
Lecture 10 — Networks of queues

In this lecture we shall finally get around to consider what happens when queues are part of
networks (which, after all, is the topic of the course). Firstly we shall need an important result
about time reversibility and Markov chains.

Burke’s Theorem

Consider an ergodic Markov chain {Xj : j ∈ N} which is Markov (λ,P) running backwards (or
if you prefer consider the reverse iterates of the Markov chain). This asks questions about

P [Xn = j|Xn+1 = i,Xn+2 = i2, . . . , Xn+k = ik]

=
P [Xn = j,Xn+1 = i,Xn+2 = i2, . . . , Xn+k = ik]

P [Xn+1 = i,Xj+2 = i2, . . . , Xn+k = ik]

=
P [Xn = j,Xn+1 = i] P [Xn+2 = i2, . . . , Xn+k = ik|Xn = j,Xn+1 = i]

P [Xn+1 = i] P [Xn+2 = i2, . . . , Xn+k = ik|Xn+1 = i]

=
P [Xn = j,Xn+1 = i]

P [Xn+1 = i]

=
P [Xn = j] P [Xn+1 = i|Xn = j]

P [Xn+1 = i]

=
πjpji

πi

,

The fourth line follows from the Markov property and for the last equality the assumption has
been made that the chain has reached its steady-state equilibrium probabilities.

Denote by p∗ij the reversed transition probability

p∗ij = P [Xn = j|Xn+1 = i] =
πjpji

πi

. (1)

The reversed chain is ergodic and has the same equilibrium probabilities (check that πj =∑∞
i=0 πip

∗
ij). Intuitively think of the film of the Markov chain in action being shown backwards.

A chain is called time reversible if pij = p∗ij for all i and j. Clearly, from equation (1) this occurs
iff

pijπi = pjiπj ,

for all i, j.

Note that this means that Birth-Death processes are time reversible (the proof of this is left as an
exercise for the student). Therefore all the queues which can be modelled as such are, themselves
time reversible. This includes the M/M/1, the M/M/m and the M/M/∞ queues. Therefore,
queue which can be represented as a Birth-Death process can be considered, once it has reached
the steady state. An important point here is that the departure process of the forward system
is the arrival process of the forward system.

This leads us to Burke’s Theorem.

Theorem 1. For an M/M/1, M/M/m or M/M/∞ queue in the steady state then: (1) The
departure process is Poisson with rate λ. (2) At time t the number of customers is independent
of the sequence of departure times prior to t.
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Proof. Part (1) follows immediately from the fact that the arrival process is Poisson with rate λ
the time reverse of this of this is also a Poisson with rate λ.

Part (2) follows from the fact that the departures prior to t in the reversed system is the same
process as the arrival process after t in the reversed process. It is clear that the number in the
system queue is independent of the arrivals after that point in a Poisson system.

Note that these results are more than a little counter-intuitive. In (1) The exit rate is not a
function of the server rate. In (2) a sequence of closely spaced exits does not mean that the
system is at all likely to have a large queue at the moment (though it may imply that the system
did have a large queue until recently).

A Useful Approach

Given an ergodic Markov chain with transition probabilities pij . and a vector π = (π0, π1, . . . )
such that πi > 0 and

∑∞
i=0 πi = 1 then if the scalars

p∗ij =
πjpji

πi

, (2)

form a stochastic matrix, that is

∞∑

j=0

p∗ij = 1 for all i = 0, 1, . . . , (3)

then π is the equilibrium distribution and the p∗
ij are the reversed transition probabilities. The

proof of this is left as an exercise for the student. Note that this property holds even if the chain
is not time reversible.

Therefore, if insight (or a lucky guess) provides such a π and p∗
ij then proving that equations

(2) and (3) hold proves that the invariant density and reverse transition probabilities have been
found.

Jackson’s Theorem

Consider a network of K queues each with a single Poisson server. These queues are connected
in a network so that on exiting one queue the customers may leave the network or join another
queue. Customers enter the network at any queue as a Poisson process. On exiting any queue
then they either move to a new queue (or possibly rejoin the same one) or leave the network
entirely at random. Definitions:

Pij the probability that a customer leaving i goes on to j.

rj the arrival rate of new cusomers at queue j as a Poisson process.

