
Modelling data networks

Richard G. Clegg (richard@richardclegg.org)

1 Introduction

There are many difficulties to modelling the internet, for a well-known and
excellent summary see [6]

• The internet is big (and growing).

• The internet is heterogeneous to a large degree.

• No central maps exist of the internet.

• The internet is not always easy to measure.

• The internet is rapidly changing.

• It is extremely important to be able to model the internet.

The internet cannot possibly be modelled, yet we must model the internet. How
can this be resolved?

The intention of this lecture is to teach you three things:

1. A general approach to such modelling problems.

2. Some specific mathematical techniques necessary for certain modelling
problems (Markov chains, queuing theory, graph theory).

3. An approach to “sanity checking” your modelling.

• How you model the network depends critically on the problem you are
solving.

• What are you trying to show with your model?

• Metrics: what are we trying to measure?

1. Throughput?

2. Goodput?

3. System efficiency?

• Validation: what real data can be used to check the model?

• Sensitivity: what happens if your assumptions change?

1. What if the demand on the system is slightly different?

2. What happens if delays and bandwidths are changed?

1

3. What happens if users stay longer or download more?

Important questions for modelling.

1. How much of the network do we model?

• Whole internet (then we can’t even model every computer – every
AS?)

• A few typical nodes?

• A sub net?

• A single queue and buffer?

2. What level of modelling is appropriate?

• Mathematical – solution “instant” (or quick) but which mathematical
techniques are useful?

• Detailed simulation

• Combined approach (equations abstract away some details with ap-
proximations)

3. How far down the network stack need we go?

1.1 Example model – peer-to-peer network

Modelling Task: Test the possible improvements expected if we try a locality
aware peer selection policy on a global bittorrent network.

What must our model include?

1. The distribution of nodes (peers) on the overlay network (not the whole
network).

2. The delay and throughput between these peers (must depend on distance
to some extent).

3. How users arrive and depart.

4. What users choose to download.

Note that this might already be a vast modelling task with hundreds of thou-
sands or even millions of nodes.

• Research existing P2P models, do any fit? Don’t reinvent the wheel.

• Real data: What real-life measurements exist to validate against?

• If we are modelling a new peer selection we must be sure our model covers
existing peer selection well.

• Metrics: what must we measure in our model?

1. Overall throughput/goodput?

2. Distribution of time taken for peers to make their download?

3. Total resources used in system?

2

• Validation: Instrumented P2P clients exist – how do they compare to our
simulation.

• Sensitivity: Different distribution of users? Different delays and through-
puts?

1.2 Example model – Buffer provisioning model

Modelling task: Given a router with a buffer, how does the buffer size in packets
affect the probability of packet loss?

What must our model include?

1. A model of the incoming packets to the buffer.

2. The rate at which packets leave the buffer.

3. Possibly distribution of packet lengths in bytes.

4. Possibly the feedback (TCP) between packet loss and arrival rate.

• Research: what is known about the statistics of internet traffic?

• What is the distribution of inter-arrival times and packet lengths?

• Metrics:

1. Packet loss.

2. Packet delay.

• Sensitivity: What if we change the following parameters:

1. The total arrival rate.

2. The bandwidth of the outgoing link.

• Validation: Real traffic traces (CAIDA has a collection).

1.3 Example model – TCP throughput

Modelling Task: Test a possible improvement to the TCP model which aims to
improve fairness and throughput when flows share a link.

What must our model include?

1. Individual packet model with existing TCP protocol as accurately as pos-
sible.

2. A reasonable estimate of how long each connection lasts and the rate at
which new connections.

3. A model of the probability of round trip time for the parts of the connec-
tion not on the link being modelled.

4. A model of the probability of packet loss on the link (due to buffer over-
flow?)

• Can existing network models help (ns-2 could be an obvious choice)?

3

• What if the existing protocol shares a link with flows using the old proto-
col.

