
Lecture 11 — Weighted Graphs, Spanning Trees and Short-

est Paths

Weighted Graphs

Definition 1. A weighted graph G = (N ,A) is one where each arc (i, j) ∈ A has associated
with it a weight wij .

The concept of a weighted graph is extremely useful. The weights can be thought of, for example,
as the cost of sending a message down a particular arc. (Not necessarily a monetary cost but
some combination of time and distance for example). Weighted graphs can be used to formulate
the shortest path problem for routing packets. Let us first look at a different problem, that of
the minimum weight spanning tree (MST).

Minimum Weight Spanning Tree

Recall from last lecture that a spanning tree of a connected graph G = (N ,A) is a subgraph
G′ = (N ′,A′) which is a tree and in which all the nodes in N are also in N ′.

Definition 2. A minimum weight spanning tree (MST) of a weighted graph G = (N ,A) with
arc weights wij is the spanning tree G′ = (N ′,A′) which minimises the sum

∑
(i,j)∈A′ wij .

Definition 3. A fragment of a graph G is a subtree (a subgraph which is a tree) of an MST of
G.

Proposition 1. Given a fragment F = (N ′,A′) of a graph G = (N ,A), let α = (i, j) be the

minimum weight arc which has the property i ∈ N ′ and j ∈ N −N ′. F extended by adding the

arc (i, j) and the node j is also a fragment.

This proposition, if true, immediately suggests an algorithm for creating an MST for a graph G
by expanding the fragment F until it becomes an MST.

Proof. M is the MST of which F is a subtree. Choose some α = (i, j) as described in proposition
1. If α = (i, j) /∈ M (where α is the minimum weight arc as described above) then there must
be a cycle formed by the arcs of M and α. Since j /∈ F by definition, then there must exist
some arc β = (k, l) ∈ M where β 6= α which is part of the cycle and where k ∈ F and l /∈ F .
Deleting β from M and adding α instead must therefore result in a spanning tree M ′ (since M ′

is a subgraph of G which has no cycles and has the same number of nodes and arcs as M – from
last lecture’s lemma). Since α has lower weight than β then M ′ has a lower total weight than
M which is a contradiction. Therefore, our original assumption that α = (i, j) /∈ M cannot be
true and the proposition is proved.

Two algorithms use this proposition to build MSTs from a graph. The Prim-Dijkstra algorithm
starts with an arbitrary node as the initial fragment and adds nodes and arcs as described by
the above proposition until the fragment becomes an MST.

Kruskal’s algorithm starts with each node as a fragment and, iteratively, choses the arc which is
the minimum weight arc which does not form a cycle. Ideally, we would be able to use Kruskal’s
algorithm in a distributed manner and have each fragment add arcs until all the fragments are
joined. Kruskal’s algorithm requires a second proposition before we can use it in a distributed
manner. An MST is not necessarily unique. Consider, for example, a three node graph with
each arc weight as 1 as seen in figure 2
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Figure 1: MST: (Example taken from Bertsekas and Gallagher)
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Figure 2: Graph without unique MST. (Taken from B & G)

Proposition 2. If all arc weights in a graph are distinct then there exists a unique MST.

Proof. Suppose that two distinct MSTs exist M and M ′. Let α be the smallest arc which belongs
to one but not both. Assume wlog that α belongs to M . The situation is shown in figure 3.
Consider the graph formed by the union of M ′ and α. Clearly the graph must contain a cycle.
At least one arc of this cycle must not belong to M (or M would itself contain a cycle). Since
α must have a smaller weight than β by definition then, by deleting β from M ′ and replacing
it with α then M ′ will be a spanning tree of smaller weight than it originally had. This is a
contradiction since our original assumption was that both trees were MST.

If a unique MST exists we can use the distributed version of Kruskal’s algorithm. That is, each
node is considered as a fragment and each fragment adds simultaneously, the minimum weight
arc which is outgoing from that fragment. (Which must be part of an MST from the earlier
proposition, and since the MST is unique, all nodes added must be part of the same MST). New
arcs will be added until all the fragments are joined.
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Figure 3: Proof of MST uniqueness. (Taken from B & G)

Directed Graphs and Shortest Paths

Definition 4. A directed graph or digraph G = (N ,A) is a finite, nonempty set N of nodes and
a collection of ordered pairs of distinct nodes from N . (Each member of A is called a directed

arc.

The terms directed walk and directed path have the expected meanings — digraph equivalents of
walk and path where the direction of the arcs is taken into account. A subtle difference should
be observed when considering a directed cycle.

Definition 5. A directed cycle is a directed walk (n1, . . . , nl) with n1 = nl where l > 2 and no
repeated nodes other than 1 and l. Note that this is slightly different to the notion of a cycle in
an undirected graph.

Note the subtle difference between this and the definition of a cycle in a non-directed graph. (Note
also that since we have disallowed arcs which start and end at the same node, if (n1, . . . , nl) with
n1 = nl where l > 2 and there are repeated nodes other then 1 and l then the directed walk
must be made of several cycles.

We can now define the problem of finding a shortest path from O to D as finding the directed
path (n1, . . . nl) where n1 = O and nl = D which minimises the sum

∑l−1
i=1 wnini+1

where wij

is the weight of the arc from node i to node j. Two methods of solving this problem will be
discussed in the next lecutue: Dijkstra’s algorithm and the Bellman-Ford algorithm. Both of
these are in common use, both in mathematics in general, and in route-finding on the internet
in specific.
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Figure 4: Figure for testing Prim-Dijkstra vs Kruskal’s Algorithm. (Taken from B & G)
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