
Modelling data networks

Richard G. Clegg (richard@richardclegg.org)

1 Introduction to network modelling

There are many difficulties to modelling the Internet, for a well-known and excellent summary see [5]

• The Internet is big (and growing).

• The Internet is heterogeneous to a large degree.

• No central maps exist of the Internet.

• The Internet is not always easy to measure.

• The Internet is rapidly changing.

• It is extremely important to be able to model the Internet.

The Internet cannot possibly be modelled, yet we must model the Internet. How can this be resolved?

The intention of this lecture is to teach you three things:

1. A general approach to such modelling problems.

2. Some specific mathematical techniques necessary for certain modelling problems (basic stochastic pro-
cesses, Markov chains, queuing theory).

3. An approach to how to do modelling of data networks in real life.

• How you model the network depends critically on the problem you are solving.

• What are you trying to show with your model?

• Metrics: what are we trying to measure?

1. Throughput?

2. Goodput?

3. System efficiency?

• Validation: what real data can be used to check the model?

• Sensitivity: what happens if your assumptions change?

1. What if the demand on the system is slightly different?

2. What happens if delays and bandwidths are changed?

3. What happens if users stay longer or download more?

Important questions for modelling.

1. How much of the network do we model?

• Whole Internet (then we can’t even model every computer – every AS?)

• A few typical nodes?

• A sub net?

• A single queue and buffer?

1

2. What level of modelling is appropriate?

• Mathematical – solution “instant” (or quick) but which mathematical techniques are useful?

• Detailed simulation

• Combined approach (equations abstract away some details with approximations)

3. How far down the network stack need we go?

1.1 Example model – peer-to-peer network

Modelling Task: Test the possible improvements expected if we try a locality aware peer selection policy on
a global bittorrent network.

What must our model include?

1. The distribution of nodes (peers) on the overlay network (not the whole network).

2. The delay and throughput between these peers (must depend on distance to some extent).

3. How users arrive and depart.

4. What users choose to download.

Note that this might already be a vast modelling task with hundreds of thousands or even millions of nodes.

• Research existing P2P models, do any fit? Don’t reinvent the wheel.

• Real data: What real-life measurements exist to validate against?

• If we are modelling a new peer selection we must be sure our model covers existing peer selection well.

• Metrics: what must we measure in our model?

1. Overall throughput/goodput?

2. Distribution of time taken for peers to make their download?

3. Total resources used in system?

• Validation: Instrumented P2P clients exist – how do they compare to our simulation.

• Sensitivity: Different distribution of users? Different delays and throughputs?

1.2 Example model – Buffer provisioning model

Modelling task: Given a router with a buffer, how does the buffer size in packets affect the probability of
packet loss?

What must our model include?

1. A model of the incoming packets to the buffer.

2. The rate at which packets leave the buffer.

3. Possibly distribution of packet lengths in bytes.

4. Possibly the feedback (TCP) between packet loss and arrival rate.

• Research: what is known about the statistics of Internet traffic?

• What is the distribution of inter-arrival times and packet lengths?

• Metrics:

1. Packet loss.

2. Packet delay.

• Sensitivity: What if we change the following parameters:

1. The total arrival rate.

2. The bandwidth of the outgoing link.

• Validation: Real traffic traces (CAIDA has a collection).

2

1.3 Example model – TCP throughput

Modelling Task: Test a possible improvement to the TCP model which aims to improve fairness and through-
put when flows share a link.

What must our model include?

1. Individual packet model with existing TCP protocol as accurately as possible.

2. A reasonable estimate of how long each connection lasts and the rate at which new connections.

3. A model of the probability of round trip time for the parts of the connection not on the link being
modelled.

4. A model of the probability of packet loss on the link (due to buffer overflow?)

• Can existing network models help (ns-2 could be an obvious choice)?

• What if the existing protocol shares a link with flows using the old protocol.

• Metrics:

1. Throughput and goodput.

2. Fairness between flows.

• Sensitivity, what if we change these parameters:

1. Number of flows using existing and new protocol.

2. Bandwidth of link.

3. Round trip time of flows.

4. Probability of packet loss.

• Validation: Does our model agree with real measurements?

1.4 Other things to model

• Of course depending on the nature of your modelling, there may well be other aspects of the network
to be modelled.

• Some examples might be:

1. Reliability of nodes and links.

2. An overlay network.

3. Possible hostile attacks to the network.

• In all cases, an important starting point is to find out what research already exists in the area.

• Are any real-life data sets available which could inform your modelling? Could you gather such data?

Figure 1.4 shows a basic diagram for a simple model of a generic network. Objects (packets, files, work to be
performed) arrive at nodes (computers, routers, data centers). The object arrival is modelled as a stochastic
process. The objects are processed at nodes (this can be seen as a queue) and then pass onwards either leaving
the network or moving onwards to become an input to other nodes.

A network model could be viewed as these components.

• Arrival process: A statistical process describing how objects (packets) arrive in the network – statistical
process modelling.

• Queueing process: A model which describes how objects (packets) are processed by a network node –
queuing theory.

• A “network topology” – the wiring diagram which shows how these things connect together.

3

Processing

at node

(queue)

Arrivals from

outside

network

Input process

Output

process

Outputs to

other nodes

Inputs from other

nodes

Departs

to outside

network

Figure 1: A diagram showing a generic model of a data network

The rest of these notes will, therefore, cover:

• Statistical processes – in particular the Poisson process.