λj is the total arrival rate at the queue j (all customers).

µj is the service rate of queue j.

ρj = λj/µj is the utilisation of queue j. This is assumed by hypothesis to be less than 1 for all
queues.

It must be that:
K∑

j=1

Pij ≤ 1,
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and this assumed to be a strict inequality (< 1) for at least one queue (there is at least one place
where customers leave the system forever). It is also assumed that each customer entering the
system can reach a queue which has a probability of leaving (and each customer will eventually
leave the system almost surely). The probability that a customer leaving queue i leaves the
system forever is given by:

P [Customer leaving queue i leaves system] = 1 −
K∑

j=1

Pij .

The state of the system is represented by a vector n = (n1, . . . , nK) where ni ∈ Z+ is the number
of customers in queue i. The system can now be viewed as a Markov chain with states in Z

K
+ .

A special notation will be used to indicate transitions between states.

So, state n(j+) is the state corresponding to a new arrival at queue j. That is

n(j+) = (n1, . . . , nj + 1, . . . , nK).

The probability of such a transition is given by

p
nn(j+) = rj . (4)

State n(j−) similarly corresponds to customer leaving the system completely from state j. That
is

n(j−) = (n1, . . . , nj − 1, . . . , nK).

The probability of such a transition is given by

p
nn(j−) = µj(1 −

∑

i

Pji). (5)

Finally, state n(i+, j−) corresponds to a customer leaving queue j and joining queue i. That is

n(i+, j−) = (n1, . . . , ni + 1, . . . nj − 1, . . . , nK).

The probability of such a transition is given by

p
nn(i+,j−) = µjPji. (6)

Let π(n) = π(n1, . . . , nK) be the equilibrium probability of the state n. By finding π(n) the
probability of any given distribution is given and the expected queue lengths can be determined.
Jackson’s theorem is the remarkable claim that, under the conditions given, the queues can be
treated as K independent M/M/1 queues.

Theorem 2. Assuming that ρj < 1 for all j then for n1, . . . nk ∈ Z+:

π(n) = π1(n1)π2(n2) . . . πK(nK), (7)

where
πj(nj) = ρ

nj

j (1 − ρj) for all nj ∈ Z+. (8)

Proof. Assume without loss of generality that λj > 0 for all j1.

Take two states, n and n
′. The probability of a transition between them is pnn

′ . The reverse
probabilities are denoted by p∗

nn
′ . (Note that the chain is not in general reversible.) Now, from

1If λj = 0 then πj(0) = 1 and πj(nj) = 0 for nj > 0. Hence this can be removed from equation (7).
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equations (2) and 3, the theorem is proved, if given equations (7) and (8), then the probabilities
given by

p∗
nn

′ =
π(n′)pn

′
n

π(n)
, (9)

satisfy ∑

n
′

p∗
nn

′ = 1, (10)

for all n

Note that from equation (9) then pnn = p∗
nn

for all n and also that

∑

n
′

pnn
′ = 1.

Therefore, equation (10) is equivalent to showing

∑

n
′ 6=n

pnn
′ =

∑

n
′ 6=n

p∗
nn

′ , (11)

for all n.

The following transitions have already been defined:

p
nn(j+) = rj

p
nn(j−) = µj(1 −

∑

i

Pji)

p
nn(i+j−) = µjPji.

For all other n 6= n
′ then

pnn
′ = 0.

Therefore, for the forward system, for all n then

∑

n
′ 6=n

pnn
′ =

K∑

j=1

p
nn(j+) +

∑

j|nj>0

p
nn(j−) +

∑

i,j|nj>0

p
nn(i+,j−)

=

K∑

j=1

rj +
∑

j|nj>0

µj(1 −

K∑

i=1

Pji) +
∑

i,j|nj>0

µjPji.

