C Programming Course – WorkshEET four

Introduction

This is the fourth worksheet in the C programming course. By the end of this worksheet you should have experience of:

1) Writing a larger program than our other examples.

2) Command line arguments.

3) Multi-dimensional arrays.

4) Using pointer arithmetic.

A larger programming example: John Conway's game Life.

This worksheet is going to be slightly different to previous ones in that we'll spend all the worksheet building up to a single quite large program. In this case we're going to write a program which plays John Horton Conway's mathematical game "Life". The rules of the game are quite simple:

1) The playing area is a large grid of squares which may be either occupied or unoccupied.

[image: image1.wmf]Occupied

squares

2) Every iteration the squares will "die" or be "born" according to the following rules.

 i) A cell will die from loneliness if it starts the iteration with less than two neighbours.

 ii) A cell will die from exposure if it starts the iteration with more than three neighbours.

 iii) A new cell will be born in a square which has exactly three neighbours.

(A cell's neighbours are the squares adjacent horizontally, vertically and diagonally.)

We print out the pattern on the grid every iteration and watch how it evolves. Here's a simple example which is known to Life aficionados as "a spinner":

[image: image2.wmf]And so on and so

on and so on....

These die of

loneliness

New cells born since

these two had 3

neighbours

Iteration

One

Iteration

Two

Iteration

Three

Again 2 die and

2 are born

When life is run on this pattern, the user sees it alternating between a 1 by 3 vertical block and a 1 by 3 horizontal block. This is an extremely simple life pattern – more complex patterns exhibit more complex behaviour. In fact it has been proved that a sufficiently large "Game of Life" could be made computationally equivalent to a modern computer.

What our life program will do

The program that we're going to write will do the following:

1) Read a file specified in the command line (e.g. life pattern1.lfe would read a file called pattern1.lfe) which contains a starting grid.

2) Print the current iteration of life and wait for the user to make an input.

3) If the user has typed "quit" then exit.

4) If the user has typed “save” then save the state of the board in a file.

5) Calculate the next iteration of life.

6) Go to step 2.

We're also going to make sure that our program is robust – that is to say that it won't crash if the user types something unexpected or if the file used isn't there or doesn't contain what we might expect. The program will be in two files life.c (the main program) and life.h (a header file).

The data files for the program (step 1) are going to contain # charaters to represent cells and spaces. A typical data file will look like this:

##

 # ##

 # ##

A note on header files
Recall from the lecture notes that we can include header files with a #include statement. We can also write our own header files. In this worksheet we shall see an example of this. It is traditional in C for a #include statement with angle brackets <> (e.g. #include <stdio.h>) to be used where what we're including is a system library and to use quotes (e.g. #include "life.h") where what we're including is written by ourselves.

Exercise 1: Copy life.c and life.h from ~rgc2/ccourse/week4 also copy all the files ending in .lfe which are data files containing some starting positions for life we might use.

Look through the files so that you understand what is in each. Pay particular attention to life.h. This defines some constant numbers and has prototypes for various functions. Note though that most of these functions are NOT written yet.

Compile and run the program. It doesn't seem to do much really as yet. This is because the functions needed remain to be written. Ensure that you understand what is happening with the command line aregument passing. You will need a file to run the program on – one of the .lfe files.

Remember from the lectures that to get file names passed by the user we declare main as:

int main (int argc, char *argv[])

Then argc is the number of arguments and argv[0],argv[1] etc are the strings which the user has typed. argv[0] always contains the name of the program run (in this case life). Look at the line:

if (read_board(argv[1],board)) == ERROR)

This is a complicated line which is doing a lot of work. Be sure you understand it. Now check the read_board function. This is already written to get you started. Be sure you understand this function. It is reading the state of the board into a 2 dimensional array.

Now take a look at the main loop within the program – note especially the use of while (1) which tells the computer to continue doing this forever – however, the loop can be escaped from using the "quit" command by the return statement within the program loop.

NOTE: A programmer friend of the author used to use while (1 != 2) instead of while (1) – it means exactly the same but it seems appropriate for the computer to continue to do something "until 1 is equal to 2" meaning "carry on forever"

Exercise 2:Write the print_board function. This should be quite simple to do – simply loop over the x and y of the array. You might want to use the putchar function which takes a single character and prints it to screen. Don't forget to print a newline at the end of each line of the board. If you write the function correctly then it will print what is read from the file. Putchar is used as follows:

char x= 'c';

putchar(x);

putchar ('\0');

Pointer arithmetic

Recall from the lecture that we can often treat char * and char[] interchangeably. For practice, we're going to write functions which take char * arguments which may be useful later in the Life program:

Exercise 3: Write copy_n_chars and strings_match functions with the following prototypes. If you feel confident then try to do it without using []s within your function [i.e. using pointer arithmetic – see below]:

void copy_n_chars (char *, char *, int);

void copynchars (char *string1, char *string2, int n)

/* Copies at most n characters from string 1 to string 2 – stopping if string 1 is \0 terminated – but copying the termination character */

{

 /* Write function here */

}

Hint 1: You will want to loop around n times copying but break out if the character copied is '/0'

int strings_match (char *, char *);

int strings_match (char *string1, char *string2)

/* Compares, character by character (case insensitively) two strings. Returns 1 if they match and 0 if they do not match */

{

 /* Write function here */

}

Hint 1: You will need to be careful about the '\0' termination. You do not want to read past a '\0' in either string.

