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What are we doing?

Looking at the statistical nature of internet traffic.

Attempting to isolate the statistical phenomenon of
Long-Range Dependence (LRD).

We want to find the root cause of LRD in networks.

Measurements on real network data.

Modelling the situation with Markov Chains.

Simulation using ns.

Analysing Long-Range Dependence in Teletraffic – p.2/37



Long-Range Dependence

LRD (Long Memory, “The Joseph Effect”) was first
discovered by Hurst

A typical process (finite Markov chain, Poisson process
or finite ARIMA) has an exponentially decaying ACF tail.

That is R(k) ∼ ak where (0 < a < 1).

For LRD R(k) ∼ k−α where (0 < α < 1).

Has an unsummable ACF
∑

∞

k=1
R(k) = ∞.

Characterised by the Hurst parameter 1

2
< H < 1 where

H = 1+α
2

.
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Describing Long-Range Depedence

We can think of LRD in a number of ways:

1. A significant level of correlation over all time scales.

2. A process which is bursty over any time scale we
consider.

3. A process with a pole (usually at 0) in the frequency
spectrum.

4. An AR(∞) process.

LRD is related to statistical self-similarity.

LRD processes are problematic statistically (for example,
convergence of mean estimates is slow).
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LRD in Networks

In 1993 Leland, Taqqu, Willinger and Wilson measured
LRD in a time series of packet per unit time in Ethernet
data.

The correlation structure induced by LRD can cause
significant problems for queuing systems.

A stream of data where the packets/unit time exhibits
LRD may well have significantly worse queuing
performance than one.

There is now a significant body of research into LRD in
networks (several hundred papers in the last ten years).
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Models with LRD

Several models are commonly used in the telecomms field
to investigate LRD.

Fractional Brownian Motion: fBM

Fractional Arima: FARIMA

Iterations of the Double Intermittency Map

Frequency Domain Techniques (for example Wavelet
based reconstruction)

Do we really need another model?
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The Infinite Markov Model
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Markov Basics

When is this model ergodic (irreducible, aperiodic and
recurrent non-null)?

Irreducible (all states can be reached from any state) iff
∀i∃j > i : fj > 0.

Aperiodic if f0 > 0.

An irreducible and aperiodic chain is recurrent non null
(the mean recurrence time of any state is finite) iff
∑

∞

i=0
ifi < ∞.

An ergodic chain has equilibrium probabilities πj for
each state j.
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Recurrent Non Null

Pr[First return to j is after n steps] =rj(n)

Now we wish to calculate the mean return time.
(

Mj =
∞
∑

n=1

nrj(n)

)

<∞ ⇔ recurrent non null

M0 =
∞
∑

i=0

(i + 1)fi =
∞
∑

i=0

fi +
∞
∑

i=0

ifi = 1 +
∞
∑

i=0

ifi

For an irreducible, aperiodic chain if one state is recurrent non

null, then all states must be → ergodicity.
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A Finite Model

Create a finite model - states 0 → N

Define the transition probabilities gN
i .

gN
i =















fi 0 < i < N

1

N

∑

∞

i=N ifi i = N

1 −
∑N

i=1
gN

i i = 0

Call the equil. prob. of the ith state πN
i . We can easily show:

πN
i = πN

0

N
∑

j=i

gN
j
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Calculating the system ACF

For binary system Yt then:

R(k) = Pr[Yt = 1|Yt+k = 1] + Pr[Yt = 0|Yt+k = 0] + 1

Pr[Yt+k = 0|Yt = 0] =
∣

∣[1 0 . . . 0]P k[1 0 . . . 0]T
∣

∣

And obviously Pr[Yt = 0] = Pr[Xt = 0] = π0.

We can create a similar equation for the ON states.

BUT P k is intractable analytically.
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Inducing LRD Correlation Structure

Unbroken runs of k 0s will clearly decay exponentially
with k. The fi values set the decay of unbroken runs of
1s.

Part of a run of k or more if Xt ≥ k.