• Metrics:

1. Throughput and goodput.

2. Fairness between flows.

• Sensitivity, what if we change these parameters:

1. Number of flows using existing and new protocol.

2. Bandwidth of link.

3. Round trip time of flows.

4. Probability of packet loss.

• Validation: Does our model agree with real measurements?

2 Modelling Overview

2.1 Modelling areas

Now let us focus on several specific areas of interest to modellers.

1. Topology modelling — how are the nodes in the internet connected to
each other?

• See the internet as nodes and edges (graph theory).

• Consider numbers of hops between nodes.

• How do we find shortest paths in a network (Bellman–Ford or Dijk-
stra algorithm).

2. User/flow arrival modelling — how does traffic arrive on the internet?

• See arrivals as a stochastic process (probability/statistics)

• How long do connections last?

3. Application level protocols — what traffic do applications place on the
internet?

• For example peer-to-peer networks use an overlay (graph theory again?)

• A web page might make connections to many different places.

4. Traffic statistics — what does the traffic along a link look like in statistical
terms?

• See internet traffic as a stochastic process (queuing theory).

• How does TCP congestion control alter this?

5. Transport/network protocols — how do TCP/IP protocols affect the traf-
fic?

• See internet traffic as a feedback process (control theory).

4

• How do these protocols interact with the rest of the network?

6. Other things to model:

• Reliability modelling — what happens when links or nodes fail?

• Overlay networks — P2P increasingly important.

2.2 Topology modelling

• Two levels of topology are usually considered “router level” and “au-
tonomous system” (AS) level.

• Router level topology is still the least well-known — often ISPs take trou-
ble to protect this information for security reasons.

• Topology metrics — these quantities are all rigorously defined and can be
found in the literature:

1. Graph diameter (longest possible “shortest path” between nodes).

2. Node degree distribution (what proportion of nodes have k neigh-
bours).

3. Assortivity/disassortivity (do well-connected nodes connect with each
other?) – sometimes called “rich club”.

4. Clustering (triangle count) – are the neighbours of a node also neigh-
bours of each other.

5. Clique size – largest group where everyone is everyone’s neighbour (a
clique in graph theory).

The node-degree distribution in AS networks is particularly well-studied.
Let P (k) be the proportion of nodes with degree k (having k neigbours). To a
good approximation

P (k) ∼ k−α,
where α is a constant.

• Power law topology of the AS graph shown by Faloutsos et al [5].

• This graph has some interesting properties — some extremely highly con-
nected nodes, what happens if they fail?

• Same type of graph as:

1. Links on websites, wikipedia and many other similar online systems.

2. Academic citations in papers.

3. Human sexual contacts.

5

Albert–Barabasi [2] “Preferential attachment” model

Constructive model start with a small “core” network. When a new node arrives,
attach it to an old node with the following probability

P [Attaching to node i] =
d(i)∑

j∈all nodes d(j)
,

where d(i) is the degree of node i.

• This model “grows” a network with a powerlaw.

• Many similar models have been created which are more general.

• Current best model may be Positive Feedback Preference [8]. which adds
a small “faster than exactly proportional” term.

Why not save work by using existing models to generate your network?

2.3 User/flow arrival modelling

• As a first approximation the arrival of users can be modelled as a Poisson
process.

• You might want to consider periodic effects:

1. Daily – with people’s sleep cycles.

2. Weekly – weekends different.

3. Yearly – year-on-year growth in traffic.

• Perhaps simpler just to simulate some peak hour and some estimate of
growth?

2.4 Application level protocols

• If you are modelling a specific application there will be details associated
with this.

• Common applications (www, ftp, p2p) will have existing research — read
what is done before setting out on your own.

• If no studies are done what could you compare your application to?

• Could your application be viewed as:

1. A series of ftp-like transfers of data.

2. UDP bursts at a given rate for given periods of time

3. A p2p application which might use existing p2p research methods.

• An important thing to simulate is the length of transfers and for many
applications this is heavy-tailed [1].

