C Programming Course – WorkshEET TWO

Introduction

This is the second worksheet in the C programming course. By the end of this worksheet you should be able to:

1) Use functions and prototypes.

2) break and continue.

3) Understand static variables.

4) Understand and use recursion.

5) Format output using the printf statement.

6) Get input from the user with the scanf function.

7) Use some of the functions in the math.h library (exp and log).

Functions and Prototypes

Exercise 1: Let's start by writing a simple function to match a prototype. Copy

~rgc2/ccourse/week2/prime.c
This bit of code checks which numbers between one and twenty are prime. But the function to check prime numbers is not yet written. The function is defined as:

int is_prime (int num)

Recall from the lecture that this means the function will be given one number (which will be called “num” within the function) and will return one number. In this case the function should return 1 (remember one means true) if the number is prime and should return 0 if the number is not prime. You will have to check if the number is prime by exhaustively searching all the numbers > 1 but less than “num” to see if they divide without remainder into “num”.

Hint 1: You will need the modulo operation %. (a % b) returns the remainder when a is divided by b. For example (5 % 3) is 2

Hint 2: You will need to loop over all the possible numbers that “num” might divide by and test if they divide without remainder. If “num” does divide without remainder by a number between 1 and itself then it cannot be prime. Otherwise it is prime.

Hint 3: Your function should return 0 for negative numbers and should be able to handle people passing it 0 and 1 – this could cause problems for any "for" loop you might write

Keep a copy of the file with your is_prime function – we'll be using it again in this worksheet. (Consult the micro emacs handout for instructions about inserting one file into another file)

The break and continue statements

break is another of C's keywords. It means exit from a for or a while loop early. Here's another test for your is_prime function – this fragment of code can be found in: ~rgc2/ccourse/week2/pfrag.c
#include <stdio.h>

int main()

{

 int i;

 int min= 104;

 int max= 120;

 for (i= min; i <= max; i++) {

 if (is_prime(i)) {

 printf ("%d is the lowest prime in range\n",i);

 break;

 }
 }

 if (i > max)

 printf ("No prime numbers found in range\n",i);

 printf ("Goodbye!\n");

 return 0;

}

Exercise 2: Add your is_prime function to this code to check that it works (remember to put the function prototype in the right place). Check it for several values of min and max.

The break statement is used to exit from deep within a complicated loop – it will only exit from one level of loop. Note that in this case, we could just have well have used return 0 to exit the loop – but then we wouldn't have been able to print Goodbye at the end.

The continue statement is similar to break but instead of exiting the loop it immediately starts another iteration of the loop. For example we might use it like this:

int i;

for (i= 1; i < 100; i++) {

 if (is_prime(i)) {

 printf ("%d is prime\n",i);

 continue;

 }

 printf ("%d is not prime\n",i);

 print_factors(i); /* Function to print out the factors of i */

}

Like break continue only applies to the inner loop if it is within multiple loops. break and continue don't tend to be used that often in C but they can be useful if you're dealing with complicated loops.

break and continue can be useful to make code more efficient since you don't have to go all the way round all the loop.

Another example function using primes

Exercise 3: Goldbach's conjecture (1742) is unproved and without counter example as yet. It states that any even number greater than 4 is the sum of two odd primes. Use your is_prime function again in a function which checks Goldbach's conjecture for a particular even number and prints out the results in the form shown below:

6 = 3 + 3

8 = 5 + 3

10 = 7 + 3

12 = 7 + 5
Copy the program skeleton from ~rgc2/ccourse/week2/goldbach.c
Your program should only print only ONE sum for each even number (even when there are several ways of making the sum). It should be capable of printing an error if you find an even number which ISN'T the sum of two odd primes (if you do find one then it's fairly safe to assume that your program is broken of course).

The way to do this is as follows. The function goldbach.c takes one argument which is an even number which is called “num”.

i) Write a for loop which goes from 3 up to num in steps of 2 (don’t forget to define the variable) this variable will be the left hand side of your sum.

ii) Calculate the right hand side of your sum and store it in another integer variable.

iii) Use your is_prime function to check that both numbers are prime (remember you can use if and &&). If they are both prime then you have found the right numbers. Print them out (in a tidy format) and return;

If you get to the end of your loop then you have failed to find numbers (either num wasn’t even or wasn’t > 4 or you’ve disproved goldbach’s conjecture) print an error message.

Once you have got this working then without changing your goldbach routine or your is_prime routine, put a loop in main which calls goldbach for every even number from 6 to 100.

This is actually quite a bad way to check Goldbach's conjecture since we're having to do a lot of work recalculating whether each number is prime every time. If you are an experienced programmer then try writing a more efficient check on Goldbach's conjecture.

Static Variables

We can declare any variable in a function to be a static, this variable will only be initialised the first time the function is called and will retain its value after the function exits. An ordinary variable (sometimes known as an automatic variable) within a function is created when the function starts and destroyed at the end of the function. For example, we can declare a function counter like so:

void counter (void)

{

 static int ctr= 1;

 printf ("Function counter has been called %d times\n",ctr);

 ctr++;

}

Will print:

Function counter has been called 1 times

Function counter has been called 2 times

etc etc – one line every time it is run.