Control decay of
∑

∞

i=k πi.

For LRD
∑

∞

i=k πi ∼ k−α (some hand-waving here).

Strict condition
∑

∞

i=k πi = Ck−α for k > 0.

Since π0 = 1 −
∑

∞

i=1
πi then C = 1 − π0.
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Generating the Correlation Structure

This system is trivially solved and we can calculate the
values of fk.

For k > 0 we have (note problems with some values):

fk =
1 − π0

π0

[

k−α − 2(k + 1)−α + (k + 2)−α
]

The attractive thing about this series is that it is
telescoping. For example.

f0 = 1 −

∞
∑

i=1

fi = 1 −
1 − π0

π0

[

1 − 2−α
]
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Directly Using The Infinite Chain

We can directly use the infinite chain in calculations if
we use a simple algorithm. First define F (j, k) =

∑k
i=j fi

where (j ≤ k).

We can see that if X is the next state moved to by the
chain after state 0 then we have Pr{X ∈ [i, j]} = F (j, k).

The telescoping property makes F (j, k) easy to
calculate. For j > 0 and k < ∞ we have:

F (j, k) =
1 − π0

π0

[

j−α − (j + 1)−α − (k + 1)−α + (k + 2)−α
]
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Algorithm for N state Finite Chain

1. If the state is not zero then reduce the state by one.
This is the new state. Exit here.

2. Choose a new random number R in the range [0, 1].

3. Set j = 1.

4. If R < F (j,N) then the new state is j − 1. Exit here.

5. Increase j by 1. If j > N the new state is N . Exit here.

6. Go to step 4.
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Algorithm for Infinite Chain

1. Explicitly calculate if X ∈ [0, N − 1] (where N is a small
integer) using a single random no as previously.

2. Generate a new random number R in the range [0, 1].

3. Calculate Pr{X ∈ [N, 2N − 1]|X ∈ [N,∞]} if R is less
than or equal to this probability then X is in the required
range.

4. If X is in the required range then refine down by
generating a new random number and use a binary
search until X is found.

5. Otherwise increase the value of N to 2N and go to step 2.
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ACF of process
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Logscale ACF of process
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Methods for Estimating LRD

R/S plot — the rescaled adjusted range. The oldest
method for measuring H.

Aggregated Variance — logarithm of variance versus
logarithm of aggregation level.

Periodogram — log periodogram (estimate of spectral
density) versus frequency.

Whittle’s Estimator — an approximate MLE.

Local Whittle — semi-parametric approximate MLE
(parametric at frequencies near the origin).

Wavelet based — frequency domain technique.
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LRD Estimation Problems

Some biased estimators with poor convergence
performance.

All are vulnerable to some extent to non-stationarities in
the data.

Periodicity and trends in particular can be a problem.

While some estimators give confidence intervals, often
results from different estimators do not agree even within
95% intervals.

More information:
http://math.bu.edu/people/murad/methods/index.html
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R/S example — H=6.25
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Variance example — H=6.25
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Results from Various Estimators

Data Actual H R/S Var Whit. L.W.
FGN 0.625 0.62 0.63 0.61 0.63
FGN 0.75 0.71 0.73 0.74 0.77
FGN 0.875 0.80 0.81 0.86 0.90
Markov 0.625 0.64 0.58 0.63 0.69
Markov 0.75 0.64 0.70 0.76 0.80
Markov 0.875 0.73 0.74 0.84 0.88
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Simulation Results using ns

ns simulator http://www.isi.edu/nsnam/ns/

The Markov sources have been added to this
simulation.

The setup is four sources feeding gradually down to a
single line.

The mean and Hurst parameter have been varied to
produce surface plots.

The network is set so a mean of 0.5 will overload it
totally.

Analysing Long-Range Dependence in Teletraffic – p.24/37



Simulated Packet Loss
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Packet Loss at First Nodes
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Packet Loss at Output
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Moving to the Real Data

Four causes of LRD in teletraffic data are suggested in
the literature.
1. Aggregation of heavy tailed sources produces LRD.
2. TCP control feedback produces LRD.
3. Traffic outbound from users is LRD at source.
4. Aggregation of traffic in the network produces LRD.