• Markov chains – a useful modelling tool in themselves and a prerequisite for...

• Queuing theory – the mathematical study of how things join and leave queues.

Finally they will cover:

• A summary of basic research in the Internet.

• A brief description of a well-known network modelling tool – ns-2.

2 Statistical Processes

2.1 Introduction to stochastic processes

Let X(t) be some value (or vector of values) which varies in time t. Think of the stochastic process as the
rules for how X(t) changes with t. Note: t may be discrete (t = 0, 1, 2, . . .) or continuous.

A Poisson process is a process where the change in X(t) from time t1 to t2 is a Poisson distribution, that is
X(t2)−X(t2) follows a Poisson distribution.

A simple stochastic process is the drunkard’s walk (or random walk). A man walks home from the pub. He
starts at a distance X(0) from some point. At every step he (randomly) gets either one unit closer (probability
p) or one unit further away.

X(t+ 1) =

{
X(t) + 1 probability p

X(t)− 1 probability 1− p.

With this model one can answer questions like “where, on average, will he be at time t”? s

Take some simple parameters for the drunkard’s walk – p = 0.5, X(0) = 0. Figure 2 shows what the system
looks like with these parameters.

• What is the expected value of X(t), that is, E [X(t)]?

4

Figure 2: The drunkard’s walk with p = 0.5, X(0) = 0 – diagram from wikipedia

• E [X(t)] = 0.5(X(t− 1) + 1) + 0.5(X(t− 1)− 1) = 0.5(X(t− 1) +X(t− 1)) + 0.5(1− 1) = X(t− 1).

• Therefore E [X(t)] = X(0) = 0 – the poor drunk makes no progress towards his house (on average).

• E
[
X(t)2

]
= 0.5(X(t− 1) + 1)2 + 0.5(X(t− 1)− 1)2 = X(t− 1)2 + 1.

• Therefore E
[
X(t)2

]
= t – on average the drunk does get further from the starting pub.

• This seemingly silly example has many uses in physics and chemistry (Brownian motion) – not to
mention gambling (coin tosses).

2.2 The Poisson process

Let X(t) (where t ≥ 0 – that is t can be any real number, not just integers, this is a continuous process) with
X(0) = 0 be a Poisson process with rate λ. Let t2, t1 be two times such that t2 > t1. Let τ = t2 − t1.

P [X(t2)−X(t1) = n] = exp[−(λτ)]

[
(λτ)n

n!

]
.

In other words, the number of arrivals in some time period τ follows a Poisson distribution with rate λτ .

Why is the Poisson process special?

• The Poisson process is in many ways the simplest stochastic process of all.

• This is why the Poisson process is so commonly used.

• Imagine your system has the following properties:

– The number of arrivals does not depend on the number of arrivals so far.

– No two arrivals occur at exactly the same instant in time.

– The number of arrivals in time period τ depends only on the length of τ .

• The Poisson process is the only process satisfying these conditions (see section 2.3 for proof).

Some remarkable things about Poisson processes

• The mean number of arrivals in a period τ is λτ (see notes).

• If two Poisson processes arrive together with rates λ1 and λ2 the arrival process is a Poisson process
with rate λ1 + λ2.

5

• If you randomly “sample” a Poisson process – e.g. pick arrivals with probability p, the sampled process
is Poisson, rate pλ.

• The time before the next arrival in a Poisson process does not change depending on when you arrive.

• In general this makes Poisson processes easy to deal with.

• Many things in computer networks really are Poisson processes (e.g. people logging onto a computer or
requesting web pages).

• The Poisson process is also “memoryless” as the next section explains.

If a packets are arriving in a Poisson process and a packet has just arrived what is the likely length of time
before we see another packet? This is called the interarrival time – the time between arrivals. For a Poisson
process this follows the exponential distribution. An exponential distribution for a variable T takes this form:

P [T ≤ t] =

{
1− exp[−(λt)], t ≥ 0,

0 t < 0.

This is easily shown – the probability of an arrival occurring before time t is one minus the probability of
no arrivals occurring up until time t. The probability of no arrivals occurring during a time period t is
(λt)0 exp[−(λt)]/0! = exp[−(λt)]. It can be shown that the mean time to the next arrival is 1/λ.

There is something strange to be noticed here – the distribution of our interarrival time T was given by
P [T ≤ t] = 1− exp[−(λt) for t ≥ 0. However, if looked at the Poisson process at any instant and asked “how
long must we wait for the next arrival?” the answer is just the same 1/λ. Exactly the same argument can be
made for any arrival time. The probability of no arrivals in the next t seconds does not change because an
arrival has just happened. The expected waiting time for the next arrival does not change if you have been
waiting for just one second, or for an hour or for many years – the average time to the next arrival is still the
same 1/λ. This is known as the memoryless property of Poisson processes

2.3 Aside – deriving the Poisson processes

This section of notes is an aside included for interest and will not be examined. There are many ways to
derive a Poisson process. Let A(t) (for t ≥ 0) be the number of customers arriving in the interval [0, t] (with
A(t) = 0). Consider the following requirements,

1. The number of arrivals in disjoint time periods are independent.

2. For a small time period δt the probability of a single arrival in the period is given by

P [A(t+ δt)−A(t) = 1] = λδt+ o(δt),

where λ is known as the rate of the process and o(δt) is some function (which maybe negative or positive)
which tends to zero in the limit as δt tends to zero.