The variable ctr is created and initialised to 1 the first time the function is run. At the end of the function it is incremented to 2. The second time the function is called the variable ctr keeps the value 2 and is incremented to 3 at the end of the function.

Exercise 4: Using static, convert your program which check's Goldbach's conjecture from 6-100 so that instead of printing the various sums it simply counts how many times the is_prime function is used and each time prints the number of times the routine has been called so far.

Recursion

A function is called recursive if it calls itself. To some people this idea seems confusing at first (after all, if a function calls itself, how can it STOP?). Here's an example of a recursive function which calculates factorials. ~rgc2/ccourse/week2/fact.c contains the following:

int factorial (int n)

{

 if (n == 1)

 return 1;

 return (n * factorial (n-1));

}

Let's consider how this is working with the example of factorial 5.

factorial (5) is called which returns an answer which is 5 * factorial (4). This in turn calls factorial (4) so the answer to factorial (5) is then 5 * 4 * factorial (3) – and so on until eventually, factorial (1) is called which returns 1.

CAUTION: There is a significant problem with the factorial program shown. What would happen if factorial (0) were requested?

Exercise 5: Copy and compile pascal.c from the week 2 course directory. The program contains a function int pascal_num (int n, int r) which recursively calculates the number in the n'th number in the r'th row of Pascal's triangle (the first 6 rows of which are shown below to refresh your memory):

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Check you understand how the function is working. It is quite complicated to understand at first sight. The function calls itself. Check that you understand how the function ever STOPS. Can you think of values of n and r which would make the function run forever? Check by calling the function with those values from main. (If it works then the program won’t actually run forever since it will eventually crash because it has called the function so many times – if you find values where you call the function and it crashes then you have found the problem). Fix the function so that it will always stop even if people give it bad values.

Recursion is not an easy concept to grasp – hence the programmer saying “to understand recursion one must first understand recursion”.

Formatted Output with Printf

There are lots of additional features of printf which are listed on page 244 of K & R. One which is particularly useful the ability to specify that a number MUST take up a certain number of spaces when printed.

printf ("%5d",i);

prints the integer i, padded with blanks to make it 5 wide. There are a number of other printout options which, amongst other things, allow you to specify that a sign is always printed, how many places of decimals a float should be printed to and whether a number should be padded with zeros or blanks to make it fit a column. It's not worth remembering what all these printf options are but it's worth knowing that they're there so you can look them up as and when you need them.

Exercise 6: Using these new formatted output options, print the first 7 rows of Pascal's triangle in a pretty pyramid format similar to the one above.

Hint: There are two problems here. Firstly you must ensure that the integers printed all occupy the same width. Secondly you must ensure that the right number of spaces are printed at the start of the row. You can print the right number of spaces using a loop.

You will NOT have to modify the pascal_num part of the program.

[If you are an expert programmer then try printing the right number of spaces using a single printf statement].

Using the scanf function

scanf is another member of the stdio.h library. This time it is used to read variables rather than writing to them. Copy and run ~rgc2/ccourse/week2/scanf.c. Look at the statement:

no_read= scanf ("%d",&i);
There are a number of things to notice about this statement. scanf reads information from the keyboard until it finds something which either matches or breaks the pattern it is looking for (in this case an integer). As soon as it finds

 that pattern it stops immediately even if all the input hasn't been read (and a subsequent scanf will start reading again from this point). Sometimes this can make scanf's behaviour downright confusing.

scanf returns the number of arguments which it has successfully read. It is always worth checking if scanf has read the right number of arguments.

The & in front of i means that the variable i can be changed by the function – if you remember from the previous lecture, this is not normally possible. It is extremely important when using scanf to remember the &. So, to read into an integer i we could do:

int i;

if (scanf ("%d",&i) == 1) {

 printf ("The number you chose was %d\n",i);

} else {

 printf ("No number input\n");

}

IMPORTANT RULE: When we put & in front of a variable name in a function call, the function can change the value of the variable. This is called pass by reference (normally we pass arguments by value). We will cover this in more detail in subsequent lectures and explain how you can write your own functions which can receive arguments passed by reference. For now just remember that scanf needs the &.

CAUTION: It should be noted that scanf isn't often a very GOOD way to get input off the user (as you might have suspected). It sometimes acts in very peculiar ways as you will see if you experiment with it further. We will show you better ways to read input later in the course but it is certainly good enough for now.

Exercise 7: Use scanf to get a user to input a number. If the number is a positive number greater than 1 then use your is_prime function to check if it is a prime number and print either that the number is prime or that the number is not prime.

The math.h library

A useful library is math.h as usual, this is included using #include <math.h>

IMPORTANT RULE: In the case of this library there is a slight difference in that we must, with this particular compiler, tell it to link in the maths functions. This is done by adding –lm to the end of compiler line e.g:

cc –o math_example math_example.c -lm

Exercise 8: sin takes a value in radians and returns the sin of it. Use the sin function to plot a sin wave vertically using stars (it should look something like this):

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

 *

Hint: Obviously, sin returns a number between -1 and 1. Convert this to a number between 0 and 60 and print that many spaces before printing the * - then print a '\n'
More debugging exercises

Exercise 9: Copy and fix the program ~rgc2/ccourse/week2/bugger3.c
Exercise 10: Copy and fix the program ~rgc2/ccourse/week2/bugger4.c
