C Programming Course – WorkshEET fIVE

Introduction

This is the fifth worksheet in the C programming course. By the end of this worksheet you should have experience of:

1) struct and typedef for making structures.

2) The switch statement (again).

3) Arrays of structures.

4) Random numbers in C.

5) malloc and free for dynamic memory allocation

Card games

In this series of examples we’re going to build up a series of routines which might be useful to play card games in C. By the time you’ve finished this worksheet, you won’t have a working game of cards, but you will have something which can shuffle, deal and print out a hand of cards.

The first thing to do is to create a structure which will store a single playing card. Recall how to use structures from the previous lecture:

typedef struct account {

 char name[80]; /* Name of account holder */

 int type; /* 1= savings account 2 = current account 3= account

closed*/

 char address[100]; /* address */

 int balance; /* Balance of account */

} BANK_ACCOUNT;
at the start of your program will define a structure which can be referred to as BANK_ACCOUNT which can store a name, an account type and an address. We can then create variables and set them as shown below using the dot notation described in the lecture (remember, typedefs go BEFORE main). BANK_ACCOUNT can be used pretty much anywhere you could use int – declaring a variable of type BANK_ACCOUNT is just like declaring an int and we can have functions which take BANK_ACCOUNT arguments and return BANK_ACCOUNT values:

int main()

{

 BANK_ACCOUNT my_account;

 sprintf (my_account.name, "Richard Clegg");

 my_account.type= 1;

 sprintf (my_account.address, "Dept. of Mathematics");

 my_account.balance= 1000000;

 .

 .

 .

 return 0;

}

BANK_ACCOUNT create_new_account (char *, int, char *, int);

/* Prototype for create_new_account function */

BANK_ACCOUNT create_new_account (char *name, int type, char *address,

 int balance)

{

 BANK_ACCOUNT new_account;

 strcpy (new_account.name, name);

 new_account.type= type;

 strcpy (new_account.address, address);

 new_account.balance= balance);

 return new_account;

}

The above function could be called with the following code:

BANK_ACCOUNT richards_account;

richards_account= create_new_account ("Richard Clegg", 1,

 "Dept. of Maths", 1000000);

/* Set me up a savings account with a million pounds in it –

if only it were that easy*/
That's how it would work for a structure called BANK_ACCOUNT. In the following examples you're going to make something similar work for a structure called CARD for playing cards.

Exercise 1: typedef a structure called CARD (that is CARD is the final name at the end of the typedef statement where BANK_ACCOUNT was) which will hold information for a single playing card in a standard deck (not including jokers). One way to do this is to use two integers, one to represent the suit (spades, hearts, clubs and diamonds) and one to represent the value (Ace, two, three, four,.... ten, jack, queen, king). Alternatively, you could store the suit as a character. You will have to think of some way to translate between the number you store and the card – one simple way is to have ace= 1, jack= 11, queen= 12 and king= 13). If you decide to represent suits using an int then it is a good idea to have an enum statement for the four suits (clubs, diamonds, hearts and spades) so you remember which number represents which suit.

Create a CARD variable in main in the same way as BANK_ACCOUNT was in the previous example which will hold the ace of spades. Set the individual parts of this card so that it holds the ace of spades. The code doesn't DO anything yet – we'll test it in the next exercise.

The switch statement
In the next exercise we will create a function which will print out one card as two characters, for example 2S (two of spaces), AH (ace of hearts), TC (ten of clubs), 9D (nine of diamonds). To create this function you could use a switch statement. Taking our bank account example we could use a switch statement as follows:

BANK_ACCOUNT new_account;

.

