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UNIVERSITY OF YORK

MSc Examinations 2003
MATHEMATICS

Networks II

Time Allowed: 2 hours (plus 15 minutes preparation time).

Answer four questions.

Calculators may not be used.

Candidates are allowed an additional 15 minutes for preparation prior to

the start of the examination. Candidates should write on the yellow paper

provided during this preparation time. Candidates should only write on the

white lined paper after the start of the examination. The examiners will not

consider material on the yellow paper.

1. (i) Describe the OSI layers model listing the seven layers and
briefly describing each. At which level is the IP protocol? At
which level is the UDP protocol?

(15 marks)

(ii) Consider the Markov chain with states numbered 1 and 2 and
the following transition matrix:

P =

[

1/4 3/4

1/2 1/2

]

• Calculate the eigenvalues of P and hence give the general
form for p

(n)
ij (the n step transition probabilty from state

i to state j).

• From inspection of the matrix calculate the values of p
(0)
11

and p
(1)
11 .

• Hence calculate p
(n)
11 and check your answer by calculating

p
(2)
11 directly from the matrix.

• From your expression for p
(n)
11 (or by any other means)

calculate the equilibrium probabilities π1 and π2.

(10 marks)
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2. (i) Draw a graph showing the arrivals and departures against time
τ for a non FIFO queue assuming that the system starts empty.

Mark on your graph:

• The arrival time of the ith customer, ti.

• The total time in the system of the ith customer, T (i).

• The number of arrivals up to time τ , α(τ).

(5 marks)

(ii) Let β(τ) be the number of departures up to time τ

Let N(τ) be the number in the system at time τ .

Let Nt be the average value of N(τ) in the interval [0, t].

Assume that the following limits exist:

N = lim
t→∞

Nt

λ = lim
t→∞

α(t)

t
= lim

t→∞

β(t)

t

Prove Little’s theorem given these assumptions and the as-
sumption that the queue is initially empty (N(0) = 0).

(15 marks)

(iii) Consider a buffer which holds L bytes. The buffer is drained
by an ouput line which sends packets at a rate of λ packets
per second. The average length of a packet is X bytes.

A network engineer decides that the average occupancy of the
buffer should be no more than a proportion α of its total size L.
Assuming no packets are lost, what is the maximum average
queuing delay for packets.

(5 marks)
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3. Consider the M/G/1 queuing system. Assume that customer ser-
vice times are independent and identically distributed.

Let Xi be the service time of the ith customer and X be the time
series of these service times.

The mean service time is X = E[X] = 1/µ (where µ is the mean
service rate).

The second moment of service time is X2 = E[X2].

Ri is the residual service time remaining to the customer being
served when the ith customer arrives at the queue. (If the system
is empty when the ith customer arrives then Ri = 0).

r(τ) is the residual service time at time τ .

(i) Draw a graph of r(τ) versus τ . Mark on your graph Xi.

(5 marks)

(ii) Choose a time t, where the system is empty and define M(t)
as the number of customers served by time t. Assume that:

• The mean residual time R = limi→∞E[Ri], where R =
limt→∞

1
t

∫ t

0
r(τ)dτ .

• limt→∞
M(t)

t
= λ where λ is the mean arrival rate.

From your diagram show that:

R =
1

2
λX2

(10 marks)

(iii) Let NQ be the mean number of customers in the queue. The
mean waiting time in the queue, W is given by:

W = R +
1

µ
NQ

From this and your previous answer, prove the Pollaczek-Khinchin
formula:

W =
λX2

2(1 − ρ)

where ρ = λ/µ.

(2 marks)
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(iv) Consider a supermarket where customers arrive as a Poisson
process with a rate λ. Two checkouts are available, and both
serve customers in a time N/µ where N is the number of items
in the customer’s trolley. Queue one is a five items or less queue
and each customer buys between one and twenty items with
equal probabilities (chosen independently). Assuming that λ
and µ are such that the Pollaczek-Khinchin formula above ap-
plies, show that customers’ expected queuing times W1 and
W2 in queues one and two are given by:

W1 =
λ

∑5
i=1 i2

40µ2(1 − 3λ/4µ)

W2 =
λ

∑20
i=6 i2

40µ2(1 − 39λ/4µ)