Hint 2: You will need the tolower or toupper functions in <ctype.h> which take a character and return the same character in, respectively, lower or upper case if it is alphabetical (and otherwise return it unchanged).

char c;

c= toupper ('x'); /* sets c to be 'X' */
Test these functions independently of the rest of your program by passing them various char [] strings and printing the results until you are convinced that they will work. Amongst other tests, do the following checks:

char string1[13];

copy_n_chars ("Hello World!", string1, 13);

printf ("%s\n",string1);

if (strings_match (string1,"HeLLO WOrLD!"))

 printf ("Match!\n");

if (strings_match (string1,"HellO WorLD"))

 /* No exclamation mark shouldn't match */

 printf ("Shouldn't match!\n");

if (strings_match (string1,"Hello World!!))

 /* Two exclamation marks shouldn't match */

 printf ("Shouldn't match!\n");

Under what circumstances might your functions have problems?

Note on pointer arithmetic. Remember from the lectures that (*x) returns the thing pointed at by a pointer x. If we add one to a pointer this moves the pointer on to the next thing of that type. So, if we are looking at an array then we can use x++ to point at the next element in the array.

void print_array (char *array)

{

 int i;

 for (i= 0; i < 50; i++) {

 putchar (array[i]);

 }

}
works exactly the same as

void print_array (char *array)

{

 int i;

 for (i= 0; i < 50; i++) {

 putchar (*array); /* Print the character pointed at by

array */

 array++; /* Move array on to point at the next character */

 }

}
With pointer arithmetic we can also subtract to move back in the array and add more than 1 to move forward several elements.

Exercise 4: Write a function which is passed a location on the board and an array for the board and returns the correct number of neighbours for that cell. Test your function. The function will be prototyped something like:

int calc_neighbours (int, int, char [BOARDX][BOARDY]);

and written something like:

int calc_neighbours (int x, int y, char gameboard [BOARDX][BOARDY])

/* Calculate the no of neighbours to the cell at column x, row y */

{

 /* Write function here – it should return the number of neihbours */

}

Hint: Careful about the edges of the board – you don't want to have your function reading out of the bounds of the array. Assume that there are no cells off the edges of the board when calculating neighbours. One way of writing the function would be:

a) Set the number of neighbours to 0.

b) If x is > 0 then check the value of board at [y][x-1] – if it is a # increase the no of neighbours by one

c) If x is < WIDTH –1 then check the value of the board at [y][x+1] – if it is a # increase the no of neighbours by 1.

d) If x is < WIDTH –1 and y is < HEIGHT –1 and the board at [y+1][x+1] is a # then increase the no of neighbours by 1.

e) Perform similar checks for [y-1][x], [y+1][x],[y-1][x+1], [y-1][x-1], [y+1][x-1] – including bounds checks as in a, b, c and d

[Detailed note for experts: C guarantees that in an if function using && if the left hand side of the expression is false, the right hand side of the expression will not be evaluated. Therefore if we say:

if (x > 0 && board [y][x-1] == '#') {

 num_neighbours++;

 }

There is no risk of the computer trying to look at board [y][-1] if x is 0. The evaluation of the and statement will stop as soon as the first false expression is found.]

Exercise 5: Write the function to update the board

void update_board (char [BOARDX][BOARDY]);

and the function itself is written as:

void update_board (char gameboard [BOARDX][BOARDY])

{

 /* Write the update function here */
}

Recall from the top of the worksheet that the rules of the game of life are:

Every iteration the squares will "die" or be "born" according to the following rules.

 i) A cell will die from loneliness if it starts the iteration with less than two neighbours.

 ii) A cell will die from exposure if it starts the iteration with more than three neighbours.

 iii) A new cell will be born in a square which has exactly three neighbours.

Note that, since the state of each cell depends on its neighbours in the previous iteration we have to update the board "all at once". A practical way to do this is to create a second array to hold the old board. Copy everything in the board to the old board array (using your copy_n_chars function) for each line of the array – with a 2D array we can call a function using 1 dimension of the array so that:

char oldboard [BOARDX][BOARDY];

char board[BOARDX][BOARDY];

int i;

for (i= 0; i < BOARDX; i++) {

 copy_n_chars (board[i], oldboard[i], BOARDY);

}
should copy the entire board. (For explanation see below).

1) Loop over each row and column of the old board using two for statements.

 a) Calculate the no of neighbours at position x,y using your existing function

 b) If at this position the old board has a cell [if (board [x][y] =='#')], and on the old board x,y has 2 or 3 neighbours then the new board has a cell.

 c) If at this position the old board has a blank and there are three neighbours then the new board has a cell at this postion

 d) If neither b nor c apply then the new board has a blank at this position.

2) Having completed the new board, loop over each row and column copying the new board over the old board.

1D and 2D arrays
In C, we can visualise a 2D array as a 1D array of 1D arrays. This is almost what we were doing with command line arguments when we said that argv[0] was a string which was the first argument of *argv[]. For this reason, if a function expects a 1D array we can pass it 1 "slice" of a 2D array.

CONGRATULATIONS: You have just programmed the game of life. Check that it is working using glider.lfe. If you have got it right then the glider should work its way slowlyacross the screen.

Exercise 6: Finally, write a "save" function for the game which saves the state of the board to a file. You must put a "strings_match" line inside the while (1) loop to call the write_board function. The function should do the following:

1) Prompt the user to enter a file name

2) Check if it can open the file – if it can't then return ERROR – your main routine should handle this error

3) Write the status of the board to file

4) Close the file again.

_1000129813.doc

Occupied

squares

_1000131558.doc

And so on and so on and so on....

These die of loneliness

New cells born since these two had 3 neighbours

Iteration

One

Iteration Two

Iteration Three

Again 2 die and 2 are born