3. The probability that two or more arrivals occur in the same small time period is negligible. More
formally,

P [A(t+ δt)−A(t) ≥ 2] = o(δt).

From the above we can derive

P [A(t+ δt)−A(t) = 0] = 1− λδt+ o(δt).

Define Pn(t) = P [A(t) = n]. Now, consider how Pn(t) evolves in some short time period δt.

Pn(t+ δt) = Pn(t)(1− λδt) + Pn−1(t)λδt+ o(δt) n > 0,

P0(t+ δt) = P0(t)(1− λδt) + o(δt).

6

These can be rewritten as

Pn(t+ δt)− Pn(t)

δt
=
−Pn(t)(λδt) + Pn−1(t)λδt+ o(δt)

δt
n > 0,

P0(t+ δt)− P0(t)

δt
=
P0(t)(−λδt) + o(δt)

δt
.

These equations are sometimes called differential difference equations and are often used in queuing theory.
Now take the limit as δt→ 0 which causes the terms o(δt) to vanish and gives

dPn(t)

dt
= −λPn(t) + λPn−1(t) n > 0

dP0(t)

dt
= −λP0(t).

Now, the equation for P0(t) can be trivially solved and this gives

P0(t) = Ce−λt,

where C is a constant which is shown to be 1 from the boundary condition P0(0) = 1 (since A(0) = 0).

Substituting n = 1 gives,
dP1(t)

dt
= −λP1(t) + λP0(t) = −λP1(t) + λe−λt.

Solving gives
P1(t) = λte−λt,

which can be checked by substitution into the previous equation.

Continuing this analysis will give

P2(t) =
(λt)2e−λt

2!

P3(t) =
(λt)3e−λt

3!
,

and so on.

In general the relationship

Pn(t) =
(λt)ne−λt

n!
,

is suspected and this can be shown trivially by induction.

Now, this implies,

P [A(t) = n] = Pn(t) =
(λt)ne−λt

n!
,

and since one of our other conditions was that the arrivals in disjoint time periods are independent then we
could repeat this analysis to find the number of packets arriving since some time t and get,

P [A(t+ τ)−A(t) = n] = P [A(τ) = n] =
(λτ)ne−λτ

n!
,

which is the equation for a Poisson process. It can therefore be seen that the three simple conditions defined
in the beginning are sufficient that a Poisson process is the only process which meets those conditions.

7

2.4 Aside — the mean and variance of a Poisson distribution

This section of notes is included for interest and will not be examined.s Assume the variable X has a Poisson
distribution with parameter λ. Its expectation is given by

E [X] =

∞∑
n=0

nP [X = n] =

∞∑
n=1

n
λne−λ

n!

=

∞∑
n=1

λ
λn−1e−λ

(n− 1)!

= λ

∞∑
n=0

λne−λ

n!

= λ.

A similar calculation will show that X (the sample mean) is an unbiased estimator of λ. Proceeding in the
same way,

E
[
X2
]

=

∞∑
n=0

n2P [X = n] =

∞∑
n=1

n2
λne−λ

n!

= λ

∞∑
n=1

n
λn−1e−λ

(n− 1)!

= λ

∞∑
n=0

(n+ 1)
λne−λ

n!

= λ

∞∑
n=0

[
n
λne−λ

n!
+
λne−λ

n!

]
= λ2 + λ.

The variance is therefore given by
σ2 = E

[
X2
]
− E [X]

2
= λ.

3 Markov chains

3.1 What is a Markov Chain?

Now consider the idea of things moving about randomly in space. For example consider a hitch-hiking hippy
who, for some reason, has no short term memory. He hitch hikes at random between A-town, B-town and
C-town. At A-town he has a 3/4 chance to get to B-town and a 1/4 chance to get to C-town the next day.
He moves town every day according to the diagram below.

A

B

C

1/3

2/3

1/2

1/2

1/4
3/4

Now, the next step is to ask questions about where the hippy is at a given day. If he starts in A-town on day
one then on day 2 he has a 1/4 chance of being in C town and a 3/4 chance of being in B town. On day 3 he
has a 3/8 chance of being in A town (1/3×3/4 = 1/4 via A→ B → A plus 1/2×1/4 = 1/8 via A→ C → A).

8

We could carry on making calculations like this for day 4 day 5 and so on but it would get boring. We need
a smarter way.

Define the transition probabilities. Let us number instead of name our towns, 0, 1 and 2 instead of A, B and
C. Let pij be the probability that if the hippy began at i he moves to j in one day. So, for example p11 = 0
(there is zero probability the hippy begins in B and ends in B). p12 = 2/3 (the probability that the hippy at
B moves to C is 2/3). We can now define the transition matrix P . The transition matrix is the matrix of
these probabilities:

P =

 p00 p01 p02
p10 p11 p12
p20 p21 p22

 .
Assume we know some initial vector of probabilities of his location, for example, we know he is definitely in
town zero (A town) and call this λ0.

λ0 = [100].

In general define λi,j as the probability the hippy is in state j on day i and λi = [λi,0λi,1λi,2] as the vector of
all states on day i. We can then use the following equation

λ1 = λ0P,

This does not seem to help much but we can also say

λi = λi−1P,

This tells us how to work out the probabilities of where the hippy is on a given day when we have the starting
probabilities and the transition matrix.

We might be interested in something more final such as where the hippy “ends up”. Define π as the vector
[π0, π1, π2] where πj = limi→∞ λi,j that is πj is the probability at the “final” day that the hippy is in town j.
Two questions arise: Does this exist and does it depend on where the hippy was on the first day. The answer
for most Markov chains usually encountered (those which are connected, finite and not periodic) is that these
probabilities do exist and that they do not depend on the initial conditions.