. /* Stuff to set up an account here */

.

switch (new_account.type) {

 /* new_account.type is an integer representing the

 type of account */

 case (1):

 printf ("A savings account\n");

 /* Do something to do with savings accounts here */

 break;

 case (2):

 printf ("A current account\n");

 /* Do something to do with current accounts */

 break;

 case (3):

 printf ("Account closed\n");

 break;

 default:

 printf ("Error, there is no such type of account\n");

 exit (-1);

}
Note: The switch statement is enclosed within braces (curly brackets). The switch statement works on an integer or a character variable which is given in round brackets after the switch statement. The case parts of the switch statement contain constants (these may be #defined or enum constants or just numbers as in this example) also in round brackets and followed by a colon. When the variable in the switch statement matches the constant in the case statement then the commands in that particular case statement are executed. If none of the case statements match the variable then the default statement commands are executed. It is important to put a break after the final command in each of your case statements – without this break, "switch fall-through" occurs, that is that the computer carries on and executes the commands for the next case statement. If the code above did not have break statements in it then a type one bank account would print "A savings account" then print "A current account" then print "Account closed" then print "Error, there is no such type of account". Switch fallthroughs are one of the most common errors made by experienced C programmers.

[Note for experts: The reason that switch fallthroughs are allowed is that sometimes you actually want that to happen. Try to think of reasons why you might want a switch fallthrough.]

Exercise 2: Write a function to match the prototype below:

void print_card (CARD);

.

.

.
This function will be passed a card and will print it out as two characters (as described above). It can be called using the following in main (don't forget that, like any other variable declaration, the CARD declaration must go at the start of main).:

CARD ace_of_spades;

/* Set up the ace_of spades according to the scheme you thought of in exercise 1*/

printf ("The mystery card is : ");

print_card(ace_of_spades);

printf ("\n");

If you've got it right this should print "The mystery card is AS". Test your code is working by setting up variables for and printing other cards.

Hint 1: You can save some time by using a switch statement for the "value" of the card, Ace, Ten, Jack, Queen and King are special and should have a case statement each, 2-9 can go in the default statement and be printed using %d in a printf.

Hint 2: Just print 2 characters – don't print spaces or new lines see below for why.

Arrays of structures
Like any other type of variable you can create an array of structures. For example, in the bank account structure we were using we could have:

BANK_ACCOUNT accounts[50]; /* create 50 bank accounts */

int i;

for (i= 0; i < 50; i++) {

 account[i].type= 3; /* Make them all closed initially*/

}

account[0].type= 1; /* The first account is type 1, savings */

sprintf (account[0].name, "Richard Clegg");

/* Etc etc */

The line which makes all the bank accounts closed is worth looking at closely. It says "Look at the type part of the i'th bank account". Remember to put the square brackets before the dot.

Exercise 3: Remove all the tinkering about with the ace of spades etc from main. Set up an array to hold 52 cards which will represent our deck of cards. Put all the cards of the deck into this array. You can do this with two loops (one loop for the value of the card and one loop for the suit) – you may want to have an extra counter to remember which card in the deck you are currently storing. You will be using 52 a lot so you may want to set up an enum for it. If you have set up your deck correctly then you could print it using the code below in main:

CARD deck[52]; /* hold a deck of cards */

int i;

.

. /* Set up the deck here by putting the correct values into

. the deck array*/

for (i= 0; i < 52; i++) {

 print_card (deck[i]);

 printf (" ");

}

printf ("\n");
If you do this correctly it should print all 52 cards in the deck.

Random numbers in C
Next we need to shuffle the cards. To shuffle we will need random numbers. Random numbers are a complicated subject (and are not really random in any case or “Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin” as John Von Neumann put it). We need two functions for random numbers srand and rand. srand "seeds" the random numbers – that is to say it gives the random number generator a number to get it started. A common technique used by programmers is to "seed" the random numbers using the current time. You can do this with the following:

#include <time.h>

/* Time functions which get the current time */

#include <stdlib.h>

/* Standard library functions include srand and rand */

int main()

