C Programming Course – Worksheet Four

Introduction

This is the fourth worksheet in the C programming course. By the end of this worksheet you should have experience of:

1) malloc and free for dynamic memory allocation

2) struct and typedef for making structures.

3) The switch statement (again).

4) Arrays of structures.

5) Random numbers in C.

1C Programming Course – Worksheet Four

1Introduction

2Using malloc and free

2A reminder about structures

3A structure for playing cards

4The switch statement

5Arrays of structs

6Random numbers in C

Using malloc and free

Remember from lectures that we can grab a certain amount of memory using malloc and release it using free. Consider this example code:

#include<stdio.h>

#include<stdlib.h>

int main(int argc, char *argv[])

{
 int n;

 double *percentages;

 const int MAX_LEN= 256;

 char string[MAX_LEN];

 int i;

 fgets(string, MAX_LEN,stdin);

 n= atoi(string);

 if (n < 1) {

 printf ("Input a positive integer please\n");

 return -1;

 }

 percentages= (double *)malloc(n * sizeof(double));

 if (percentages == NULL) {

 fprintf (stderr,"Out of memory!\n");

 return –1;

 }

 for (i= 0; i < n; i++) {

 percentages[i]= i/100.0;

 printf ("[%d] is %f\n",i,percentages[i]);

 }

 free(percentages);
}

This simple program doesn't do anything particularly amazing but consider it as a template for the next exercise.

Exercise 1: Make a basic statistics program that does the following:

i) Input a number from the user – this is the number of data items they are going to type in.

ii) Save memory for that many doubles in (as in the above example).

iii) Use a loop to get the user to input that many doubles into the memory you have saved.

iv) Calculate the sample mean and total for the numbers input.

Don't forget that good programmers free memory after they use it and check that memory is properly allocated with a test against NULL.

We will see malloc and free a LOT more later.

A reminder about structures

In the next series of examples we’re going to build up a series of routines which might be useful to play card games in C. By the time you’ve finished this worksheet, you won’t have a working game of cards, but you will have something which can shuffle, deal and print out a hand of cards.

The first thing to do is to create a structure which will store a single playing card. Recall how to use structures from the previous lecture:

typedef struct account {

 char name[80]; /* Name of account holder */

 int type; /* 1= savings account 2 = current account 3= account

closed*/

 char address[100]; /* address */

 int balance; /* Balance of account */

} BANK_ACCOUNT;
at the start of your program will define a structure which can be referred to as BANK_ACCOUNT which can store a name, an account type and an address. We can then create variables and set them as shown below using the dot notation described in the lecture (remember, typedefs go BEFORE main). BANK_ACCOUNT can be used pretty much anywhere you could use int – declaring a variable of type BANK_ACCOUNT is just like declaring an int and we can have functions which take BANK_ACCOUNT arguments and return BANK_ACCOUNT values:

int main(int argc, char**argv)

{

 BANK_ACCOUNT my_account;

 sprintf (my_account.name, "Richard Clegg");

 my_account.type= 1;

 sprintf (my_account.address, "Dept. of Mathematics");

 my_account.balance= 1000000;

 .

 .

 .

 return 0;

}

BANK_ACCOUNT create_new_account (char *, int, char *, int);

/* Prototype for create_new_account function */

BANK_ACCOUNT create_new_account (char *name, int type, char *address,

 int balance)

{

 BANK_ACCOUNT new_account;

 strcpy (new_account.name, name);

 new_account.type= type;

 strcpy (new_account.address, address);

 new_account.balance= balance);

 return new_account;

}

That's how it would work for a structure called BANK_ACCOUNT. In the following examples you're going to make something similar work for a structure called CARD for playing cards.