These probabilities are known as equilibrium probabilities and can be simply calculated in a lot of cases using
what are know as the equilibrium conditions – that is

∑
i πi = 1 (the probabilities sum to one) and for all j

then the flow into a state is equal to the probability of the state
∑
j πjpji = πi. In matrix terms this is

π = πP.

For our hippy example this gives us these equations (remembering that p00, p11, p22 = 0 then

π0 + π1 + π2 = 1 probabilities sum to one

π1p10 + π2p20 = π0 balance for city 0

π0p01 + π2p21 = π1 balance for city 1

π0p02 + π2p12 = π2 balance for city 2

Note that we do need the first equation because the balance equations contain one dependent equation. These
could be solved using standard techniques for simultaneous equations to give: π0 = 16/55, π1 = 21/55 and
π2 = 18/55.

3.2 Markov Chain simple examples

This section contains some simple Markov chain examples for practice. Before going on to do some examples,
a recap.

• pij is the transition probability – the probability of moving from state i to state j the next iteration of
the chain.

• The transition matrix P is the matrix of the pij .

• πi is the equilibrium probability – the probability that after a “long time” the chain will be in state i.

9

0 1t

1-t

c

1-c

talking not talking

Figure 3: The Markov chain for the “talking on the phone” example

• The sum of πi must be one (the chain must be in some state).

• Each state has a balance equation πi =
∑
j πjpji for all j. (In matrix terms πb = πP .)

• The balance equations together with the sum of πi will solve the chain.

Note that the balance equations have n (the number of states) equations for n unknowns – however the
balance equations always contain a redundant equation (from n − 1 of them you can derive the remaining
one). Exercise for student: why is this?

3.3 The “talking on the phone” example

If I am talking on the phone, there is a probability t (for talk) that I will still be talking on the phone in the
next minute. If I am not talking on the phone, there is a probability c (for call) that I will call someone in the
next minute. Taking things minute by minute, what is the probability I am talking on the phone in a given
minute? Unsurprisingly this can be modelled as a Markov chain.

Figure 3 shows the Markov chain for this example. Our chain has two states 0 and 1 and the transition
matrix:

P =

[
t 1− t
c 1− c

]
.

The balance equations are

π0 = p00π0 + p10π1

π1 = p01π0 + p11π1,

which become

π0 = tπ0 + cπ1

π1 = (1− t)π0 + (1− c)π1.

We also know π0 + π1 = 1 therefore π0 = tπ0 + c(1− π0) and π0(1 + c− t) = c. Therefore π0 = c/(1 + c− t)
and π1 = (1− t)/(1 + c− t).

3.4 The google page rank example

Did you know google owes part of its success to Markov chains? “Pagerank” (named after Larry Page) was
how google originally ranked search queries. Pagerank tries to work out which web page matching a search
term is the most important. Pages with many links to them are very “important” but it is also important
that the “importance” of the linking page counts. Here we consider a very simplified version. (Note that
Larry Page is now a multi-billionaire thanks to Markov chains).

Figure 4 shows some web pages about cats and how they link to each other. Imagine these four web pages
are every web page about cats and kittens on the web. An arrow indicates a link from one page to another
– e.g. ”Cat Web” and ”Lol cats” link to each other. Now think of a user randomly clicking on “cat” links.
What page will the user visit most often – this is a Markov chain. “Lol cats” links to two other pages so 1/2
probability of visiting “Cat” next. Cat web only links to “Lol cats” so probability 1 of visiting that next.

10

My bumper web

page about cats

0

Kitten pics

1

Cat web

2

Lol Cats

3

Figure 4: An example showing web pages containing the search term cat or kitten

The transition matrix is

P =

0 0 0 1

1/2 0 0 1/2
0 0 0 1
0 1/2 1/2 0

 .
And therefore

π0 = π1/2

π1 = π3/2

π2 = π3/2 ignore redundant equation for π3

π0 + π1 + π2 + π3 = 1

We have π1 = π2 from lines 2 and 3. π1 = 2π0 = π3/2 from line 1 and 3. π1/2 + π1 + π1 + 2π1 = 1 from line
4 and above lines. Therefore, π1 = 2/9 π0 = 1/9 π2 = 2/9 π3 = 4/9.

So this example shows “Lol cats” is the most important page, followed by “Cat web” and “Kitten pics”
equally important. Note that pages 0,1 and 2 all have only one incoming link but are not equally important.
Nowadays google has made many optimisations to their algorithm (and this is a simplified version anyway).
Nonetheless this “random walk on a graph” principle remains important in many network models.

3.5 The leaky bucket example

• A “leaky bucket” is a mechanism for managing buffers and to smooth downstream flow.

• What is described here is sometimes known as a “token bucket”.

• A queue holds a stock of “permit” generated at a rate r (one permit every 1/r seconds) up to a maximum
of W .

• A packet cannot leave the queue without a permit – each packet takes one permit.

• The idea is that a short burst of traffic can be accommodated but a longer burst is smoothed to ensure
that downstream can cope.

• Assume that packets arrive as a Poisson process at rate λ.

11

• A Markov model will be used [3, page 515].

Use a discrete time Markov chain where we stay in each state for time 1/r seconds (the time taken to generate
one permit). Let ak be the probability that k packets arrive in one time period. Since arrivals are Poisson,

ak =
e−λ/r(λ/r)k

k!
.