(You may assume that every customer goes to the queue ap-
propriate for the number of items they have). (8 marks).
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4. Consider the M/M/1/1 queuing system (the final 1 means that only
one customer can be in the system at once — customers arriving
to find another customer in service will be turned away from the
system). This is to be modelled as a Birth-Death process with the
following coefficients:

λk =

{

λ k = 0

0 k = 1

µk =

{

0 k = 0

µ k = 1

(i) Show that differential-difference equations for P0(t) and P1(t)
the probabilities that the system is empty or serving a cus-
tomer at time t are:

dP0(t)

dt
= −λP0(t) + µP1(t)

dP1(t)

dt
= −µP1(t) + λP0(t)

(5 marks)

(ii) Using the fact that P0(t) + P1(t) = 1 solve the above to get a
general expression for P0(t).

(12 marks)

(iii) Given the specific value P0(0) at t = 0, show further that the
solution is:

P0(t) =

(

P0(0) −
µ

λ + µ

)

e(−λ−µ)t +
µ

λ + µ

(8 marks)
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5. (i) Describe Dijkstra’s algorithm for finding shortest paths in a
weighted digraph G = (N ,A) with arc weights wij for each arc
(i, j) ∈ A and with the notational convenience that wij = ∞
if (i, j) /∈ A.

(10 marks)

(ii) Prove that Dijkstra’s algorithm does find a shortest path.

(10 marks)

(iii) Write down the iterations of Dijkstra’s algorithm with the sets
of permanent and temporary nodes at each iteration (with
costs) for the path from O to D in the network pictured below.
Therefore indicate the shortest path through the network and
its cost.

(5 marks)

1O

2 3

D

45

1.2

1.1

2.4

2.0

1.2

3.0

4.1

3.2

5.7

2.0

Figure 1: Weighted graph for Dijkstra’s algorithm
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1. (i) Many more details of the OSI model were presented in lectures
— this sample answer just lists the most relevant features.

1: Layer One is the physical layer. This is the hardware which
makes up the network.

2: Layer Two is the data link layer (or logical layer). This
provides a connection between adjacent (physically or log-
ically) machines in a network.

3: Layer Three is the network layer. This allows data to get
between any to machines on a network.

4: Layer Four is the transport layer. This ensures the con-
nection from end-to-end, guaranteeing losslessness if nec-
essary and providing basic flow control.

5: Layer Five is the session layer. This watches over an entire
connection.

6: Layer Six is the presentation layer. This takes care of
common tasks (such as internationalisation of character
sets) which would be inappropriate at other layers.

7: Layer Seven is the application layer. This is the layer
where software (web browsers, email etc) connect to the
network.

The IP protocol is at layer 3. The UDP protocol is at layer 4

(ii) Using |P − λI| = 0 we get:

(1/4 − λ)(1/2 − λ) − 3/8 = 0

The quadratic formula gives us λ1 = 1 and λ2 = −1/4.

This gives us the general form:

p
(n)
ij = A + B(

−1

4
)n

Direct calculation gives us p
(0)
11 = 1 and p

(1)
11 = 1/4. Subsituting

into the above gives: A + B = 1 and A − 1/4B = 1/4 which
solves to the general form:

p
(n)
11 = 2/5 + 3/5(

−1

4
)n

From the matrix p
(2)
11 = 1/16 + 3/8 = 7/16. This is equal to

the value calculated above p11 = 2/5 + 3/5(−1/4)2 = (2.16 +
3)/(5.16) = 7/16.
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From the above equation p
(n)
11 → 2/5 as n → ∞ and therefore

π1 = 2/5.

2. (i) Figure 2 shows the situation if we don’t assume FIFO.

time τ

arrivals α(τ)

t1 t2 t3 t4 t5

1

2

3

4

5

T (1)

T (2)

α(τ)

Figure 2: Little’s Theorem in a non FIFO System

(ii) If Nt is the mean value of N(τ) taken over the interval [0, t]
then it is clear that:

Nt =
1

t

∫ t

0

N(τ)dτ (1)

Now, it is clear that the shaded area in the interval [0, t] is
given by:

A(t) =

∫ t

0

N(τ)dτ (2)

even though, in the diagram, N(τ) is not necessarily a con-
tinuous vertical slice of the area (consider, for example, the
situation at time t4 in the diagram).

