The Elegant form of the C program

#include <stdio.h>

/* An example program which doesn't do anything indicates where things go and how they should look in C By R. Clegg 20/10/99 */

/* define some constants which will be useful*/

#define PI 3.14

enum lengths {

 MAX_LEN= 33,

 NO_BANANAS= 0,

 BLANK= 0

};

int read_a_file(int); /* Read the indicated file number – return 1 if we read it OK*/

int count_apricots (void); /* Counts apricots so far found */

.

.

/* Number of bananas which have been counted */

int banana_num_so_far= 4;

int main()

{

 int num_apricots= 0; /* Number of apricots counted */

 int all_bananas[MAX_LEN]; /* An array to store bananas */

 int i, j;

 for (i= 0; i < MAX_LEN; i++) {

 all_bananas[i]= NO_BANANAS;

 }

 .

 .

 return 0;

}

int read_a_file (int file_no)

/* Read file number file_no return 1 if we read it OK */

{

 char file_name[MAX_LEN]; /* file name to read */

 int file_counter; /* Counter of elements read */

 if (file_no == 0) {

 printf ("There is no file number 0\n");

 return 0;

 } else {

 printf ("Reading file number %d\n", file_no);

 }

 .

 .

 return 1;

}

int count_apricots (void)

/* Count the number of apricots we have so far and return it*/

{

 int num_apricots= 3; /* Number of apricots */

 int apple_counter; /* Counts apples which might be confused

 int i; with apricots */

 .

 .

 return num_apricots;

}

This example code is not supposed to be a working program – it shows where things go and how to lay it out nicely

#includes go right at the

very top

A comment about what your code does is useful here – and who wrote it.

Defined constants come next

(See lecture 2 notes for what they are)

Function prototypes now – as defined in lecture 1. Don't forget that they need a semi-colon after them ; they define the type of the variable but don't need to give it a name.

If you must use GLOBAL variables

then put them here.

Good to give prototypes comments unless the functions are

extremely trivial

main() comes next

indent main

and functions

by one level

Declare all variables and arrays (see lecture 2 notes) LOCAL to main before doing anything else. Comment important variables. Don't try to fit too much on one line.

for statement is clearest with curly brackets and one extra level of indent. If we have TWO for statements indent two levels. etc.

Now we come to the functions (no

semi colon after function name this time but we give a name to the arguments

Indent if and else

statements one extra

level. It is sometimes a good idea to deal with "special cases" (e.g. file_no == 0) early in a function.

Declare variables which are LOCAL to the function (i.e. only used in this function) at the top of the function where

they are used.

Note we can reuse the same variable name in different functions. i was also used in main.

return can be

used anywhere in a function and gets us out

of the function

