,

where f(x) is the density function for X.

It should be noted that in Defintions 9 and 10 there is no guarantee that either the sum or the
integral converge. If they diverge then the expectation is undefined.

We can extend the definition of expectation to a set of random variables X1, . . . , Xn.

Definition 11. For random variables X1, . . . , Xn with density function f(x1, . . . , xn) then the
expectation value of a function h(X1, . . . , Xn) is given by:

E [ h ] =

∫ ∞

−∞

. . .

∫ ∞

−∞

h(x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn.

Expectation E is a linear operator. If g, g1 and g2 are three functions of a set of random variables
then the following properties follow from the previous definitions:

• E [ cg ] = cE [ g ] for any constant c.

• E [ g1 + g2 ] = E [ g1 ] + E [ g2 ].

• E [ g1g2 ] = E [ g1 ] E [ g2 ], if g1 and g2 are independent.

The first two properties follow trivially from substituting h = cg and h = g1 + g2 into Definition
11. The third property is derived as follows:

E [ g1g2 ] =

∫ ∞

−∞

∫ ∞

−∞

g1g2f(g1, g2)dg1dg2,

where f(g1, g2) is the joint density function of g1 and g2. Since g1 and g2 are independent then
from Definition 8

∫ ∞

−∞

∫ ∞

−∞

g1g2f(g1, g2)dg1dg2 =

∫ ∞

−∞

∫ ∞

−∞

g1g2f1(g1)f2(g2)dg1dg2

=

∫ ∞

−∞

g1f1(g1)dg1

∫ ∞

−∞

g2f2(g2)dg2

= E [ g1 ] E [ g2 ] ,

where f1(g1) and f2(g2) are the density functions of g1 and g2 respectively.

Using the Definitions 9 and 10 for expectation then mean µ and variance σ2 of a random variable
X can be defined.

Definition 12. The mean µ of a random variable X (either discrete or continuous) is given by

µ = E [ X ] .

Definition 13. The variance σ2 of a random variable X (either discrete or continuous) is denoted
by var ( X ) and is given by

σ2 = var ( X ) = E
[

(X − µ)2
]

.
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Examples: Show that the flat distribution as previously defined, has mean (a+b)/2 and variance
(b − a)2/12. Show that the Poisson distribution has mean λ and variance λ.

As previously noted, the expectation is not guaranteed to converge and, for some random vari-
ables, µ and σ2 do not exist.

Instructive Example: What is the expected payout of a coin-tossing game defined as follows.
The player tosses a coin until they get a head. If the first head occurs on throw n then they are
paid £2n. Calculate the expected payout.
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