Queue of permits

(arrive every 1/r seconds)

Poisson input to queue
Exit queue for packets with permits

Rest of Internet

• In one time period (length 1/r secs) one token is generated (unless W exist) and some may be used
sending packets.

• States i ∈ {0, 1, . . . ,W} represent no packets waiting and W − i permits available. States i ∈ {W +
1,W + 2, . . .} represent 0 tokens and i−W packets waiting.

• If k packets arrive we move from state i to state i+ k − 1 (except from state 0).

• Transition probabilities from i to j, pi,j given by

pi,j =

a0 + a1 i = j = 0

aj−i+1 j ≥ i− 1

0 otherwise

Let πi be the equilibrium probability of state i. Now, we can calculate the probability flows in and out of
each state.

For state one

π0 = a0π1 + (a0 + a1)π0

π1 = (1− a0 − a1)π0/a0.

For state i > 0 then πi =
∑i+1
j=0 ai−j+1πj . Therefore,

π1 = a2π0 + a1π1 + a0π2

π2 =
π0
a0

(
(1− a0 − a1)(1− a1)

a0
− a2

)
.

In a similar way, we can get πi in terms of π0, π1, . . . , πi−1.

• We could use
∑∞
i=0 πi = 1 to get result but this is difficult.

• Note that permits are generated every step except in state 0 when no packets arrived (W permits exist
and none used up).

• This means permits arrive at rate (1− π0a0)r.

• Rate of tokens arriving must equal λ unless the queue grows forever (each packet gets a permit).

• Therefore π0 = (r − λ)/(ra0).

12

• Given this we can then get π1, π2 and so on.

To complete the model we want to calculate T average delay of a packet.

• If we are in states {0, 1, . . . ,W} packet exits immediately with no delay.

• If we are in states i ∈ {W + 1,W + 2, . . .} then we must wait for i−W tokens (i−W)/r seconds to get
a token.

• The proportion of the time spent in state i is πi.

• The final expression for the delay is

T =
1

r

∞∑
j=W+1

πj(j −W).

• For more analysis of this model see [3, page 515].

4 Queuing Theory

4.1 Little’s Theorem

More information can be found in the book, Bertsekas & Gallagher, section 3.2 (note that there are some
minor errors and notational inconsistencies in their version). Little’s Theorem is, in some ways, obvious.
First we will introduce the theorem in a handwaving manner and then make the details of the definition more
precise. Little’s Theorem states:

N = λT, (1)

where N is the average number of customers in a queue, T is the average time a customer spends queuing
and λ is the average rate of arrivals to the queue. In many ways this theorem represents an obvious truth —
if a lot of people are in a queue (N is large) then they will have long delays (T is large); if few people arrive
in a queue (λ is small) then the average number of people in the queue is small (N is small). This lecture will
be spent making this intuitive idea more rigorous.

Let us first make precise the definitions of N , λ and T and then make clear the assumptions on which the
theorem rests. Let us first make some definitions:

• N(τ) is the number of customers in the system at time τ .

• α(τ) is the number of customers who arrived in the interval [0, τ].

• β(τ) is the number of customers who have departed in the interval [0, τ].

• ti is the time at which the ith customer arrived.

• T (i) is the time spent queuing by the ith customer.

If Nt is the mean value of N(τ) taken over the interval [0, t] then it is clear that:

Nt =
1

t

∫ t

0

N(τ)dτ (2)

Let us assume:
N = lim

t→∞
Nt (3)

(Note that this limit is not guaranteed to exist — imagine, for example, a queue which keeps growing.) If the
limit exists, N is the steady state time average of N(τ). We next define the average arrival rate over the time
period [0, t].

λt =
α(t)

t
(4)

and, again, we assume that the following limit exists:

λ = lim
t→∞

λt (5)

13

Finally, the average delay experienced by those customers who enter the system at times in [0, t] is given by:

Tt =

α(t)∑
i=1

T (i)

α(t)
(6)

And, for a third time, we assume that the following limit exists:

T = lim
t→∞

Tt. (7)

A partial proof is given in section 4.2

4.2 Aside: proof of Little’s theorem

time τ

arrivals α(τ)
departures β(τ)

t1 t2 t3 t4 t5 t6 t7 t8

1

2

3

4

5

6

7

8

α(τ)

β(τ)

T (1)

T (2)

N(τ)

Figure 5: Little’s Theorem in a FIFO System

This section is not part of the main lecture but proves Little’s Theorem with the restrictive conditions that, in
addition to the limits above existing, the queue is empty at time 0 (N(0) = 0), that queuing is First in First
Out (FIFO) and that the queue becomes empty infinitely often beyond any given time τ . Figure 5 shows a
FIFO queue which is initially empty.

We note that at any time τ :
N(τ) = α(τ)− β(τ). (8)

It is clear that if we choose a time t when the system again becomes empty then we can calculate the area of
the shaded area A(t):

A(t) =

∫ t

0

N(τ)dτ (9)

However, equally, we can consider the shaded area to be composed of horizontal strips of height 1 and width
T (i) (for the ith customer). In this case, we have:

A(t) =

α(t)∑
i=1

T (i) (10)

Setting these equations equal and dividing each side by t gives us:

1

t

∫ t

0

N(τ)dτ =
1

t

α(t)∑
i=1

T (i) =
α(t)

t

∑α(t)
i=1 T (i)

α(t)
(11)

Therefore we have:
Nt = λtTt, (12)

which, if we take the limit as (t → ∞) becomes Little’s Theorem as required. Note that some of the
assumptions made here are, in fact, unnecessary as we shall see. In fact, Little’s Theorem only requires the
following:

14

1. The limit λ = limt→∞ α(t)/t exists

2. The limit δ = limt→∞ β(t)/t exists

3. The limit T = limt→∞ Tt exists

4. δ = λ

4.3 Little’s Theorem example

Here is an example where Little’s Theorem could be useful:

• You are building a website and want to know how big a server you need.