Which finally gives
∑

n
′ 6=n

pnn
′ =

K∑

j=1

rj +
∑

j|nj>0

µj . (12)

Now, taking the reverse transitions, from equation (8) then

π(n(j+)) = ρjπ(n).

Similarly
π(n(j−)) = π(n)/ρj ,

and also
π(n(i+, j−)) = ρiπ(n)/ρj .
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From equation (9) and the above three equations then the reverse transitions are given by

p∗
nn(j+) =

π(n(j+))

π(n)
p
n(j+)n =

π(n(j+))

π(n)
p
nn(j−) = λj(1 −

∑

i

Pji)

p∗
nn(j−) =

π(n(j−))

π(n)
p
n(j−)n =

π(n(j−))

π(n)
p
nn(j+1) = µjrj/λj

p∗
nn(i+,j−) = p∗

n(j+,i−)n =
π(n)

π(n(j+, i−))
p
nn(j+,i−) =

ρ(i)

ρ(j)
µiPij = µjλiPji/λj .

As before, for all other n 6= n
′ then

p∗
nn

′ = 0.

Therefore, summing for all n for the reversed system

∑

n
′ 6=n

p∗
nn

′ =

K∑

j=1

p∗
nn(j+) +

∑

j|nj>0

p∗
nn(j−) +

∑

j,i|nj>0

p∗
nn(i+,j−)

=

K∑

j=1

λj(1 −

K∑

i=1

Pji) +
∑

j|nj>0

µjrj

λj

+
∑

j,i|nj>0

µjλiPij

λj

=

K∑

j=1

λj(1 −

K∑

i=1

Pji) +
∑

j|nj>0

µj(rj +
∑K

i=1 λiPij)

λj

.

This finally gives
∑

n
′ 6=n

p∗
nn

′ =

K∑

j=1

λj(1 −

K∑

i=1

Pji) +
∑

j|nj>0

µj . (13)

Finally, summing all the processes entering queue j (either from another queue or from outside,
and remembering that the exit rate of queue j must be equal to the input rate (if the queue is
not to grow forever) then:

λj = rj +
K∑

i=1

λiPij ,

for all j = 1 . . . K. Rearranging this gives

rj = λj −
K∑

i=1

λiPij .

Summing over all queues gives:

K∑

j=1

rj =
K∑

j=1

λj(1 −
K∑

i=1

Pji). (14)

Combining equations (12), (13) and (14) gives

∑

n
′ 6=n

pnn
′ =

∑

n
′ 6=n

p∗
nn

′ ,

which is equation (11) as required and hence the theorem is proved.

5



Jackson’s Theorem Example

Amnesia house is a house which deals with people who have trouble with remembering things.
Forgetful people decide to leave the building as a Poisson process a rate λ. The queue to leave is
a single server Poisson process with a rate µ1. Unfortunately, on leaving, a proportion p of them
remember something they have forgotten and must join a separate queue established for people
who have forgotten something and wish to reenter. This is also a Poisson process with a rate µ2.
If the forgetful people are chosen at random (and people may forget multiple times) then find
N1 the average number of people queuing to leave and N2 the average number of people queuing
to get back in (assuming that µ1 and µ2 are sufficiently large that the system is ergodic). Find
the total number trying to leave.

Define λ1 as the input rate to the queue to leave and λ2 as the input rate to the queue to reenter.

The rates to each queue are
λ1 = λ + λ2,

and
λ2 = pλ1.

Solving gives

λ2 =
λp

1 − p
,

and

λ1 =
λ

1 − p

Therefore

ρ1 =
λ1

µ1
=

λ

(1 − p)µ1
,

and

ρ2 =
λ2

µ2
=

λp

(1 − p)µ2
.

By Jackson’s theorem the two queues are independent M/M/1 queues. Therefore

P [n1, n2] = ρn1

1 (1 − ρ1)ρ
n2

2 (1 − ρ2).

Also
N1 =

ρ1

1 − ρ1
,

and
N2 =

ρ2

1 − ρ2
.

Hence
N =

ρ1

1 − ρ1
+

ρ2

1 − ρ2
.
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