{

 /* Variable declarations for main go here */

 srand(time(NULL)); /* Seed the random numbers */

}

Don't worry particularly about how the srand function (or indeed the time function) works for now – assume it just "sets up" a random number generator. You should only call it ONCE in any program unless you have a specific good reason to do so (say you want to generate the SAME set of random numbers again). The next function we need is rand(). It generates a random integer between 0 and RAND_MAX (which is a large number defined in stdlib.h). Each time we call rand() it generates a new random number in a sequence. We can use the modulo operation (% - remember it from the is_prime example – it returns the remainder when two numbers are divided) to force the random numbers into a particular range. Here's an example for rolling a die several times:

int i;

for (i= 0; i < 100; i++) {

 printf ("I rolled a %d\n", (rand()%6)+1);

 /* rand() %6 generates a number from 0 – 5 */

}
[Note for experts: Generating random numbers is actually very difficult with a computer. All random numbers are really "pseudo random" – part of a long sequence generated by a mathematical sequence which is hard to predict. Whole books have been written on the topic.]

Exercise 4: Write a function to shuffle the deck – the function is passed an array of cards which represents the ordered deck of 52 cards set up in exercise 3. The function will have the following prototype:

void shuffle_deck (CARD []);

To shuffle the deck we can use the following procedure several thousand times:

 a) Pick a number 'n' from 0-51

 b) Pick a second number 'm' from 0-51

 c) Swap card n with card m

We can swap things in part c using a temporary variable as we would with two integers. See below:

void shuffle_deck (CARD deck[])

{

 CARD temp_card; /* Temporary variable for swapping cards */

 /* Loops and picking of n, m go here */

 temp_card= deck[n]; /* Store the value of the nth card */

 deck[n]= deck[m]; /* Copy the mth card over the nth */

 deck[m]= temp_card; /* Copy the nth card over the mth using

 our temporary variable */

}
Call the shuffle deck routine from main to shuffle the deck (after it has been set up but before you print it out. Test the shuffling by changing the number of "swaps" you make).

Exercise 5: We're going to write a routine to deal a hand of cards but first let's have a routine to print out a hand of cards. Write a routine which will take a pointer to an array of CARD types and an int and print out that many cards. The function should be fairly straightforward and will look like so:

void print_hand (CARD *, int);

.

.

.

void print_hand (CARD *hand, int no_cards)

{

 /* Print out the hand here – remember we can print the i'th

card using print_card(hand[i]); You will probably want spaces

between each card and a \n after the hand*/

}

Test your print_hand function by printing the whole deck using it:

print_hand (deck, 52);
malloc, free and sizeof
The next thing we are going to do is to write a bit of code which is going to deal a hand of 'n' cards where we can chose n to be anything. Clearly we can't use an array since arrays have to be FIXED in size. We can do this using "malloc" – malloc returns a pointer to a block of memory which can be used to hold our hand of cards. Remember that the pointer can be used exactly like an array. Look at the code below:

int *numbers;

int n;

n= 53;

numbers= malloc (n*sizeof(int));

numbers[0]= 7;

numbers[52]= 6;

.

.

.

free(numbers);

There are lots of things to notice about this code. sizeof is a function which returns the amount of memory needed to hold a particular type of variable. sizeof(int) returns the amount of memory for one int. Therefore n*sizeof (int) is the amount required for n integers (in this case 53). malloc(n*sizeof(int)); therefore returns a pointer to enough memory for n integers. Having done this, we can then use the pointer just like we would use any other array. Note also the free statement at the end. Free says to the computer "I have finished with this bit of memory". Free should be called with the same pointer you used with the malloc. Every malloc statement should be matched with a free statement.

As usual, we can use malloc and free with our structs as well as with ints. Here's how it would work with our bank accounts:

BANK_ACCOUNT *all_accounts;

int no_accounts;

/* Input the number of bank accounts to store as no_accounts */

all_accounts= malloc (no_accounts *sizeof (BANK_ACCOUNT));

.

. /* Code which deals with the bank accounts as usual*/

.

free(all_accounts);
Note for experts: Actually, unix (and windows) will free up memory used automatically when the program exits. However, a good programmer will always free up memory anyway themselves. Quite often you want to dynamically create and destroy objects using malloc and free so it is a good idea to get into the habit. It would be terrible if every time your computer card game saved memory for a hand of cards, it never released that memory – your computer memory would eventually fill up (this is known as a "memory leak").