• You believe your website will attract 24,000 visitors a day – 1,000 visitors an hour.

• You believe the average visitor will spend 6 minutes on the website.

• How many visitors does your server need to cope with?

• λ = 1,000 per hour, T = 0.1 hours.

• From N = λT , N = 100, the average number of visitors at a time is 100.

• But because arrival is in “peaks” better plan for a peak hour.

4.4 Queuing theory notation

Queuing theory uses a particular notation (Kendall’s notation) to describe a queuing system. The arrival
process describes the distribution of the interarrival times.

• M – memoryless (Exponential) – a Poisson process.

• D – deterministic – equally spaced.

• G – general (no specific distribution).

• Also Ph (phase), EK (Erlangian)

The service time distribution (from same choice of letters) determines how long it will take to process an item
in the queue. The number of servers describes how many servers deal with the queue. For example M/D/1
is a Poisson input to a single queue which processes in constant time.

4.5 The birth-death process

A birth-death process is a process where the population k may increase or decrease according to certain rules.
Specifically, when the population is k then the population may increase to k + 1 in the manner of a Poisson
process with rate λk and may decrease to k−1 in the manner of a Poisson process with rate µk. The parameter
λk is known as the birth rate for population k and the parameter µk is known as the death rate for population
k. It is usually assumed that µ0 = 0 (if there is no population then nobody can die and that k begins at 0
(or some positive integer. Formally, let B(t, δt) be the number of births in the interval [t, t+ δt and D(t, δt)
be the number of deaths in the same interval. Let X(t) be the population at time t. The birth-death process
is the defined by the following constraints.

P [B(t, δt) = 1|X(t) = k] = λkδt+ o(δt)

P [B(t, δt) = 0|X(t) = k] = 1− λkδt+ o(δt)

P [B(t, δt) > 1|X(t) = k] = o(δt)

P [D(t, δt) = 1|X(t) = k] = µkδt+ o(δt)

P [D(t, δt) = 0|X(t) = k] = 1− µkδt+ o(δt)

P [D(t, δt) > 1|X(t) = k] = o(δt)

15

This obviously suggests a formulation as a discrete time Markov chain. [Note that for mathematical accuracy
this should really be a continuous time Markov chain but this has not been taught in this course.] Let us
adjust our notation slightly and assume that λk and µk are the mean probability of a birth or a death in some
small time δt if the system currently has k people in it (is in state k). Assume here that δt is small enough
that λk + µk is always less than 1.

Figure 6: A birth-death process as a Markov chain

Figure 6 shows the birth-death process as a Markov Chain. This gives the transition matrix:

P =

1− λ0 λ0 0 0 . . .
µ1 1− (λ1 + µ1) λ1 0 . . .
0 µ2 1− (λ2 + µ2) λ2 . . .
0 0 µ3 1− (λ3 + µ3) . . .
...

...
...

...
. . .

The balance equation for π0 is

π0 = µ1π1 + (1− λ0)π0

and for πk with k > 0 is
πk = λk−1πk−1 + µk+1πk+1 + (1− λk − µk)πk.

From the first equation we can get
π1 = λ0π0/µ1.

From the equation for k = 1 we can get

λ0π0 + µ2π2 = λ1π1 + µ1π1,

Substituting the equation for π1 and rearranging gives

π2 =
λ1λ0π0
µ2µ1

.

Similarly

π3 =
λ2λ1λ0π0
µ3µ2µ1

.

This leads to the suspicion that the general form is

πk = π0

k∏
i=1

λi−1
µi

. (13)

Equation (13) can obtain an expression for any πk in terms of π0 but it is still necessary to find an expression
for π0. This can be done using the fact that the sum of all the πk must be 1. Therefore

π0 = 1−
∞∑
k=1

πk

= 1−
∞∑
k=1

π0

k∏
i=1

λi−1
µi

.

This can be rearranged to give

π0 =
1

1 +
∑∞
k=1

∏k
i=1

λi−1

µi

. (14)

These two equations (13) and (14) can be used to find the equilibrium probabilities for any birth-death process
providing the product can be evaluated. To do this it is valuable to introduce the concept of utilisation.

16

4.6 Utilisation

Utilisation is defined as the proportion of the queues capacity which is being used. However, this definition
is somewhat vague. The utilisation, ρ is given by the equation

ρ =
λ

µ
,

where λ is the mean arrival rate for the system and µ is the maximum service rate. A clear definition of µ is
hard to obtain. In cases where there is some N such that µi = C for all i > N it is clear that µ = C (this
is the case for the M/M/1 model). In cases where the birth death process has some maximum population K
and µi ≥ µi−1 for 0 < i ≤ K then µ = µK . In cases where µi increases and does not reach a limit then µ
is infinite. Fortunately, in most of the cases dealt with in this course the value to use will be clear. In the
M/M/1 system ρ = λ/µ.