Now, we define the following:
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D(t) is the set of customers who have departed the system by
time t.

D(t) is the set of customers who are still in the system at time
t.

The delay experienced up to time t by a customer still in the
system at time t is t − ti. Therefore we can say:

A(t) =
∑

i∈D(t)

Ti +
∑

i∈D(t)

(t − ti) (3)

Therefore, equating these and dividing by t we get:

1

t

∫ t

0

N(τ)dτ =
1

t

∑

i∈D(t)

T (i) +
1

t

∑

i∈D(t)

(t − ti) (4)

Up to time t, the average arrival rate λt is given by:

λt =
|D(t) + D(t)|

t
(5)

Up to time t, the average waiting time Tt is given by the total
waiting time of all the customers so far over the total number
of customers entering the system so far (up to time t):

Tt =

∑

i∈D(t) T (i) +
∑

i∈D(t)(t − ti)

|D(t) + D(t)|
(6)

Substituting these two equations and our previous equation
(1) into (4) we therefore have:

Nt = λtTt (7)

which, in the limit as t → ∞ gives us Little’s Theorem.

N = λT (8)

(iii) Take Little’s Theorem N = λT where T is the average delay
for packets in the queue and N is the average length of the
queue in packets. Since NX ≤ αL then we have αL/X ≥ λT
and therefore:

T ≤
αL

λX
(9)
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Time τ

Residual time r(τ)

X1

X1

X2 XM(t) t

Figure 3: Service Time of Arrivals at an M/G/1 queue.

3. (i) Figure 3 shows residual times for the M/G/1 queuing system.

(ii) Expressing the area under the graph in two different ways we
get:

1

t

∫ t

0

r(τ)dτ =
1

t

M(t)
∑

i=1

1

2
X2

i

Taking limits as t → ∞ we get:

R = lim
t→∞

M(t)

t

∑M(t)
i=1 X2

i

2M(t)

Now, since the output rate must be the input rate λ we have:

lim
t→∞

M(t)

t
= λ

Substituting above gives us the required result:

R =
1

2
λX2
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(iii) From Little’s Theorem NQ = Wλ. Therefore:

W =
1

2
λX2 + Wρ

leading to the required:

W =
λX2

2(1 − ρ)

(iv) Since the arrivals choose their queue in an i.i.d. way we have
two separate M/G/1 queues with λ1 = λ/4 and λ2 = 3λ/4.

Let X2
i i = (1, 2) be the second moment of service time for

customers in queue i. We can say that:

X2
1 =

∑5
i=1 i2

5µ2

and

X2
2 =

∑20
i=6 i2

15µ2

The mean service time for customers in queue 1 (call it 1/µ1)
is given by:

1

µ1

=

∑5
i=1 i/µ

5
= 3/µ

and simularly

1

µ2

=

∑20
i=6 i/µ

15
= 13/µ

Substituting into the P-K equations gives us the required an-
swers.

4. (i)
P0(t + ∆t) = (1 − λ)P0(t)∆t + µP1(t)∆t + o(∆t)

P0(t + ∆t) − P0(t)

∆t
= −λP0(t) + µP1(t) +

o(∆t)

∆t

Taking the limit as t → 0 we get:
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dP0(t)

dt
= −λP0(t) + µP1(t)

the second equation can be trivially obtained by observing that
since P0(t) + P1(t) = 1 then dP0(t)/dt = −dP1(t)/dt.

(ii) Substitution from P0(t) + P1(t) = 1 gives us:

dP0(t)

dt
= (−λ − µ)P0(t) + µ

The solution is, by inspection, of the form:

P0(t) = Ke(−λ−µ)t + C

Differentiating gives us:

dP0(t)

dt
= K(−λ − µ)e(−λ−µ)t

comparing with our original equation we get:

K(−λ − µ)e(−λ−µ)t = (−λ − µ)(Ke(−λ−µ)t) + C) + µ

Giving us C = µ/(λ + µ).

