C Programming Course – LECTURE sEVEN (NOTES)

What these lecture notes cover:

Documenting code (internal, external and user documentation)

Documenting code
An important part of your project write up will be the program documentation. There are three separate parts to code documentation:

 1) The comments you put in your code. (internal documentation)

 2) What you write about your code to explain how it works to a programmer who will be working on expanding your code. (external documentation)

 3) What you write about your code to explain how it works to a user who will be using your program (user documentation)

 Each of these three types of documentation requires its own approach.

Commenting code well
Comments are easy to put in code and almost every programmer realises that they should put comments in code but almost no programmers do it well. You should consider the following with each comment:

a) Will it help the reader understand the code

or

b) Am I just adding a comment here because I think I should add a comment

Most importantly ask yourself:

c) Is this something that the reader could have trivially worked out for themselves.

i= i+1; /* Adds one to i */

If something is particularly tricky then refer to a reference rather than explain it in comment:

void very_complicated_sort (int array[])

/* Sorts the array into increasing numeric order – see

Knuth “Very complicated programming” p150-155 for details */

The next page shows a bad set of comments – the code prints part of the Feigenbaum diagram from week three’s coursework:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* Richard’s chaos program */

/* Prototypes */

void write_2d_array (char [], int, float [], float []);

/* Enums and #defines */

enum {

 MAXPOINTS= 50000,

 RESOLUTION= 1000

};

#define OUTFILE "chaos2.out"

int main()

/* main routine */

{

 /* Define some variables */

 float xpts[MAXPOINTS], ypts[MAXPOINTS];

 int tot_points;

 float x,lambda;

 float z[RESOLUTION];

 int zval;

 int i,j;

 tot_points= 0;

 for (i= 0; i < RESOLUTION; i++) { /* Tricky bit */

 lambda= 0.75+ (0.25*(float)i / (RESOLUTION-1));

 for (j= 0; j < RESOLUTION; j++) {

 z[j]= 0;

 }

 x= 0.3456;

 for (j= 0; j < 50; j++) { /* Do this for every j*/

 x= 4*lambda*x*(1.0 - x);

 }

 for (j= 50; j < 150; j++) { /* Long rambling comment which doesn’t finish

 x= 4*lambda*x*(1.0 - x);

 zval= (int) (x* (RESOLUTION-1));

 if (zval >= RESOLUTION)

 zval= RESOLUTION-1;

 if (z[zval] == 0) {

 z[zval]= 1;

 xpts[tot_points]= lambda;

 ypts[tot_points]= x;

 tot_points++;

 if (tot_points == MAXPOINTS) {

 printf ("Too many points to plot\n");

 return -1;

 }

 }

 }

 }

 write_2d_array (OUTFILE, tot_points, xpts, ypts);

 return 0; /* End of main */

}

void write_2d_array (char filename [], int no_points, float xaxis[],

 float yaxis[])

/* Write a 2 dimensional array */

{

 FILE *fptr; /*File pointer */

 int i; /* Used in for loop */

 fptr= fopen (filename, "w"); /* Open the file */

 if (fptr == NULL) {

 fprintf (stderr, "Unable to open \"%s\" to write\n",

 filename);

 exit (-1);

 }

 for (i= 0; i < no_points; i++) { /* Loop over i */

 fprintf (fptr, "%f %f\n", xaxis[i], yaxis[i]);

 }

 fclose(fptr); /* Close it */

}

The author of this program has managed to put in a lot of comments without actually any of them being helpful (except, perhaps, to a non C programmer – and a non-programmer isn’t going to be fixing your code).

What should we comment? As I guideline, I would always comment:

a) Variables unless they are obvious – for example no need to say that i,j or k are variables used in loops – they almost always are. No need to comment that FILE *fptr is a file pointer. On the other hand int total might total up anything and could perhaps use some clarifying.

b) I would always try to put in a comment at the beginning of a function to say what that function does, what it returns and when it breaks.

int factorial (int n)

/* Return the factorial of n. This will break if passed a negative number */

{

.

.

.

}

int write_2d_array (char filename[], int no_points, float xaxis[],

 float yaxis[])

/* Writes a 2d array to the file specified by filename in a format suitable for Maple plotting. xaxis and yaxis are the two dimensions

to be plotted with no_points in each. The function returns 0 if it

is successful or –1 if there is a problem writing to the file */

Your comment need not be quite so verbose as this but should give an idea what each function does, what arguments it takes and what it returns.

c) I always try to put a smaller comment by the prototype of each function which gives some description. The reason is that when you write a large program, the prototypes are all grouped together in a header file and it is easier to gain an understanding of the program by looking at them.

d) In multiple file programming I would put a comment in each file to say what purpose it serves in the program:

fileio.c: /* This contains basic file input/output functions for

reading and writing records in the payroll program */

e) Structures are almost always worth a comment since these are likely to be very important in your program.

Other than these situations, you must be guided by common sense. Putting in too many comments makes your program unreadable and messy. Putting in too few will leave it cryptic. A good guide is to put a comment on anything which you would find confusing even if given a minute or two to look at it. If what you are doing is unusual then it is as well to comment it as such. For example, it is easy to be confused by code that has a 1/(r*r*r) if the code is supposed to deal with gravitation (normally a 1/r2) so it is as well to comment that something unusual is going on. Even if you know the code is correct, a later user might be confused by it (or even worse “correct” it to 1/r2).

A final rule is that if something is extremely difficult to comment and you find yourself spending four or five lines going on about it then it’s almost certainly worth putting a reference to external documentation instead.

External Documentation
The role of external documentation is to let another programmer who will be working on your code understand what is going on and how he or she might modify your code. This must be done at several levels:

1) Describe the broad purpose of your code – what it is supposed to achieve and how. (E.g. “Reading from input files which represent initial positions, velocities, accelerations and masses, this program will solve the n-body problem for a time defined by the user and provide the output as a maple plot.”) Describe what files the program needs to run and how it works (in brief).

2) Describe the general “flow” of your program. That is, how it works as an algorithm – if you’ve used particular sorting routines for example then describe which one. Often this is clearer in a diagram form. (I wouldn’t recommend that you go as far as a formal “flowchart” since these are generally useless).

3) Describe what “source modules” your program has if you have used multiple file programming. That is, what .c and .h files you have used and what they each contain.

4) If a particular struct/typedef is used a lot in your code then describe the purpose of this structure.

5) For each major function and important structure in your code describe what that function does, what variables it takes and what it returns. This is very similar to the comments made on every function on the internal documentation. Note that I have been vague about what constitutes a “major” function. Your code for this project is likely to be short enough that explaining every function won’t take too long. Pay particular attention to describing functions which are doing the “real work” – these are not necessarily the most complicated ones to write – it can be very complicated to write a file input function to read individual words – but it would not be useful (or particularly interesting) to spend a great deal of time describing this.

User Documentation
User documentation is written to describe to the end-user how to run your program. Writing user documentation is an art-form in itself and entire books have been written on how to do it. In general your programs will not be complex enough to require extensive user documentation so I don’t intend to teach you anything about how to write this. Feel free to include limited user documentation in your write up if you want (but don’t spend too long on it).

We could tell

this anyway

without the

comment

This seems

silly but I’ve seen this comment so many times

Comments you must scroll to read are very very annoying

We could perhaps be more precise here.

