C Programming Course – LECTURE six (NOTES)

What these lecture notes cover

These lecture notes should cover the following topics:

· Classifying the execution time of an algorithm – the O-notation
· Linked lists (and an example of an address book using linked lists)
· Binary trees (briefly)
· A short word about sorting algorithms
More information about the techniques in this lecture and C code to execute these algorithms and more can be found in http://www.epaperpress.com/s_man.html

Classifying the execution time of an algorithm
I have talked a lot in this course about efficiency but not really about how to measure efficiency. In the end, there are only two worthwhile measures of efficiency, how quickly a program runs and how much memory the program takes up. However, usually when we consider two rival techniques, we don't have the luxury of being able to code both and see which is better. One way of contemplating which algorithmic approach is the more efficient is using the O-notation. With the O-notation we specify a function representing the execution time of an algorithm as n increases where n is the number of items we are using the algorithm on. We will specify the execution time as O(f(n)) so, for example:

O(n) means that the execution time increases as n.

O(log (n)) means that the execution time increases as the log of n

O(n!) means that the execution time increases as the factorial of n

Formally xn = O(f(n)) means that there are positive constants M and n0 such that |xn| (M |f(n)| for all integers n (n0.

It should be noted that, for example, y = O(n) implies y = O (n2) but the former is the stronger statement. Generally speaking, when we specify the execution time of an algorithm using the O-notation we state in the strongest terms we can.

For more information about the O-notation look at Knuth's "The Art of Computer Programming" Volume 1. In the remainder of this lecture we shall be loosely thinking of the O-notation as "how does the execution time increase as n increases". For example, O(n) means "if n doubles then execution time doubles" whereas O(n2) means "if n doubles then execution time goes up by a factor of 4".

Examples of the O-notation in practice:

Imagine we have an array of numbers into which we wish to insert a single number at a given place:

[image: image1.wmf]1

1

2

3

5

7

8

8

9

9

4

Insert new

number

here

3

Blank bits

of array

[image: image2.wmf]1

1

2

3

5

7

8

8

9

4

These numbers

have to be moved

3

9

Blank bits

of array

If we insert a number into a random place in an n element array then we will, on average, have to shuffle n/2 items along the array. So we can say that the execution time = O(n). (The factor of 2 is dropped since O(n/2) = O(n) – remember that factor M in the equation). On the other hand, to access an element of the array, we simply have to take its index in the array. That is to say, accessing part of an array is O(1) and doesn't get larger as the array gets larger. This may seem obvious but for a linked list we shall see that the insertion operation is O(1) and the access operation is O(n).

Weaknesses of the O-notation
There are a number of problems with the O-notation.

1) It does not account for memory usage.

2) It does not account for programming complexity.

3) It tells us which of two algorithms would be most efficient if we have an infinite data set – we don't have an infinite data set.

4) If we come up with a brilliant saving which cuts the execution time of our code to 1% of what it once was then we haven't changed it's O(n) whatsoever. (Look again at that M in the equation).

5) In any case we might not know what O(n) is.

The importance of the O-notation
	n
	lg n
	n lg n
	n1.25
	n2

	1
	0
	0
	1
	1

	16
	4
	64
	32
	256

	256
	8
	2,048
	1,024
	65,536

	4,096
	12
	49,152
	32,768
	16,777,216

	65,536
	16
	1,048,565
	1,048,476
	4,294,967,296

	1,048,476
	20
	20,969,520
	33,554,432
	1,099,301,922,576

	16,775,616
	24
	402,614,784
	1,073,613,825
	281,421,292,179,456

The importance of the O-notation can be seen by viewing these tables consider, for example, the efficiency gains of an algorithm going as O(n) versus one going as O(log n).

Tips for efficiency
Less characters typed does not make code more efficient. We can make C awfully dense. Consider the following code to read in 100 lines of text:

FILE *fptr;

int i= 0;

char array[100][100];

if (!fptr= fopen ("file.txt","r"))

 exit(-1);

while (i < 100 && fgets(array[i++],100, fptr));

It may be short – but it's more than a little confusing to novice programmers – and many C programs can be made worse and more confusing. Much better to take ten lines and spell things out. After all, you wouldn't say someone was a better programmer if they missed out all comments on the grounds that it was shorter to type. It's better to spell things out in full. If you're interested in hard to read code then the "Obfuscated C contest" seeks to find the most convoluted and impossible to understand C programs.

If you can do it then use floats not doubles and chars not ints. Those data types are "shorter" and therefore take less memory. Operations on floats are quicker than on doubles.

Sometimes we can trade memory for speed of execution. Consider the sieve of Eratosthenese versus our first "is_prime" function. If we were calculating prime numbers a lot then the sieve would be very helpful since we wouldn't have to recalculate which numbers are prime. On the other hand, the is_prime function took less memory.

