
Lecture 4 — Notes (Little’s Theorem)

This lecture concerns one of the most important (and simplest) theorems in Queuing Theory,
Little’s Theorem. More information can be found in the course book, Bertsekas & Gallagher,
section 3.2 (note that there are some minor errors and notational inconsistencies in their version)
and in Kleinrock I, section 2.1. Little’s Theorem is, in some ways, obvious. First we will introduce
the theorem in a handwaving manner and then make the details of the definition more precise.
Little’s Theorem states:

N = λT (1)

Where N is the average number of customers in a queue, T is the average time a customer spends
queuing and λ is the average rate of arrivals to the queue. In many ways this theorem represents
an obvious truth — if a lot of people are in a queue (N is large) then they will have long delays
(T is large); if few people arrive in a queue (λ is small) then the average number of people in the
queue is small (N is small). This lecture will be spent making this intuitive idea more rigorous.

Let us first make precise the definitions of N , λ and T and then make clear the assumptions on
which the theorem rests.

Let us first make some definitions:

N(τ) is the number of customers in the system at time τ .

α(τ) is the number of customers who arrived in the interval [0, τ ].

β(τ) is the number of customers who have departed in the interval [0, τ ].

ti is the time at which the ith customer arrived.

T (i) is the time spent queuing by the ith customer.

If Nt is the mean value of N(τ) taken over the interval [0, τ ] then it is clear that:

Nt =
1

t

∫ t

0

N(τ)dτ (2)

Let us assume:

N = lim
t→∞

Nt (3)

(Note that this limit is not guaranteed to exist — imagine, for example, a queue which keeps
growing.) If the limit exists, N is the steady state time average of N(τ).

We next define the average arrival rate over the time period [0, t].

λt =
α(t)

t
(4)

and, again, we assume that the following limit exists:

λ = lim
t→∞

λt (5)

1



Finally, the average delay experienced by those customers who have exited the system at times
in [0, t] is given by:

Tt =

α(t)∑
i=1

T (i)

α(t)
(6)

And, for a third time, we assume that the following limit exists:

T = lim
t→∞

Tt (7)

Little’s Theorem Proof assuming FIFO
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Figure 1: Little’s Theorem in a FIFO System

At first, we will prove Little’s Theorem with the restrictive conditions that, in addition to the
limits above existing, the queue is empty at time 0 (N(0) = 0), that queuing is FIFO and that
the queue becomes empty infinitely often beyond any given time τ . Figure 1 shows a FIFO queue
which is initially empty.

We note that at any time τ :

N(τ) = α(τ) − β(τ) (8)
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It is clear that if we choose a time t when the system again becomes empty then we can calculate
the area of the shaded area A(t):

A(t) =

∫ t

0

N(τ)dτ (9)

However, equally, we can consider the shaded area to be composed of horizontal strips of height
1 and width T (i) (for the ith customer). In this case, we have:

A(t) =

α(t)∑
i=1

T (i) (10)

Setting these equations equal and dividing each side by t gives us:

1

t

∫ t

0

N(τ)dτ =
1

t

α(t)∑
i=1

T (i) =
α(t)

t

∑α(t)
i=1 T (i)

α(t)
(11)

Therefore we have:

Nt = λtTt (12)

which, if we take the limit as (t → ∞) becomes Little’s Theorem as required. Note that some of
the assumptions made here are, in fact, unnecessary as we shall see. In fact, Little’s Theorem
only requires the following:

1. The limit λ = limt→∞ α(t)/t exists

2. The limit δ = limt→∞ β(t)/t exists

3. The limit T = limt→∞ Tt exists

4. δ = λ

Little’s Theorem Proof not assuming FIFO

Figure 2 shows the situation if we don’t assume FIFO. Now, it is still clear that the shaded area
in the interval [0, t] is given by:

A(t) =

∫ t

0

= N(τ)dτ (13)

even though, in the diagram, N(τ) is no longer necessarily a continuous vertical slice of the area
(consider, for example, the situation at time t4 in the diagram).

Now, we define the following:

D(t) is the set of customers who have departed the system by time t.