6

A variable X has a heavy-tailed distribution if

P [X > x] ∼ x−β ,

where β ∈ (0, 2) and ∼ again means asymptotically proportional to as x→∞.

• Obviously an example of a power law.

• A distribution where extreme values are still quite common.

• Examples: Heights of trees, frequency of words, populations of towns.

• Best known example, Pareto distribution P [X > x] = (x/xm)−β where
xm > 0 is the smallest value X can have.

• The following internet distributions have heavy tails:

1. Files on any particular computer.

2. Files transferred via ftp.

3. Bytes transferred by single TCP connections.

4. Files downloaded by the WWW.

• This is more than just a statistical curiousity.

• Consider what this distribution would do to queuing performance (no
longer Poisson).

• Non mathematicians are starting to take an interest in heavy tails (refer-
ence to “the long tail”.

2.5 Traffic statistics

Long-Range Dependence (LRD) is considered to be an important characteristic
of internet traffic.

• In 1993 LRD was found in a time series of bytes/unit time measured on
an Ethernet LAN [Leland et al ’93].

• This finding has been repeated a number of times by a large number of
authors (however recent evidence suggests this may not happen in the
core).

• A higher Hurst parameter often increases delays in a network. Packet loss
also suffers.

• If buffer provisioning is done using the assumption of Poisson traffic then
the network will probably be under-specified.

• The Hurst parameter is “a dominant characteristic for a number of packet
traffic engineering problems”.

7

Let {X1, X2, X3, . . . } be a weakly stationary time series.
The Autocorrelation Function (ACF) is defined as

ρ(k) =
E [(Xt − µ)(Xt+k − µ)]

σ2
,

where µ is the mean and σ2 is the variance.
The ACF measures the correlation between Xt and Xt+k and is normalised

so ρ(k) ∈ [−1, 1]. Note symmetry ρ(k) = ρ(−k).
A process exhibits LRD if

∑∞
k=0 ρ(k) diverges (is not finite).

Definition of Hurst Parameter

The following functional form for the ACF is often assumed

ρ(k) ∼ |k|−2(1−H),

where ∼ means asymptotically proportional to and H ∈ (1/2, 1) is the Hurst
Parameter.

• Think of LRD as meaning that data from the distant past continue to
effect the present.

• LRD was first spotted by a hydrologist (Hurst) looking at the flooding of
the Nile river.

• For this reason Mandelbrot called it “the Joseph effect”.

• Stock prices (once normalised) also show LRD.

• LRD can also be seen in the temperature of the earth (once the trend is
removed).

• Models include Markov chains, Fractional Brownian Motion (variant on
Brownian motion), Chaotic maps and many others [4].

Iterated map model for LRD.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x(
n+

1)

x(n)

A One Dimensional Chaotic Map Which Generates LRD

OFFON

xn+1 =

{
xn + 1−d

dm1
xm1
n 0 < xn < d,

xn − d
(1−d)m2

(1− xn)m2 d < xn < 1,

where xn, d ∈ (0, 1), m1,m2 ∈ (3/2, 2). Produces ON and OFF series — packets
and not packets with Hurst H = min(m1,m2)− 1.

2.6 Transport and network level protocols

• It might be important if we are considering a packet level model to model
specific details of the TCP/IP protocols.

• Usually this will involve simulating the window size (additive increase
multiplicative decrease) of the TCP protocol.

• Remember that a detailed simulation to this level will extremely limit the
number of nodes which can be simulated.

• A mathematical model will be demonstrated in the next section.

• In addition, the ns-2 model will be shown which is a packet level simulation
of TCP/IP.

2.7 Other things to model

• Of course depending on the nature of your modelling, there may well be
other aspects of the network to be modelled.

• Some examples might be:

1. Reliability of nodes and links.

2. An overlay network.

9

3. Possible hostile attacks to the network.

• In all cases, an important starting point is to find out what research al-
ready exists in the area.