A structure for playing cards

The following structure is useful for problems involving playing cards:

typedef struct {

 int suit; /* The suit of the playing card */

 int value; /* The value of the playing card */

} CARD;

The suit is an integer which will represent if the card is hearts, spades, clubs or diamonds. You will need some code for which is which. It is handy to define a const which represents this so that you don’t forget. Value represents the number of “points” on the card, that is whether it is a two, three, jack, ace or whatever. It is handy to define integers for king, queen etc.
The switch statement

The switch statement is one of the few C keywords we've not seen yet. In the next exercise we will create a function which will print out one card as two characters, for example 2S (two of spaces), AH (ace of hearts), TC (ten of clubs), 9D (nine of diamonds). To create this function you could use a switch statement. Taking our bank account example we could use a switch statement as follows:

BANK_ACCOUNT new_account;

.

. /* Stuff to set up an account here */

.

switch (new_account.type) {

 /* new_account.type is an integer representing the

 type of account */

 case (1):

 printf ("A savings account\n");

 /* Do something to do with savings accounts here */

 break;

 case (2):

 printf ("A current account\n");

 /* Do something to do with current accounts */

 break;

 case (3):

 printf ("Account closed\n");

 break;

 default: // This is what happens if none of the above are true

// A default statement is not always needed.

 printf ("Error, there is no such type of account\n");

}
Note: The switch statement is enclosed within braces (curly brackets). The switch statement works on an integer or a character variable which is given in round brackets after the switch statement. The case parts of the switch statement contain constants (these may be #defined or enum constants or just numbers as in this example) also in round brackets and followed by a colon. When the variable in the switch statement matches the constant in the case statement then the commands in that particular case statement are executed. If none of the case statements match the variable then the default statement commands are executed. It is important to put a break after the final command in each of your case statements – without this break, "switch fall-through" occurs, that is that the computer carries on and executes the commands for the next case statement. If the code above did not have break statements in it then a type one bank account would print "A savings account" then print "A current account" then print "Account closed" then print "Error, there is no such type of account". Switch fallthroughs are one of the most common errors made by experienced C programmers.

[Note for experts: The reason that switch fallthroughs are allowed is that sometimes you actually want that to happen. Try to think of reasons why you might want a switch fallthrough.]

Exercise 2: Either by writing your own or by using cards.cpp, write a main routine to set up two cards, the ace of spades or the ten of hearts. Then write a function to match the prototype below:

void print_card (CARD);

.

.

.
This function will be passed a card and will print it out as two characters. For example, we would print the ace of spades as AS, the ten of hearts as TH, the Jack of Diamonds as JD and the 2 of Clubs as 2C. It can be called using the following in main (don't forget that, like any other variable declaration, the CARD declaration must go at the start of main).

If you've got it right this should print "The mystery card is AS" and "The other card is TH". Test your code is working by setting up variables for and printing other cards.

Hint 1: You can save some time by using a switch statement for the "value" of the card, Ace, Ten, Jack, Queen and King are special and should have a case statement each, 2-9 can go in the default statement and be printed using %d in a printf as usual.

Hint 2: Just print 2 characters – don't print spaces or new lines see below for why.

Arrays of structs
Like any other type of variable you can create an array of structures. For example, in the bank account structure we were using we could have:

BANK_ACCOUNT accounts[50]; /* create 50 bank accounts */

int i;

for (i= 0; i < 50; i++) {

 account[i].type= 3; /* Make them all closed initially*/

}

account[0].type= 1; /* The first account is type 1, savings */

sprintf (account[0].name, "Richard Clegg");

/* Etc etc */

The line which makes all the bank accounts closed is worth looking at closely. It says "Look at the type part of the i'th bank account". Remember to put the square brackets before the dot. Incidentally, did you remember that the number 3 stood for a bank account which is closed? That was decided in a comment right back at the start of the worksheet. Wouldn't that code have been a bit more understandable if the programmer had done the right thing and used an enum for CLOSED.

Exercise 3: Remove the code which sets up the ace of spades and tend of hearts from main but keep your print cards function. Set up an array to hold 52 cards which will represent our deck of cards. Put all the cards of the deck into this array. You can do this with two loops (one loop for the value of the card and one loop for the suit) – you may want to have an extra counter to remember which card in the deck you are currently storing. You will be using 52 a lot so you may want to set up an enum for it. If you have set up your deck correctly then you could print it using the code below in main:

/* Code from before to set up the typedef for CARD */

int main(int argc, char* argv[])

{

CARD deck[52]; /* hold a deck of cards */

int i;

 /* Set up the deck here by putting the correct values into

 the deck array */

for (i= 0; i < 52; i++) {

print_card (deck[i]);

printf (" ");

}

printf ("\n");

return 0;

}
If you do this correctly the code should print all 52 cards in the deck.

