C Programming Course – COURSEWORK TWO

Introduction

As before, questions one and two should be attempted by all students. Question three is more difficult and is optional for students who wish to earn extra credit.

Question One

The trapezoidal rule states that we can get an approximation to:

[image: image1.wmf]ò

b

a

dx

x

f

)

(

by the following procedure illustrated below:

[image: image2.wmf]a

b

y=f(x)

1) Choose the number n of equal-length intervals into which the interval of integration (from a to b) is to be divided.

2) Calculate the area of each of the n trapezoids which the area under the curve f(x) can be divided into (the area of each is the product of its base length and the average of the heights of either side of the trapezoid.

3) Sum each of these areas to get the total "area under the curve"

i) Write a program which integrates x2 from 0 to 3.

ii) Check your answer by performing the integration analytically.

iii) For what value of n (approximately) is the answer correct to one decimal place.

iv) For what value of n is it correct to three decimal places.

v) What sort of functions might be a problem for this sort of numerical integration?

Hint 1: You might choose to write a function which finds the area of a trapezium which has its base between x1 and x2 – the function header would look like this:

float trap_area (float x1, float x2)

/* Function to calculate the area of a trapezium in the function x squared – with a base going from x1 to x2 */

{

 /* Write your function here */

}

Hint 2: Remember that problems can sometimes occur when dividing ints to get an answer which we want to be a float.

Hint 3: If you get into difficulties, put in a printf statement that checks the height and width of each trapezoid as it is calculated. Start with a small n (three would be convenient) and check each area by hand as the computer calculates it.

Question Two

Write a program to find the square root of a number by successive approximations using the following algorithm.

a) Make your initial guess half of the number you're getting the root of and also define a step length which is equal to your initial guess.

b) Square your guess and check if is too high or too low. If your guess is too low then add step length to it. If the guess is too high subtract step length

c) Reduce step length by factor of ½.

d) Continue from step b until your guess squared is within a small amount (set by you) of the correct answer.

Hint: Write a function which takes two float arguments – a number and a guess as to its square root and returns one float – the magnitude of the "difference" between the guess squared and the number.

i) Use this method to find the square roots of 9 and of 2.

ii) How many steps does it take to get within 0.01 of the correct answer for 2. *

iii) Within 0.0001.

iv) Suggest ways to modify this algorithm to increase its efficiency.

* by which I mean that
[image: image3.wmf]01

.

0

2

<

-

r

x

where x is the guess at the root and r is the number we are finding the root of.

Question Three
Write a program to use Newton's method to find roots of the cubic polynomial x3 – 8x2+19x-12. Given an initial approximate root x0 we can find a better approximation:

x = x0+h

where h = -f(x0) / f'(x0)

Iterate to get successive approximations (it is up to you to choose how many times to iterate to get a good approximation).

Your program should allow the user to input (using scanf) an initial approximation and iterate several times to improve the approximation.

i) Find starting roots which give three separate answers for roots of the equation.

ii) Calculate the actual roots to ensure that your program got the correct answer.

iii) Can you find any starting values for which the method diverges?

iv) Can you suggest a method by which you could automatically generate starting values which will converge to DIFFERENT roots of the equation for a general cubic.

v) Can you (briefly) outline a method for using Newton's method to calculate the roots of a polynomial of any order which would also automatically generate starting values likely to converge to different roots. (Don't worry if you can't program this yet – it's difficult).

_1002456506.unknown

_1035116381.unknown

_998394299.doc

b

a

y=f(x)