Real data can help identify the relative importance of
these causes.

Analysing Long-Range Dependence in Teletraffic – p.28/37



Some Real Data

Data collected at incoming/outgoing pipe at University
of York.

8.23 GB of data in 13.6 million packets — 67 minutes of
data.

7.81 GB of this data is TCP. 0.6MB of data is ICMP.
0.4GB of data UDP.

Outgoing data: 1.95GB of data in 6.0 million packets
(av size: 323 bytes).

Incoming data: 6.29GB of data in 7.7 million packets
(av size: 821 bytes).
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Disaggregating the data

In addition to inbound and outbound we can break up
traffic by port number.

Ports are usually associated with particular services.

Port 80 HTTP (5.78GB)

Port 25 SMTP (226MB)

Port 21 and 20 FTP (230MB)

Port 53 DNS (33MB)
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Results from Various Estimators

Data R/S Var Whit. L.W.
Total 0.75 0.88 0.97 0.98
In 0.73 0.89 1.32 0.97
Out 0.75 0.67 Error 1.00
http 0.80 0.89 1.33 0.98
ftp 0.83 0.93 0.93 0.99
smtp 0.72 0.68 0.72 1.02
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0.1 sec results

Data R/S Var Whit. L.W.
Total 0.82 0.92 Error 0.88
In 0.83 0.93 0.95 0.87
Out 0.75 0.78 0.97 0.88
http 0.79 0.93 0.96 0.89
ftp 0.67 0.93 Error Error
smtp 0.78 0.75 0.81 1.06
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Smaller sample Results

Data R/S Var Whit. L.W.
Total 0.79 0.89 0.77 0.88
In 0.78 0.90 0.66 0.89
Out 0.66 0.60 0.60 0.78
http 0.78 0.90 0.79 0.88
ftp 0.19 ? 0.62 0.59 0.96
smtp 0.61 0.67 0.53 0.61
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TCP Packet Lengths (bytes)
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TCP Session Lengths (bytes)
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Conclusions

LRD is an important topic for study in telecomms
networks.

A new model has been presented which introduces LRD
in a simple way.

Modelling with this LRD generating source shows it has a
considerable effect on queuing performance.

Measuring LRD in real data is extremely difficult.

Four well known methods produce inconsistent results.

More work remains to be done on this project.
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For More Information

The Networks and Nonlinear Dynamics Group (NNDG) at
York is new to the field of telecomms research (only four
years of experience).

We welcome collaboration with other groups and the
benefit of their research experience.

Email richard@manor.york.ac.uk

Web http://gridlock.york.ac.uk

This work was undertaken with the help of our colleagues
at Queen Mary, University of London, BTexact and Nortel
Networks.

Analysing Long-Range Dependence in Teletraffic – p.37/37


	What are we doing?
	Long-Range Dependence
	Describing Long-Range Depedence
	LRD in Networks
	Models with LRD
	The Infinite Markov Model
	Markov Basics
	Recurrent Non Null
	A Finite Model
	Calculating the system ACF
	Inducing LRD Correlation Structure
	Generating the Correlation Structure
	Directly Using The Infinite Chain
	Algorithm for N state Finite Chain
	Algorithm for Infinite Chain
	ACF of process
	Logscale ACF of process
	Methods for Estimating LRD
	LRD Estimation Problems
	R/S example --- H=6.25
	Variance example --- H=6.25
	Results from Various Estimators
	Simulation Results using ns
	Simulated Packet Loss
	Packet Loss at First Nodes
	Packet Loss at Output
	Moving to the Real Data
	Some Real Data
	Disaggregating the data
	Results from Various Estimators
	0.1 sec results
	Smaller sample Results
	TCP Packet Lengths (bytes)
	TCP Session Lengths (bytes)
	Conclusions
	For More Information

