
Lecture 8

In this lecture we will reuse our work on Birth-Death processes and the M/M/1 queue to consider
new types of queue. In this lecture we will consider:

• Multiplexing — ways to share an network connection as M/M/1 queues.

• The M/M/m queue

• The M/M/∞ queue

A reminder of the main results from last lecture.

A general birth-death process has a birth rate λk and a death rate µk in state k. (The death
rate in state 0 is assumed to be 0). This was modelled as a Markov chain and lead us to the
equilibrium probabilities (probability that the queue is of length k):

πk = π0

k
∏

i=1

λi−1

µi
(1)

where

π0 =
1

1 +
∑

∞

k=1

∏k
i=1

λi−1

µi

(2)

For our M/M/1 process with births at rate λ and deaths at rate µ for all k this simplifies to:

πk = ρkπ0 (3)

(where ρ = λ/µ with 0 < ρ < 1 is the utilisation of the system). And

π0 =
1

1 +
∑

∞

k=1 ρk
(4)

From which we calculate the average queue length as:

N =
ρ

1 − ρ
(5)

Multiplexing

It is usual in the internet that several (maybe thousands) of users share the same data trans-
mission line. Using one line to send several signals is known as multiplexing. Three schemes are
commonly used:

• Statistical Multiplexing (the free-for-all option — everybody tries to cram down the same
wire and hope)

• Time Domain Multiplexing (the timetable option — you go at 10 past, I will go at 20 past)

1



• Frequency Domain Multiplexing (the radio channels option — you send at 99.9 kHz, I will
send at 102kHz)

All we really need to know for this course is that the first method (statistical multiplexing) all
the users compete for the line — effectively they share the same queue. On the other hand, in
the other two methods, the available space is split between the users in some method. They
don’t have to compete but, instead, they are each allocated a private channel which is a fraction
of the whole thing.

Let us take this as an example of our M/M/1 queue. Imagine we have a router which can
send µ packets/second to the outside world. We have n customers each of whom want to send
λi packets/second. Our two choices are statistical multiplexing (let all customers share the
bandwidth) or time/frequency domain multiplexing based on some allocation of available space.
Let us assume that the total demand from all our customers is λ =

∑n
i=1 λi packets/second.

Let us further assume that, if we implement time or frequency domain multiplexing we do it
according to demand so we allocate each customer a share proportional to their demand. So
each customer gets a share:

µi = µλi/λ (6)

(Trivial exercise — prove that µ =
∑n

i=1 µi). What are the average queues for the various
systems?)

Statistical Multiplexing

We remember the fact that an aggregation of n independent Poisson processes, each with a rate
of λi is the same as a single Poisson process with a rate of λ. Therefore, this is our default
answer, the M/M/1 queue — we get one system where the number of people queuing is given
by N = ρ/(1 − ρ) and ρ = λ/µ. Little’s Theorem tells us that the average delay to a packet is
given by N = λT therefore T = ρ

(1−ρ)λ .

Time/Frequency Domain Multiplexing

In this case, we have n independent channels. The ith channel is an M/M/1 queue with ρi =
λi/µi. From the definition earlier, therefore, substituting from (6) we get ρi = λi(λ/µλi) =
µ/λ = ρ.

So, we now have n queues which each have ρi = ρ and therefore each have an average queue
length N = ρ/(1− ρ). The total number of queuing packets in the system is the total from each
of these n queues which is nρ/(1 − ρ) and the average delay per packet is now (from Little’s
theorem again) T = n ρ

(1−ρ)λ . (Trivial exercise — what is the average delay in each queue call it

Ti. Why (
∑n

i=1 Ti)/n = T not generally true?)

So, by splitting the bandwidth into n channels we have multiplied the queuing delay by n.
A somewhat startling result. Why would we go to the bother of time or frequency division
multiplexing? Sometimes, statistical multiplexing is impossible for various reasons. However,
the most common reason is that customer i has paid for lots of bandwidth and customer j
(where i 6= j) has not. Therefore we allocate a larger share to customer i who does then feel the
benefit.

2



The M/M/m queue

Recall from our queuing theory definitions that an M/M/m queue has a Poisson (Memoryless)
input process a Poisson output and m servers. The situation we are thinking of is that where, for
example, we queue in the Post Office or banks with m different possible teller windows working.
Each teller windows serves a customer according to a Poisson process with an output rate of µ.
Therefore, if the total number of people in the post office is n where n ≤ m then the service rate
is nµ when n > m then the service rate is mµ. Again this is a specific case of our general birth
death process. We can draw a Markov chain equivalent to this process.