The point where ρ = 1 is a critical point for a queuing system as this is the point where all the traffic that
could possibly be handled is arriving. As will be seen, this is a point where the system breaks down. If ρ ≥ 1
then an infinite birth-death process “goes to infinity”.

4.7 Finally, the M/M/1 model solved

Getting a full solution to the M/M/1 model (including transients) is difficult but the equilibrium solution is
easy to find. For the M/M/1 process the arrival process is a constant Poisson process with a rate λ and the
server process is a Poisson process with rate µ. Substituting into the birth death equations gives

πk =

k∏
i=1

λi−1
µi

π0 = ρkπ0

for k ∈ (1, 2, . . .) with ρ = λ/µ as the utilisation. Using the second equation for birth death processes gives

π0 =
1

1 +
∑∞
k=1 ρ

k
=

1

1 + ρ/(1− ρ)
= 1− ρ.

This can be though of as the probability that the queue is empty and as can be seen this falls linearly from
1 (when the system utilisation is zero, that is no arrivals occur and the system is always empty) to 1 (when
the system is at full utilisation and the queue never falls to zero).

The obvious final step in the solution is to calculate the expected queue length when the system is in equilib-
rium. Call this E [q], it is given by

E [q] =

∞∑
i=0

iπi =

∞∑
i=0

i(1− ρ)ρi.

A nice trick can be used here. First rewrite as

∞∑
i=0

i(1− ρ)ρi = (1− ρ)ρ

∞∑
i=0

iρi−1

= (1− ρ)ρ

∞∑
i=0

dρi

dρ

= (1− ρ)ρ
d

dρ

∞∑
i=0

ρi

= (1− ρ)ρ
d

dρ

1

1− ρ

= (1− ρ)ρ
1

(1− ρ)2

=
ρ

1− ρ
.

The expected queue length begins at 0 and heads to infinity as ρ approaches one. (Remember that this
solution is only valid for an ergodic chain with ρ < 1.)

17

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

E
[q

]

Utilisation

Figure 7: Utilisation versus expected queue size for an M/M/1 queue.

Little’s Theorem will give the average delay as

T =
ρ

λ(1− ρ)
=

1/µ

1− ρ
=

1

µ− λ
.

While this lecture stops here, the birth-death process model can easily be extended for other queues. For
example the M/M/k queue has Exponential arrivals, Exponential service time and k servers. This means that
the birth rate is λ for all states but the death rate increases up to kµ for state k as more servers are added.

5 Network modelling by example

5.1 Modelling areas

Now let us focus on several specific areas of interest to modellers.

1. Topology modelling — how are the nodes in the Internet connected to each other?

• See the Internet as nodes and edges (graph theory).

• Consider numbers of hops between nodes.

• How do we find shortest paths in a network (Bellman–Ford or Dijkstra algorithm).

2. User/flow arrival modelling — how does traffic arrive on the Internet?

• See arrivals as a stochastic process (probability/statistics)

• How long do connections last?

3. Application level protocols — what traffic do applications place on the Internet?

• For example peer-to-peer networks use an overlay (graph theory again?)

• A web page might make connections to many different places.

4. Traffic statistics — what does the traffic along a link look like in statistical terms?

• See Internet traffic as a stochastic process (queuing theory).

• How does TCP congestion control alter this?

18

5. Transport/network protocols — how do TCP/IP protocols affect the traffic?

• See Internet traffic as a feedback process (control theory).

• How do these protocols interact with the rest of the network?

6. Other things to model:

• Reliability modelling — what happens when links or nodes fail?

• Overlay networks — P2P increasingly important.

5.2 Topology modelling

• Two levels of topology are usually considered “router level” and “autonomous system” (AS) level.

• Router level topology is still the least well-known — often ISPs take trouble to protect this information
for security reasons.

• Topology metrics — these quantities are all rigorously defined and can be found in the literature:

1. Graph diameter (longest possible “shortest path” between nodes).

2. Node degree distribution (what proportion of nodes have k neighbours).

3. Assortivity/disassortivity (do well-connected nodes connect with each other?) – sometimes called
“rich club”.

4. Clustering (triangle count) – are the neighbours of a node also neighbours of each other.

5. Clique size – largest group where everyone is everyone’s neighbour (a clique in graph theory).

The node-degree distribution in AS networks is particularly well-studied. Let P (k) be the proportion of nodes
with degree k (having k neigbours). To a good approximation

P (k) ∼ k−α,

where α is a constant.

• Power law topology of the AS graph shown by Faloutsos et al [Faloutsos ’99].

• This graph has some interesting properties — some extremely highly connected nodes, what happens if
they fail?

• Same type of graph as:

1. Links on websites, wikipedia and many other similar online systems.

2. Academic citations in papers.

3. Human sexual contacts.

5.2.1 Albert–Barabasi “Preferential attachment” model

Constructive model start with a small “core” network. [Barabassi ’99] When a new node arrives, attach it to
an old node with the following probability

P [Attaching to node i] =
d(i)∑

j∈all nodes d(j)
,

where d(i) is the degree of node i.

• This model “grows” a network with a powerlaw.

• Many similar models have been created which are more general.

• Current best model may be Positive Feedback Preference [Zhou 2004]. which adds a small “faster than
exactly proportional” term.

Why not save work by using existing models to generate your network?

19

5.3 User/flow arrival modelling

• As a first approximation the arrival of users can be modelled as a Poisson process.