• Are any real-life data sets available which could inform your modelling?
Could you gather such data?

3 Mathematical modelling

• To create a simulation model we need to be able to write down equations
for the system.

• The more work we can do “on paper” the easier the computational burden.

• This will be illustrated with two mathematical techniques related to net-
works.

• Firstly the concept of the Markov Chain is introduced and used in queue
modelling.

• Secondly basic concepts from Graph Theory are used and illustrate path
finding in networks.

• These models can be used as a basis for computer simulation.

3.1 A Markov model for the leaky-bucket

• A “leaky bucket” is a mechanism for managing buffers and to smooth
downstream flow.

• What is described here is sometimes known as a “token bucket”.

• A queue holds a stock of “permit” generated at a rate r (one permit every
1/r seconds) up to a maximum of W .

• A packet cannot leave the queue without a permit – each packet takes one
permit.

• The idea is that a short burst of traffic can be accommodated but a longer
burst is smoothed to ensure that downstream can cope.

• Assume that packets arrive as a Poisson process at rate λ.

• A Markov model will be used [3, page 515].

3.1.1 What is a Markov Chain?

Now consider the idea of things moving about randomly in space. For example
consider a hitch-hiking hippy who, for some reason, has no short term memory.
He hitch hikes at random between A-town, B-town and C-town. At A-town he
has a 3/4 chance to get to B-town and a 1/4 chance to get to C-town the next
day. He moves town every day according to the diagram below.

10

A

B

C

1/3

2/3

1/2

1/2

1/4
3/4

Now, the next step is to ask questions about where the hippy is at a given
day. If he starts in A-town on day one then on day 2 he has a 1/4 chance of being
in C town and a 3/4 chance of being in B town. On day 3 he has a 3/8 chance
of being in A town (1/3× 3/4 = 1/4 via A→ B → A plus 1/2× 1/4 = 1/8 via
A→ C → A). We could carry on making calculations like this for day 4 day 5
and so on but it would get boring. We need a smarter way.

Define the transition probabilities. Let us number instead of name our towns,
0, 1 and 2 instead of A, B and C. Let pij be the probability that if the hippy
began at i he moves to j in one day. So, for example p11 = 0 (there is zero
probability the hippy begins in B and ends in B). p12 = 2/3 (the probability
that the hippy at B moves to C is 2/3). We can now define the transition matrix
P . The transition matrix is the matrix of these probabilities:

P =

 p00 p01 p02
p10 p11 p12
p20 p21 p22

 .
Assume we know some initial vector of probabilities of his location, for ex-

ample, we know he is definitely in town zero (A town) and call this λ0.

λ0 = [100].

In general define λi,j as the probability the hippy is in state j on day i and
λi = [λi,0λi,1λi,2] as the vector of all states on day i. We can then use the
following equation

λT1 = λT0 P,

where T means transpose (make the row vector a column vector). This does
not seem to help much but we can also say

λTi = λTi−1P,

This tells us how to work out the probabilities of where the hippy is on a given
day when we have the starting probabilities and the transition matrix.

We might be interested in something more final such as where the hippy
“ends up”. Define π as the vector [π0, π1, π2] where πj = limi→∞ λi,j that is πj
is the probability at the “final” day that the hippy is in town j. Two questions
arise: Does this exist and does it depend on where the hippy was on the first
day. The answer for most Markov chains usually encountered (those which are

11

connected, finite and not periodic) is that these probabilities do exist and that
they do not depend on the initial conditions.

These probabilities are known as equilibrium probabilities and can be simply
calculated in a lot of cases using what are know as the equilibrium conditions –
that is

∑
i πi = 1 (the probabilities sum to one) and for all i then the flow into

a state is equal to the probability of the state
∑
j πipi,j = πi. In matrix terms

this is
πT = Pπ.