Know what takes time on the computer – allocating and freeing memory can take a lot of time if you do it too much. File access is very slow. If you are analysing all elements in a large file then either

a) Do all the work in one pass or

b) Read it into memory and work with it in memory (if it's not too large)

Linked lists in some detail
Let's look at how we would define a linked list (the example we're going to talk about is an address book – in this case the world's worst address book since it has no save facility):

typedef struct list {

 char name[MAXLEN];

 char address[MAXLEN];

 char phone[MAXLEN];

 struct list *next;

} ADDRESS;
Points to notice - we need to use struct list rather than ADDRESS since the typedef statement isn't actually complete yet. A complete listing of the address book program is at the end of the lecture.

Recall that in a linked list, we can reference the entire list from a single pointer – in this case we're going to call it hol for head of list and make it a global:

ADDRESS *hol= NULL; /* Head of our linked list of addresses -

 global variable*/

int main()

{

.

.

.

For an address book, we would like functions to add a new name to our book, print the address and phone number associated with a name, delete a name and list all names in the book.

Adding a name
In this example, we are storing the address book as an unordered (non-alphabetical) list of names. Therefore, inserting a name is actually quite easy. We can simply make the new item the head of the list and make it point at the previous head of list:

void add_to_list (void)

/* Add a new name to our address book */

{

 ADDRESS *new_name;

 new_name= (ADDRESS *)malloc (sizeof (ADDRESS));

 if (new_name == NULL) {

 printf ("Out of memory!\n");

 exit (-1);

 }

 /* Get input for the new item */

 printf ("Name> ");

 fgets (new_name->name, MAXLEN, stdin);

 printf ("Address> ");

 fgets (new_name->address, MAXLEN, stdin);

 printf ("Tel> ");

 fgets (new_name->phone, MAXLEN, stdin);

 /* Chain the new item into the list */

 new_name->next= hol;

 hol= new_name;

}
This is obviously an O(1) operation. No matter how large the list is this doesn't get more complex.

Listing all names in the book
void list_names (void)

/* List all names in the book */

{

 ADDRESS *tmp_ptr; /* Traverses list */

 printf ("All names in address book:\n");

 tmp_ptr= hol;

 while (tmp_ptr != NULL) {

 printf ("%s",tmp_ptr->name);

 tmp_ptr= tmp_ptr->next;

 }

}

We point at the head of the list. While what we are pointing at is not NULL, we print the name we are pointing at and move to point at the next thing. This is an O(n) operation. Printing a specific name from the book works in a similar manner but we traverse the list only until we find a name we are looking for.

Freeing up the memory
Here's how we free the memory. Point at the head of the list and store this in a temporary pointer. Move the head of the list on to the next item. Free the memory in the temporary pointer. Note that it's very important to do it in that order. Freeing the memory and then finding the next pointer would be VERY bad since it would involve looking at the contents of memory we've already freed.

void free_list (void)

/* Free memory for list */

{

 ADDRESS *del_ptr; /* Pointer to part to delete */

 while (hol != NULL) {

 del_ptr= hol; /* Store the head of list */

 hol= hol->next; /* Move on to the next bit */

 free(del_ptr); /* Free the memort for the bit we just left */

 }

}

Deleting an item from the list

void delete_from_list (void)

/* Remove a name from the address book */

{

 ADDRESS *del_ptr; /* Pointer to find name to delete */

 ADDRESS *prev_ptr; /* Pointer to name BEFORE this name */

 char del_name[MAXLEN]; /* Name to delete */

 printf ("Name> ");

 fgets (del_name, MAXLEN, stdin);

 /* The first item in the list being deleted is a special case */

 if (hol == NULL) {

 printf ("No list to delete from\n");

 return;

 }

 /* If the first name is the correct one then move the head of list on

 to the next head of list */

 if (strcmp(hol->name, del_name) == 0) {

 del_ptr= hol;

 hol= hol->next;

 free(del_ptr);

 return;

 }

 /* Otherwise loop round the list looking for the name */

 prev_ptr= hol;

 while (prev_ptr->next != NULL) {

 /* We've found the name so delete it */

 if (strcmp(prev_ptr->next->name,del_name) == 0) {

 del_ptr= prev_ptr->next;

 prev_ptr->next= del_ptr->next;

 free(del_ptr);

 return;

 }

 prev_ptr= prev_ptr->next;

 }

 printf ("Name not found!\n");

}

This is a little more complex. We need to deal with the special situation that the head of the list is the item that we wish to delete (and also that there is no list). Having done this we look around for a pointer who's NEXT pointer has the name we're looking for. Why? Because that is the pointer we need to change. A diagram may help:

[image: image3.wmf]D

hol

NULL

D

hol

NULL

hol

NULL

We must find the pointer call it A which has D (the pointer to be deleted) following it. We save a pointer to D. Then we point A at the pointer after D. Finally, we free the memory for D. Phew!

