C Programming Course – COURSEWORK four

Introduction

As usual, questions one and two should be attempted by all students. Question three is more difficult and is a more difficult optional question for students who wish to earn extra credit.

Question One

An important part of computer programming is simulation. In this program we're going to perform about the simplest possible simulation: Sim Bouncy Ball. The program will simulate a ball bouncing on a hard surface.

Recall that:

a) The acceleration due to gravity "g" is 9.8 ms-2 in a downward direction.

b) The "coefficient of restitution" is defined as the ratio of an object's speed just after it bounces/the object's speed just before it bounces (for obvious reasons, it is a number between 0 and 1).

1) Create variables to hold the current height and velocity of the ball, coefficient of restitution, simulation start time, simulation end time and the current simulation time.

2) Initialise the height, velocity and starting simulation time to 0secs.

3) Choose a small time step 'dt' which will be one "cycle" of our iteration.

4) In each time step (until we reach the end time for our simulation)

 a) add dt*g to the velocity.

 b) add dt*v to the height.

 c) add dt to the current time.

 d) if the height is less than zero and the ball's velocity "down" then multiply the velocity by the negative of the coefficient of restitution (to make it instantaneously bounce back up).

 e) print out the ball's current height and the simulation current time at each step.

Hint: Be careful with your signs – be sure that your velocity, acceleration and height all have matching orientations.

i) Run your simulation for height against time for h= 10, initial velocity= 0, coefficient of restitution 0.9 starting at 0 seconds and end time 10 seconds. Choose a sensible time-step. a graph of height versus time – either using maple (as described last week), or using any other graph plotting package you know.

ii) What is the effect of changing the time step to make it longer or shorter?

iii) What are the trade-offs involved in running the simulation with a long and a short time step.

iv) Using maple and the plotting routines you've previously developed, plot the graph for the simulation with two smaller values of coefficient of restitution.

v) A small but constant error is introduced by the fact that the height is changed AFTER the velocity. Describe the nature of this error. Suggest a way to correct this. (Note that changing the height BEFORE the velocity merely changes the error it doesn't correct it).

Question 2
Using structs (see lecture 4 notes) create a library of functions to deal with complex numbers. You will need to define the following functions:

CMPLX create_complex (float, float);

/* create a complex number from a real and imaginary part */

CMPLX add (CMPLX, CMPLX);

/* Add two complex numbers */

CMPLX subtract (CMPLX, CMPLX);

/* Subtract the first number from the second */

CMPLX multiply (CMPLX, CMPLX);

/* Multiply two complex numbers */

void print_complex (CMPLX);

/* Print out a complex number in a reasonable format */

float magnitude (CMPLX);

/* Return the magnitude of the complex number */

In all these examples, CMPLX is the typedef name you used for your complex number. Hint – obviously the first thing you must do is correctly set up a struct with a typedef for a complex variable. You can use two floats, one for the real and one for the imaginary part. Remember, once you've set up the typedef, then CMPLX behaves just like a built in type such as an int, you can return it from functions, use it as a variable type and an argument in a function.

i) Test your library using these functions – for example, you should be able to write:

CMPLX a,b;

create_complex (10.1,5.3);

create_complex (5.2,6.3);

printf ("a = ");

print_complex(a);

printf ("\n");

printf ("b= ");

print_complex(b);

printf ("\n");

printf ("a + b = ");

print_complex(add_complex(a,b));

printf ("\n");
ii) Discuss briefly what tests you used and why.

iii) Discuss briefly why you designed the library as you did and what extra functions you might add.

Question 3

Use the complex library you desgined above to print a Mandelbrot set for the region of the complex plane (–1.5-1.5i, 1.5+1.5i). Recall that a Mandelbrot set is defined on the complex plane depending on the behaviour of repeating the mapping z->z2+c where z starts as 0+0i and c is the point in the plane we are considering. A point in the plane is a part of the set if z does not escape to infinity and remains bounded. Generally speaking, a mandelbrot set is coloured according to the escape time – that is to say by looking at how quickly the mapping becomes unbounded. In this case, we will use the following procedure:

a) Two for loops will loop round each part of the complex plane in the region specified– one loop for the real part and one loop for the imaginary part. The loops should have a step size such that the set you print will cover a reasonable portion of the screen.

b) For each part, calculate the "escape time" by performing the transformation z= z2+c (where c is the current value of our two loop variables). To calculate the "escape time" first set z= 0+0i. Loop 100 times and repeat the z=z2+c operation. If at any point the magnitude of z is greater than 2 then the point has "escaped" – return how many loops it took. If we get to 100 loops then assume that the point will not escape (obviously it may still, however, we cannot loop forever to check this). Use your library functions to calculate z= z2+c and the absolute magnitude.

c) Print a single character according to how quickly the map escaped. Choose characters which "look good" – an example is shown where '+' means "did not escape" 'O' means "escaped very slowly", 'o' means "escaped fairly slowly", '.' means "escaped" and ' ' (space) means "escaped quickly".

d) At the end of every line print a newline character.

i) Print your Mandelbrot set out (the simplest way to do this is by redirecting your output using ./mandel > output.txt)

ii) How would you adapt your program to print a zoomed in region of the set on a smaller region of the complex plane.

iii) What limitations might you find as you continued to zoom in further and further?

 oOOoo.......

oooOOOOOo........

.....................ooooOOOOOOooo.........

...................ooooOOO++++OOooooo........

...............oooOOOOOOOO++++OOOOoooOo.......

...........ooooooOOO+OO++++++++++OOOOOOo.......

......ooooooooooOOOO+++++++++++++++++OOoo.......

..ooOOOOOOOOOOOOOO+++++++++++++++++++OOOo........

ooooOOOOOOOOOOOOO+++++++++++++++++++++OOo.........

oooOOOO+++++++OO++++++++++++++++++++++OOo.........

OOOOOO+++++++++O++++++++++++++++++++++Ooo.........

OO++++++++++++++++++++++++++++++++++OOOoo.........

OOOOOO+++++++++O++++++++++++++++++++++Ooo.........

oooOOOO+++++++OO++++++++++++++++++++++OOo.........

ooooOOOOOOOOOOOOO+++++++++++++++++++++OOo.........

..ooOOOOOOOOOOOOOO+++++++++++++++++++OOOo........

......ooooooooooOOOO+++++++++++++++++OOoo.......

...........ooooooOOO+OO++++++++++OOOOOOo.......

...............oooOOOOOOOO++++OOOOoooOo.......

...................ooooOOO++++OOooooo........

.....................ooooOOOOOOooo.........

oooOOOOOo........

 oOOoo.......