For our hippy example this gives us these equations (remembering that
p00, p11, p22 = 0 then

π0 + π1 + π2 = 1 probabilities sum to one

π1p10 + π2p20 = π0 balance for city 0

π1p01 + π2p21 = π1 balance for city 1

π1p02 + π2p12 = π2 balance for city 2

Note that we do need the first equation because the balance equations contain
one dependent equation. These could be solved using standard techniques for
simultaneous equations to give: π0 = 16/55, π1 = 21/55 and π2 = 18/55.

3.1.2 The birth-death process example

What does all this have to do with queues? Well, the concept does not apply
just to hippies and towns but is much more general. If we consider a system
in some “state” and the “state” at the next time depends only on the current
“state” then we can model this with a Markov chain. The “state” in the hippy
example was the town and the town on day i + 1 depended only on the town
on day i. For a more useful example, think of the “state” number as being the
number of packets in a queue.

Then let us consider the following scenario. Imagine a queue of packets in a
buffer. The buffer operates over certain time periods. With probability p every
time period a new packet arrives. With probability q a packet in the queue is
sent out by the server. The queue can have K packets in it and packets over
this get dropped. We can formulate this queue as a Markov chain. We can
write down transition probabilities, for example, p01 = p (with probability p a
new packet arrives, since there are no packets in the queue then no packets can
leave). Similarly p11 = (1− p− q) + pq – there remains one packet in the queue
if there is already one packet in the queue and either (with probability pq) a
packet arrives but one is served by the queue or (with probability 1− p− q) no
packets arrive or leave. This sort of process where packets (or customers) arrive
or leave a queue is known as a “birth-death” process and they are integral to
queuing theory.

The problem could be completed by writing down the complete transition

12

matrix

P =

1− p p 0 · · · 0
q(1− p) 1− p− q + pq p(1− q) · · · 0

0 q(1− p) 1− p− q + pq · · · 0
...

...
...

. . . 0
0 0 0 · · · 1− q + pq

and then proceeding to solve as in the previous case.

3.1.3 Back to the leaky bucket example

Use a discrete time Markov chain where we stay in each state for time 1/r
seconds (the time taken to generate one permit). Let ak be the probability that
k packets arrive in one time period. Since arrivals are Poisson,

ak =
e−λ/r(λ/r)k

k!
.

Queue of permits

(arrive every 1/r seconds)

Poisson input to queue
Exit queue for packets with permits

Rest of internet

• In one time period (length 1/r secs) one token is generated (unless W
exist) and some may be used sending packets.

• States i ∈ {0, 1, . . . ,W} represent no packets waiting and W − i permits
available. States i ∈ {W + 1,W + 2, . . .} represent 0 tokens and i −W
packets waiting.

• If k packets arrive we move from state i to state i + k − 1 (except from
state 0).

• Transition probabilities from i to j, pi,j given by

pi,j =

a0 + a1 i = j = 0

aj−i+1 j ≥ i− 1

0 otherwise

Let πi be the equilibrium probability of state i. Now, we can calculate the
probability flows in and out of each state.

13

For state one

π0 = a0π1 + (a0 + a1)π0

π1 = (1− a0 − a1)π0/a0.

For state i > 0 then πi =
∑i+1
j=0 ai−j+1πj . Therefore,

π1 = a2π0 + a1π1 + a0π2

π2 =
π0
a0

(
(1− a0 − a1)(1− a1)

a0
− a2

)
.

In a similar way, we can get πi in terms of π0, π1, . . . , πi−1.

• We could use
∑∞
i=0 πi = 1 to get result but this is difficult.

• Note that permits are generated every step except in state 0 when no
packets arrived (W permits exist and none used up).

• This means permits arrive at rate (1− π0a0)r.

• Rate of tokens arriving must equal λ unless the queue grows forever (each
packet gets a permit).

• Therefore π0 = (r − λ)/(ra0).

• Given this we can then get π1, π2 and so on.

To complete the model we want to calculate T average delay of a packet.

• If we are in states {0, 1, . . . ,W} packet exits immediately with no delay.