D(t) is the set of customers who are still in the system at time t.
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Figure 2: Little’s Theorem in a non FIFO System

The delay experienced up to time t by a customer still in the system at time t is t− ti. Therefore
we can say:

A(t) =
∑

i∈D(t)

Ti +
∑

i∈D(t)

(t − ti) (14)

Therefore, equating these and dividing by t we get:

1

t

∫ t

0

N(τ)dτ =
1

t

∑
i∈D(t)

T (i) +
1

t

∑
i∈D(t)

(t − ti) (15)

Up to time t, the average arrival rate λt is given by:

λt =
|D(t) + D(t)|

(
t) (16)

Up to time t, the average waiting time Tt is given by the total waiting time of all the customers
so far over the total number of customers entering the system so far (up to time t):

Tt =

∑
i∈D(t) T (i) +

∑
i∈D(t)(t − ti)

|D(t) + D(t)|
(17)

Substituting these two equations and our previous equation (2) into (15) we therefore have:
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Nt = λtTt (18)

which, in the limit as t → ∞ gives us Little’s Theorem again.

Probabalistic Form of Little’s Theorem

Throughout this section we will assume that all relevant systems are ergodic. Let us define that
at a time t the probability that there are exactly n customers in the system is pn(t). (Typically, in
a probabalistic situation we would be given, or assume, the starting conditions — the distribution
given by pn(0) for all n). From this, we can say that the mean number of customers in the system
at time t is given by:

N(t) =

∞∑
n=0

npn(t) (19)

Note that N(t) and pn(t) depend on both t and the initial distribution of p(0) = {p0(0), p1(0), p2(0) . . . }.
If we assume that the system converges to some steady state distribution then we have:

lim
t→∞

pn(t) = pn n = 0, 1, . . . (20)

And therefore we can say that the average number of customers in the system is:

N =

∞∑
n=0

npn (21)

Now, if we assume (as before) that this converges to a limit, we have:

N = lim
t→∞

N(t) (22)

Similarly, let us assume that the average delay for the kth customer T (k) also converges as
k → ∞ to a steady state value:

T = lim
k→∞

T (k) (23)

Now, since we assumed ergodicity, we can say that the time average of the number of customers
N is (with probability 1) equal to the steady state state-space average N :

N = lim
t→∞

Nt = lim
t→∞

N(t) = N (24)

Similarly, we can say that the time average of customer delay T is equal to the steady state
state-space average T .

T = lim
k→∞

1

k

k∑
i=1

T (i) = lim
k→∞

T (k) = T (25)
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Little’s theorem then holds with λ given by:

λ = lim
t→∞

E{Arrivals in interval [0, t]}

t
(26)

A Simple Example Using Little’s Theorem

Take, as an example, the very simple model of an ethernet system shown in figure . Assume that
the ethernet can (as is often the case) only transmit a single packet at a time (other packets to
be sent must queue).

Output packets (rate λ)

Output Queue

Ethernet transmits packets
Rest of internet

Figure 3: A very simple view of an ethernet system.

Note that we can apply Little’s theorem twice even in this simple situation. First, if NQ is
the average number of packets queuing to leave the system and W is the average time a packet
spends in the queue waiting to be transmitted then we have:

NQ = λW

Now, assuming no packets are ever dropped at this point (this would typically be the case unless
the system is misconfigured) and the mean transmission time taken for the packet along this
section of ethernet is X then we have:

ρ = λX

where ρ is the average number of packets on the outgoing ethernet section. Since, this must be
either zero or one at any given time, ρ is also the utilisation factor — the proportion of the time
which we expect the line to be busy.

Another Simple Little’s Theorem Example

Consider a windowed flow control system such as TCP. At any given time, at most W packets
(and ACKs) can be outstanding where W is the window size. Let us assume now that W has
reached some constant maximum (in TCP, users advertise a maximum window size) Wm (this
is the maximum size the window will reach if no packets are lost). Since the number of packets
under transmission is less than or equal to Wm we can say that if packets depart at an average
rate λ and, on average, have a round trip time of T then:
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Wm ≥ λT

This gives us an insight into the flow-control behaviour of TCP since, it is obvious from this
equation that if delay increases (T goes up) then λ the sending rate will come down (or the
window size will be decreased). If the delay in sending a new packet is negligible with comparison
to the RTT then we have:

Wm ≈ λT

which shows the reason for setting a maximum window size. If the system is congested then λ
cannot increase (the system is transmitting at its maximum rate). Therefore, in a congested state,
increasing the window size simply serves to increase delay with no advantages to throughput.
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