We have a birth death process with the following parameters: λi = λ for all i and µi given by:

µi =











0 i = 0

iµ 0 < i ≤ m

mµ i > m

(7)

We should note that the utilisation is defined as the input rate over the maximum output rate
of the system. Therefore ρ = λ/mµ. (And as usual we require that 0 < ρ < 1).

Substituting into (1) we get

πk =







π0

∏k
i=1

λ
iµ = π0

(mρ)k

k! k < m

π0

(

∏m−1
i=1

λ
iµ

)(

∏k
i=m

λ
mµ

)

= π0
mmρk

m! k ≥ m
(8)

And from
∑

∞

i=0 πi = 1:

π0 =

[

1 +

m−1
∑

i=1

(mρ)i

i!
+

∞
∑

i=m

(mρ)i

m!

1

mi−m

]−1

(9)

which simplifies to:

π0 =

[

m−1
∑

i=0

(mρ)i

i!
+

(mρ)m

m!(1 − ρ)

]−1

(10)

Now, we know that, if the number of customers in the system is less than or equal to m then all
customers will be at a server. We might ask what is the probability of arriving and finding all
servers busy (and therefore having to queue for a server). Therefore:

P{All Servers Full} =
∞
∑

i=m

πi =
∞
∑

i=m

π0m
mρi

m!
=

π0(mρ)m

m!

∞
∑

i=m

ρi−m (11)

We will refer to this quantity as PQ. Which gives us:

PQ = P{All Servers Full} =
π0(mρ)m

m!(1 − ρ)
(12)

where π0 is given by equation 10. This formula is known as Erlang’s C formula after a pioneer
of queuing theory.

3



The next thing we might ask is how many customers (on average) are queuing (rather than being
served). This is sometimes known as NQ and can be given by:

NQ =

∞
∑

i=m

(i − m)πi =

∞
∑

i=0

iπi+m (13)

(since for states below m there are no customers queuing). Substituting the expression for πi+m

from (10) we can get:

NQ =
∞
∑

i=0

nπ0
mmρm+i

m!
=

π0(mρ)m

m!

∞
∑

i=0

iρi (14)

Remember that we Notice that from (12) we get:

NQ = PQ
ρ

1 − ρ
(15)

Note that the expected queue size given that a customer arriving finds herself having to queue
is:

NQ

PQ
=

ρ

1 − ρ
(16)

which can be thought of as the obvious result that, when all the servers are working, the system
is equivalent to an M/M/1 queue with a service rate of mµ (remember that ρ = λ/mµ).

From Little’s theorem, the average time waiting in the queue W is:

W =
NQ

λ
=

ρPQ

λ(1 − ρ)
(17)

Of course once in queue, customers are each served at a rate µ and therefore the average time
in the system for a customer (queuing and being served) is:

T =
1

µ
+ W =

1

µ
+

PQ

mµ − λ
(18)

Using Little’s Theorem (again!) gives us the average number of customers in the system:

N = λT =
λ

µ
+

λPQ

mµ − λ
(19)

which equates to:

N = mρ +
ρPQ

1 − ρ
(20)

4



The M/M/∞ queue

Finally, we briefly consider the case where m = ∞ — our dream system where there is always
someone waiting to serve you, no matter how many people arrive.

Using a similar derivation before we change equation 1 to:

πk = π0

(

λ

µ

)k
1

k!
(21)

Therefore we have, from our condition that
∑

∞

i=0 πi = 1:

π0 =

[

1 +

∞
∑

i=1

(

λ

µ

)n
1

n!

]

−1

(22)

which we alertly notice is the equation for an exponential and therefore:

π0 = e−λ/µ (23)

And substituing in (21) we get:

πk =

(

λ

µ

)n
e−λ/µ

n!
(24)

which is, obviously, a Poisson system with parameter λ/µ.

The average number in the system from Little’s equation is:

N =
λ

µ
(25)

and the delay is:

T =
1

µ
(26)

We could have saved ourselves this derivation by simply making the observation that, in the
M/M/∞ system, nobody stands in a queue before joining a server. Therefore everyone is served
instantly by a Poisson process of rate µ.

5