• If we are in states i ∈ {W + 1,W + 2, . . .} then we must wait for i −W
tokens (i−W)/r seconds to get a token.

• The proportion of the time spent in state i is πi.

• The final expression for the delay is

T =
1

r

∞∑
j=W+1

πj(j −W).

• For more analysis of this model see [3, page 515].

3.2 Shortest Paths in networks

Definition 3.1. A weighted graph G = (N ,A) is one where each arc (i, j) ∈ A
has associated with it a weight wij .

The concept of a weighted graph is extremely useful. The weights can be
thought of, for example, as the cost of sending a message down a particular arc.
(Not necessarily a monetary cost but some combination of time and distance for
example). Weighted graphs can be used to formulate the shortest path problem
for routing packets.

14

1

2 3

4

N = {1, 2, 3, 4}
A = {(1, 2), (1, 3), (1, 4), (2, 4)}

1

2 3

N = {1, 2, 3}
A = {(1, 2), (1, 3)}

1

N = {1}
A = {}

Figure 1: Example graphs

Definition 3.2. A graph G = (N ,A) is a finite set of N nodes and a set A of
unordered pairs (i, j) where i, j ∈ N : i 6= j (known as arcs).

Definition 3.3. If n1 and n2 are nodes and (n1, n2) (where n1 6= n2) is an arc
then this arc is said to be incident on n1 and n2.

Definition 3.4. A walk in a graphG is a sequence of nodes in a graph (n1, n2, . . . , nl)
such that each adjacent pair (n1, n2), (n2, n3), . . . (nl−1, nl) are arcs in G.

Definition 3.5. A path is a walk with no repeated nodes.

Definition 3.6. A weighted graph G = (N ,A) is one where each arc (i, j) ∈ A
has associated with it a weight wij .

The concept of a weighted graph is extremely useful. The weights can be
thought of, for example, as the cost of sending a message down a particular arc.
(Not necessarily a monetary cost but some combination of time and distance for
example). Weighted graphs can be used to formulate the shortest path problem
for routing packets.

The problem of finding a shortest path from O to D in a directed graph
G = (N ,A) (with arc weights wij associated with each arc (i, j) ∈ A) is the
problem of finding the directed path (n1, . . . nl) where n1 = O and nl = D which

minimises the sum
∑l−1
i=1 wnini+1

. We will also find it useful to use the convention
that wij =∞ if (i, j) /∈ A. Two methods in common use are Bellman-Ford and
Dijkstra’s Algorithm.

Dijkstra’s Algorithm

Dijkstra’s Algorithm was discovered by the pioneering mathematician and pro-
grammer E.W.Dijkstra (1930 – 2002). The algorithm finds the shortest path to
all nodes from an origin node, on a graph G = (N ,A). It requires that all arc
weights are non-negative ∀(i, j) ∈ A : wij ≥ 0.

Dijkstra’s Algorithm involves the labelling of a set of permanent nodes P
and node distances Dj to each node j ∈ N . Assume that we wish to find the
shortest paths from node 1 to all nodes. Then we begin with: P = {1} and
D1 = 0 and Dj = w1j where j 6= 1. Dijkstra’s algorithm then consists of
following the procedure:

1. Find the next closest node. Find i /∈ P such that:

Di = min
j /∈P

Dj

15

2. Update our set of permanently labelled nodes and our nodes distances:

P := P ∪ {i}.

3. If all nodes in N are also in P then we have finished so stop here.

4. Update the temporary (distance) labels for the new node i. For all j /∈ P

Dj := min[Dj , wij +Di]

5. Go to the beginning of the algorithm.

Note that the version of this algorithm is subtly different from that in Bert-
sekas & Gallager which finds the paths from all nodes to a single destination.
(This is not an important detail and it should be obvious how to reverse the
algorithm). To understand the algorithm we make the following claims:

Proposition 3.1. At the beginning of each iteration of Dijkstra’s algorithm
then:

1. Di ≤ Dj for all i ∈ P and j /∈ P .

2. Dj is, for all j, the shortest distance from 1 to j using paths with all nodes
(except, possibly j) in P .

If this proposition can be proved then we can see that, when P contains
every node in N then all the Dj are shortest paths by the second part of this
proposition. Therefore proving the above proposition is equivalent to proving
that Dijkstra’s algorithm finds shortest paths.