Exercise 6: Write a function which deals a hand of cards. The function will be passed your shuffled deck of cards, the number of cards remaining in the deck and the number of cards to deal and will return a pointer to allocated memory containing a hand of cards. The function might look something like this:

CARD *deal_hand (CARD [], int, int);

.

.

.

CARD *deal_hand (CARD deck[], int cards_left, int to_deal)

{

 CARD *hand;

 hand= malloc (to_deal*sizeof(CARD));

 /* Copy the right number of cards from the deck to hand */

 return hand; /* Return the pointer to the hand of cards we

 deal */

}

Hint 1: Deal the cards from the back of the pack – if there are 52 cards left then we can deal by making hand[0]= deck[51], hand[1]= deck[50], hand[2]= deck[49] etc etc etc... you need to figure out the appropriate for loop to do this.

Hint 2: It would be good to check that there are enough cards left in the deck to deal the hand.

If we've done it right then we can put the following in main() assuming we are a bridge player:

CARD *north; /*Store hand for the north player */
CARD *east; /*Store hand for the east player */

CARD *south; /*Store hand for the south player */

CARD *west; /*Store hand for the west player */

CARD deck[52];

/* Your code to set up and shuffle here */

north= deal_hand (deck, 52, 13); /* Deal a hand to north */

printf ("North: ");

print_hand(north, 13); /* Print north's hand */

east= deal_hand (deck, 52-13, 13);

 /* Deal east's hand – remembering there are now 13 less cards

 in the deck */

print ("East: ");

print_hand (east, 13);

/* Similar code for south and west */

free(north);

free(east);

free(south);

free(west);

If poker is more your game then deal 5 or 7 cards to each player instead of 13.

We could add routines to play cards from the hand – perhaps set up another structure which contains a hand of cards:

typedef struct one_hand {

 CARD *cards; /*Cards which are in the hand */

 int no_cards; /* No of cards in the hand */

 char name[100]; /* Name of player */

} HAND;
This type definition must, naturally, come after the one for the card itself. We could even have a further type definition for all the players:

typedef struct game {

 HAND *hands; /*Hands for each of the players */

 int no_players; /* No of players in the game */

 char name_of_game[100]; /* Name of game we are playing */

} GAME;
(Note, in real code we'd have an enum instead of a plain 100 in those). Of course this make things quite complex if we want to get at individual bits of information. For example, to look at the value of the first card in the first players hand we would do:

GAME *newgame;

/* Set up the game here */

printf ("Value of card is %d\n", newgame.hands[0].cards[0].value);

/* Assuming that in our typedef for CARD we had set the value of the card to be stored in the variable "int value;" */

Similarly we could print the first player's hand using the following line:

print_hand(newgame.hands[0].cards, newgame.hands[0].no_cards);

Exercise 7(quite difficult – only do this if you like a challenge): Adapt your code along the above lines to request a number of players and then deal a seven card poker hand to each player. Your program should produce an error if it runs out of cards.

Hint:

CARD deck[52]; /* A deck of cards */

int n; /* Number of players */

GAME poker; /* Information for a new game of cards */

/* Input the number of players here */

poker.no_players= n;

poker.hands= malloc (n*sizeof (HAND));

sprintf (poker.name_of_game,"Seven card Poker");

/* Set up and shuffle the deck */

poker.hands[0]= deal_hand(deck, 52,7);

print_hand (poker.hands[0]);

sprintf (poker.hands[0].player, "Player 0");
Will set up a game and deal a hand to the first player who is, boringly, called player 0 (you might want an input routine for him or her to enter a name). Note – it's actually quite difficult here to ensure that the memory gets freed for every hand before you exit the program. Remember, every malloc you write should find a free eventually.

Hint 2: obviously you'll want a loop in there for all the players and probably a variable to keep track of the number of cards left in the deck

CONGRATULATIONS: You have now finished the final worksheet in the C programming course. Buy yourself a drink – you've earned it.