Setting up the cards could be tricky. Here's one way to do it (don't read this bit if you want the challenge of working it out yourself).

Set up an integer i= 0 to be the number of the card you are on. Set up two loops on inside the other for j and k. j will run from 1 to 4 and count the suit. k will run from 1 to 13 and count the value of the card. Inside the central loop you must set the suit of card i to be equal to j and the value of it to be k. You must also increase i by 1 (i++) in this loop.

Random numbers in C

Next we need to shuffle the cards. To shuffle we will need random numbers. Random numbers are a complicated subject (and are not really random in any case or “Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin” as John Von Neumann put it). We need two functions for random numbers srand and rand. srand "seeds" the random numbers – that is to say it gives the random number generator a number to get it started. A common technique used by programmers is to "seed" the random numbers using the current time. You can do this with the following:

#include <time.h>

/* Time functions which get the current time */

#include <stdlib.h>

/* Standard library functions include srand and rand */

int main()

{

 /* Variable declarations for main go here */

 srand(time(NULL)); /* Seed the random numbers */

}

Don't worry particularly about how the srand function (or indeed the time function) works for now – assume it just "sets up" a random number generator. You should only call it ONCE in any program unless you have a specific good reason to do so (say you want to generate the SAME set of random numbers again). The next function we need is rand(). It generates a random integer between 0 and RAND_MAX (which is a large number defined in stdlib.h). Each time we call rand() it generates a new random number in a sequence. We can use the modulo operation (% - remember it from the is_prime example – it returns the remainder when two numbers are divided) to force the random numbers into a particular range. Here's an example for rolling a die several times:

int i;

for (i= 0; i < 100; i++) {

 printf ("I rolled a %d\n", (rand()%6)+1);

 /* rand() %6 generates a number from 0 – 5 */

}
[Note for experts: Generating random numbers is actually very difficult with a computer. All random numbers are really "pseudo random" – part of a long sequence generated by a mathematical sequence which is hard to predict. Whole books have been written on the topic.]

Exercise 4: Write a function to shuffle the deck – the function is passed an array of cards which represents the ordered deck of 52 cards set up in exercise 3. The function will have the following prototype:

void shuffle_deck (CARD []);

To shuffle the deck we can use the following procedure several thousand times:

 a) Pick a number 'n' from 0-51 (NOT 52)

 b) Pick a second number 'm' from 0-51 (NOT 52)

 c) Swap card n with card m

We can swap things in part c using a temporary variable as we would with two integers. See below:

void shuffle_deck (CARD deck[])

{

 CARD temp_card; /* Temporary variable for swapping cards */

 /* Loops and picking of n, m go here */

 temp_card= deck[n]; /* Store the value of the nth card */

 deck[n]= deck[m]; /* Copy the mth card over the nth */

 deck[m]= temp_card; /* Copy the nth card over the mth using

 our temporary variable */

}
Call the shuffle deck routine from main to shuffle the deck (after it has been set up but before you print it out. Test the shuffling by changing the number of "swaps" you make).

Exercise 5: Next week we're going to write a routine to deal a hand of cards but first let's have a routine to print out a hand of cards. Write a routine which will take a pointer to an array of CARD types and an int and print out that many cards. The function should be fairly straightforward and will look like so:

void print_hand (CARD *, int);

.

.

.

void print_hand (CARD *hand, int no_cards)

{

 /* Print out the hand here – remember we can print the i'th

card using print_card(hand[i]); You will probably want spaces

between each card and a \n after the hand*/

}

Test your print_hand function by printing the whole deck using it:

print_hand (deck, 52); /* Print the whole deck */

print_hand (deck, 5); /* Print five cards from a hand */
PAGE
3