Proof. The proposition is trivially true at the first step since P consists only of
the origin point (node 1) and Dj is 0 for j = 1, is wij ≥ 0 for nodes reachable
directly from node 1 and ∞ otherwise.

The first condition is simply shown to be satisfied since it is preserved by
the formula:

Dj := min[Dj , wij +Di]

which is applied to all j /∈ P when node i is added to the set P .
We show the second condition by induction. We have established already

that it is true at the very start of the algorithm. Let us assume it is true for
the beginning of some iteration of the algorithm and show that it must then be
true at the beginning of the next iteration.

Let node i be the node we are adding to our set P and let Dk be the label of
each node k at the beginning of the step. The second condition must, therefore,
hold for node j = i (the new node we have added) by our induction hypothesis.
It must also hold for all nodes j ∈ P by part one of the proposition which is
already proven. It remains to prove that the second condition of the proposition
is met for j /∈ P ∪ {i}.

Consider a path from 1 to j which is shortest amongst those with all nodes
except j in P ∪ {i} and let D′j be the corresponding shortest distance. Such a
path must contain a path from 1 to some node r ∈ P ∪{i} and an arc(r, j). We
have already established that the length of the path from 1 to r must be Dr

and therefore we have:

16

D′j = min
r∈P∪{i}

[Dr + wrj] = min[min
r∈P

[Dr + wrj], Di + wij]

However, by our hypothesisDj = minr∈P [Dr+wrj] therefore, D′j = min[Dj , Di+
wij] which is exactly what is set by the fourth step of the algorithm. Thus, after
any iteration of the algorithm, the second part of the proposition is true if it was
true at the beginning of the iteration. Thus the proof by induction is complete.

The observant will have noticed that this provides the shortest distance to
each node from the origin. To find the shortest path, simply work backwards
from the destination, asking which node in step four the new node was added
from.

Bellman-Ford Algorithm

Notation. Dh
i is the distance of the shortest walk from node 1 to node i of h

steps or less.

Set initially D0
i =∞ for i 6= 1 and Dh

1 = 0 for all h.
The Bellman-Ford Algorithm is then simply, for all i 6= 1,

Dh+1
i = min

j
[Dh

j + wji]

The algorithm terminates after h iterations if

Dh
i = Dh−1

i ∀i

Proposition 3.2. The scalars Dh
i generate by the algorithm from the starting

values given for D0
i are equal to the shortest walk of length ≤ h from node 1 to

node i.

Proof. The first iteration will clearly give us D1
i = w1i for all i apart from i = 1

— which is, indeed, correct for the walk lengths of ≤ 1 from 1 to i. Let us
suppose that Dk

i is the shortest walk of length ≤ k (from 1 to i) then complete
the proof by induction by showing that Dk+1

i is the shortest walk of length
≤ k + 1.

One possibility is that the shortest walk of length ≤ (k+ 1) will be a walk of
length k or less — in this case, Dk+1

i = Dk
i . Otherwise, the walk will be a walk

of length k + 1 with the final arc being (j, i) added on to some walk of length
k to node j. Thus, we can conclude that our shortest walk of length k + 1 is
given by:

Shortest walk to i of length ≤ k + 1 = min

[
Dk
i ,min

j
Dk
j + wji

]
However, since a walk of length ≤ k + 1 must always be shorter or equal to

a walk of length ≤ k (since the former contains the latter) then this reduces to

Shortest walk to i of length ≤ k + 1 = min
j
Dk
j + wji

which is our original expression for Dk+1
j and completes our proof by induction.