This gives us:

P0(t) = Ke(−λ−µ)t +
µ

λ + µ

(iii) At t = 0 we have:

P0(0) = K +
µ

λ + µ

Giving K = P0(0) −
µ

λ+µ
and leading to our final equation:

P0(t) =

(

P0(0) −
µ

λ + µ

)

e(−λ−µ)t +
µ

λ + µ

5. (i) The algorithm finds the shortest path to all nodes from an
origin node, on a graph G = (N ,A). It requires that all arc
weights are non-negative ∀(i, j) ∈ A : wij ≥ 0.

Dijkstra’s Algorithm involves the labelling of a set of perma-
nent nodes P and node distances Dj to each node j ∈ N .
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Assume that we wish to find the shortest paths from node 1
to all nodes. Then we begin with: P = {1} and D1 = 0 and
Dj = w1j where j 6= 1. Dijkstra’s algorithm then consists of
following the procedure:

(a) Find the next closest node. Find i /∈ P such that:

Di = min
j /∈P

Dj

(b) Update our set of permanently labelled nodes and our
nodes distances:
P := P ∪ {i}.

(c) If all nodes in N are also in P then we have finished so
stop here.

(d) Update the temporary (distance) labels for the new node
i. For all j /∈ P

Dj := min[Dj, wij + Di]

(e) Go to the beginning of the algorithm.

(ii) At the beginning of each iteration of Dijkstra’s algorithm then:

(a) Di ≤ Dj for all i ∈ P and j /∈ P .

(b) Dj is, for all j, the shortest distance from 1 to j using
paths with all nodes (except, possibly j) in P .

If this proposition can be proved then we can see that, when
P contains every node in N then all the Dj are shortest paths
by the second part of this proposition. Therefore proving the
above proposition is equivalent to proving that Dijkstra’s al-
gorithm finds shortest paths.

The proposition is trivially true at the first step since P con-
sists only of the origin point (node 1) and Dj is 0 for j = 1,
is wij ≥ 0 for nodes reachable directly from node 1 and ∞
otherwise.

The first condition is simply shown to be satisfied since it is
preserved by the formula:

Dj := min[Dj, wij + Di]

which is applied to all j /∈ P when node i is added to the set
P .
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We show the second condition by induction. We have estab-
lished already that it is true at the very start of the algorithm.
Let us assume it is true for the beginning of some iteration
of the algorithm and show that it must then be true at the
beginning of the next iteration.

Let node i be the node we are adding to our set P and let Dk

be the label of each node k at the beginning of the step. The
second condition must, therefore, hold for node j = i (the new
node we have added) by our induction hypothesis. It must
also hold for all nodes j ∈ P by part one of the proposition
which is already proven. It remains to prove that the second
condition of the proposition is met for j /∈ P ∪ {i}.

Consider a path from 1 to j which is shortest amongst those
with all nodes except j in P∪{i} and let D′

j be the correspond-
ing shortest distance. Such a path must contain a path from
1 to some node r ∈ P ∪ {i} and an arc(r, j). We have already
established that the length of the path from 1 to r must be Dr

and therefore we have:

D′
j = min

r∈P∪{i}
[Dr + wrj] = min[min

r∈P
[Dr + wrj], Di + wij]

However, by our hypothesis Dj = minr∈P [Dr + wrj] therefore,
D′

j = min[Dj, Di + wij] which is exactly what is set by the
fourth step of the algorithm. Thus, after any iteration of the
algorithm, the second part of the propostion is true if it was
true at the beginning of the iteration. Thus the proof by in-
duction is complete.

(iii)

Permanent nodes Temporary Nodes

O (0) 2 (1.2), 5 (2.0)

O(0), 2(1.2) 3(4.2), 1 (2.4), 5(2.0)

O(0), 2(1.2), 5(2.0) 1 (2.4), 3(4.2), 4(7.7)

O(0), 2(1.2), 5(2.0), 1(2.4) 3(3.5), 4(4.8)

O(0), 2(1.2), 5(2.0), 1(2.4), 3(3.5) 4(4.8), D(7.6)

O(0), 2(1.2), 5(2.0), 1(2.4), 3(3.5), 4(4.8) D(7.6)

Table 1: Nodes for Dijkstra’s Algorithm
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The final route is O → 2 → 1 → 3 → D.
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