• You might want to consider periodic effects:

1. Daily – with people’s sleep cycles.

2. Weekly – weekends different.

3. Yearly – year-on-year growth in traffic.

• Perhaps simpler just to simulate some peak hour and some estimate of growth?

5.4 Application level protocols

• If you are modelling a specific application there will be details associated with this.

• Common applications (www, ftp, p2p) will have existing research — read what is done before setting
out on your own.

• If no studies are done what could you compare your application to?

• Could your application be viewed as:

1. A series of ftp-like transfers of data.

2. UDP bursts at a given rate for given periods of time

3. A p2p application which might use existing p2p research methods.

• An important thing to simulate is the length of transfers and for many applications this is heavy-tailed
[Adler ’98].

A variable X has a heavy-tailed distribution if

P [X > x] ∼ x−β ,

where β ∈ (0, 2) and ∼ again means asymptotically proportional to as x→∞.

• Obviously an example of a power law.

• A distribution where extreme values are still quite common.

• Examples: Heights of trees, frequency of words, populations of towns.

• Best known example, Pareto distribution P [X > x] = (x/xm)−β where xm > 0 is the smallest value X
can have.

• The following Internet distributions have heavy tails:

1. Files on any particular computer.

2. Files transferred via ftp.

3. Bytes transferred by single TCP connections.

4. Files downloaded by the WWW.

• This is more than just a statistical curiousity.

• Consider what this distribution would do to queuing performance (no longer Poisson).

• Non mathematicians are starting to take an interest in heavy tails (reference to “the long tail”.

20

5.5 Traffic statistics

Long-Range Dependence (LRD) is considered to be an important characteristic of Internet traffic.

• In 1993 LRD was found in a time series of bytes/unit time measured on an Ethernet LAN [Leland et al
’93].

• This finding has been repeated a number of times by a large number of authors (however recent evidence
suggests this may not happen in the core).

• A higher Hurst parameter often increases delays in a network. Packet loss also suffers.

• If buffer provisioning is done using the assumption of Poisson traffic then the network will probably be
under-specified.

• The Hurst parameter is “a dominant characteristic for a number of packet traffic engineering problems”.

Let {X1, X2, X3, . . . } be a weakly stationary time series.

The Autocorrelation Function (ACF) is defined as

ρ(k) =
E [(Xt − µ)(Xt+k − µ)]

σ2
,

where µ is the mean and σ2 is the variance.

The ACF measures the correlation between Xt and Xt+k and is normalised so ρ(k) ∈ [−1, 1]. Note symmetry
ρ(k) = ρ(−k).

A process exhibits LRD if
∑∞
k=0 ρ(k) diverges (is not finite).

5.5.1 Definition of Hurst Parameter

The following functional form for the ACF is often assumed

ρ(k) ∼ |k|−2(1−H),

where ∼ means asymptotically proportional to and H ∈ (1/2, 1) is the Hurst Parameter.

• Think of LRD as meaning that data from the distant past continue to effect the present.

• LRD was first spotted by a hydrologist (Hurst) looking at the flooding of the Nile river.

• For this reason Mandelbrot called it “the Joseph effect”.

• Stock prices (once normalised) also show LRD.

• LRD can also be seen in the temperature of the earth (once the trend is removed).

• Models include Markov chains, Fractional Brownian Motion (variant on Brownian motion), Chaotic
maps and many others.

Iterated map model for LRD.

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x(
n+

1)

x(n)

A One Dimensional Chaotic Map Which Generates LRD

OFFON

xn+1 =

{
xn + 1−d

dm1
xm1
n 0 < xn < d,

xn − d
(1−d)m2

(1− xn)m2 d < xn < 1,

where xn, d ∈ (0, 1), m1,m2 ∈ (3/2, 2). Produces ON and OFF series — packets and not packets with Hurst
H = min(m1,m2)− 1.

6 The ns-2 simulation

• ns-2 is a freely available event-driven simulator which simulates packet-level traffic.

• It is available from http://www.isi.edu/nsnam/ns/

• The simulator is written in C++ but uses tcl for simulations.

• The scripts used for the rest of this lecture are available at http://www.richardclegg.org/lectures

7 Final thoughts

• Select an appropriate level of modelling — if you need to model the whole Internet you cannot do packet
level modelling. If you need to model intricate protocol details for packets you cannot model the whole
Internet.

• Check against real data where possible that your modelling assumptions are justified.

• Is your experiment repeatable? Do you get similar results if you try slightly different starting scenarios?

• Remember sensitivity analysis: What happens if the bandwidth is a little less? What if the demand is
a little more?

• Can statistical analysis of your results help?

• Remember that what you model today is out of date in a year and hopelessly obsolete in ten years.

8 Bibliography

References

[1] R. J. Adler, R. E. Feldman, and M. S. Taqqu, editors. A Practical Guide to Heavy Tails. Birkhäuser,
1998.

22

[2] A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509, 1999.

[3] D. P. Bertsekas, and R. G. Gallagher Data Networks Longman Higher Education 1986

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power–law relationships of the Internet topology.
Comput. Commun. Rev., 29:251–262, 1999.

[5] S. Floyd and V. Paxson. Difficulties in simulating the Internet. IEEE/ACM Trans. on Networking,
9(4):392–403, 2001. http://www.icir.org/floyd/papers/simulate_2001.pdf

[6] S. Zhou and R. J. Mondragón. Accurately modelling the Internet topology. Phys. Rev. E, 70(066108),
2004.

23