17

Proposition 3.3. The algorithm terminates after a finite number of iterations
if, and only if, all cycles not containing node i have non negative length. Fur-
thermore, if the algorithm terminates, it does so after at most h ≤ N iterations
and, at termination, Dh

i is the shortest path length from 1 to i.

Proof. If negative length cycles exist then such cycles could be repeated as many
times as desired to reduce the shortest walk length and thus the algorithm could
never converge. Conversely, if no negative length cycles exist then any walks
containing cycles could be made shorter or kept the same length by deleting
such a cycle. Thus, our shortest walks contain no cycles. The maximum length
of a walk with no cycles is N − 1 (since such a walk will have covered every
node). Thus, it trivially follows that DN

i = DN−1
i and the algorithm terminates

after, at most, N iterations.

1

2

3

4

5

6

3

4

5

8

13 22

5

1

Figure 2: Weighted graph for Dijkstra’s algorithm and Bellman-Ford

The values for BellMan-Ford on graph 2 are as shown in this table:
i Di

1 Di
2 Di

3 Di
4 Di

5 Di
6

1 0 3 5 ∞ ∞ ∞
2 0 3 4 7 13 ∞
3 0 3 4 7 9 12
4 0 3 4 7 9 10

5+ 0 3 4 7 9 10
The nodes selected for Dijkstra for the same graph are shown on this table

Permanent nodes Temporary Nodes
1 (0) 2 (3), 3 (5)

1(0), 2(3) 3(4), 4(7)
1(0), 2(3), 3(4) 4(7), 5(12)

1(0), 2(3), 3(4), 4(7) 5(9), 6(12)
1(0), 2(3), 3(4), 4(7), 5(9) 6(10)

1(0), 2(3), 3(4), 4(7), 5(9), 6(10)

4 The ns-2 simulation

• ns-2 is a freely available event-driven simulator which simulates packet-
level traffic.

• It is available from http://www.isi.edu/nsnam/ns/

• The simulator is written in C++ but uses tcl for simulations.

• The scripts used for the rest of this lecture are available at http://www.

richardclegg.org/lectures

18

5 Final thoughts

• Select an appropriate level of modelling — if you need to model the whole
internet you cannot do packet level modelling. If you need to model intri-
cate protocol details for packets you cannot model the whole internet.

• Check against real data where possible that your modelling assumptions
are justified.

• Is your experiment repeatable? Do you get similar results if you try slightly
different starting scenarios?

• Remember sensitivity analysis: What happens if the bandwidth is a little
less? What if the demand is a little more?

• Can statistical analysis of your results help?

• Remember that what you model today is out of date in a year and hope-
lessly obsolete in ten years.

6 Bibliography

References

[1] R. J. Adler, R. E. Feldman, and M. S. Taqqu, editors. A Practical Guide
to Heavy Tails. Birkhäuser, 1998.

[2] A. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509, 1999.

[3] D. P. Bertsekas, and R. G. Gallagher Data Networks Longman Higher
Education 1986

[4] R. G. Clegg. Simulating internet traffic with markov-modulated processes.
Proceedings of UK Performance Engineering Workshop, 2007. Available
online at: http://www.richardclegg.org/pubs/rgc_ukpew2007.pdf

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power–law relationships
of the Internet topology. Comput. Commun. Rev., 29:251–262, 1999.

[6] S. Floyd and V. Paxson. Difficulties in simulating the internet. IEEE/ACM
Trans. on Networking, 9(4):392–403, 2001. http://www.icir.org/floyd/
papers/simulate_2001.pdf

[7] J. Padhye, V. Firoiu, D. Towsley and J. Kurose Modelling TCP throughput:
a simple model and its empirical validation ACM SIGCOMM Computer
Communication Review 28(4), 1998.

[8] S. Zhou and R. J. Mondragón. Accurately modelling the Internet topology.
Phys. Rev. E, 70(066108), 2004.

19