Removing the pointer is an O(1) operation but finding and removing it is O(n).

Inserting into the centre of a linked list
If we wanted to maintain an ordered linked list – after all, an address book is usually alphabetical – then we can do this simply by ensuring that we always insert our address in the correct place. In many ways this is the opposite of the delete operation. We must find a pointer (call it A) which is earlier in the alphabet than our pointer but whose next pointer is later. (Note that we must also deal with the special cases of our insertion being at the start of the list and at the end of the list). To insert the new item we must make A point at it and we must make it point at the pointer after A. Simple!

Linked list things to NEVER do (this applies to C in general)
Never follow a NULL pointer. For example:

hol= hol->next; is only safe if you know that hol is not NULL. NULL->next will usually crash your program.

Never free a pointer then try to access it (you risk accessing random bits of memory).

Never cut a pointer out of the list and forget to free it (you will certainly have a memory leak).

Binary Tree
If we want to hold and search an ordered list of items then better than a linked list is a binary tree. We can typedef a binary tree structure for a dictionary like so:

typedef struct tree {

 char word[MAXLEN];

 struct tree *left;

 struct tree *right;

} TREE;

As you can see, this is very similar to our definition for a linked list but has two pointers. The pointer to the left holds a word earlier in the alphabet and the one to the right holds a word later in the alphabet. As we add words, it is a question of moving left down the tree if the word is earlier and right if it is later. As before we can have a head of tree pointer to refer to the whole structure. Let's look at an example:

[image: image4.wmf]Let me not to the marriage of true minds admit impediment

Let

Me

Not

To

The

Marriage

Of

True

Minds

Admit

Impediment

Let

Let

Me

Let

Me

Not

To

Let

Me

Not

Let

Me

Not

To

The

Let

Me

Not

To

The

Marriage

1

2

3

4

5

6

Finally

Remember that every left or right connection not shown above must be to NULL.

Binary trees look intimidating but are actually surprisingly easy to work with once you get the idea. Here's some pseudocode for inserting a possible new object in our binary tree – assume that the left and right pointers of our new item are both NULL if it is inserted into the tree.

1) Set pointer A to head of tree (if head of tree doesn't exist then our new object becomes head of tree and we stop here).

2) If pointer A is our item then we have found our item, stop here.

3) If our item is earlier in the alphabet then look at the left pointer.

 a) If the left pointer is NULL then make the left pointer point to our new item

 b) Set pointer A to the left pointer and go to 2.

4) Our item must be later in the alphabet (it isn't the same or earlier) so look at the right pointer.

 a) If the right pointer is NULL then make the right pointer point to our new item

 b) Set pointer B to the right pointer and go to 2.

Inserting an item into a binary tree is O(log n) rather than O(n) with an ordered linked list or an array. The same is true of searching for an item in a binary tree. It is worth pointing out, though that the worst case for a binary tree, when the data is already ordered, it is effectively already a linked list and therefore O(n).

Deleting an item from a binary tree can be surprisingly complex – consider deleting LET from the tree example earlier. Deleting the entire binary tree, however, is remarkably easy. Consider this code:

void delete_tree (TREE *);

/* Function to delete a binary tree */

delete_tree (root_of_tree); /* Root of tree is the same as hol

 earlier but for a tree */

void delete_tree (TREE *tree_ptr)

/* Delete a binary tree */

{

 if (tree_ptr == NULL)

 return;

 delete_tree(tree_ptr->left);

 delete_tree(tree_ptr->right);

 free(tree_ptr);

}

Sorting algorithms

We've already seen bubblesort. Recall that it goes as follows:

1) Go through the entire array. If element n and element n+1 are out of order then swap them.

2) If we made any swaps then go to 1.

Bubblesort is an extremely simple sorting algorithm and very easy to program, hence its popularity. However, it is not very efficient. A more efficient sorting algorithm is quicksort given by the algorithm shown below.

1) Pick part of the array to be the "pivot"

2) Go through all the numbers of the array putting ones smaller than the pivot left of the pivot and ones larger right of the pivot.

3) Split the array into two smaller arrays, one wholly to the left of the pivot and one wholly to the right of the pivot. For each of these smaller arrays go to step 1.

Here's some code to do it:

/* Example quicksort program - more efficient versions of this are

possible - see Knuth or Sorting and Searching Algorithms: A Cookbook

for details */

#include <stdio.h>

enum {

 ARRAY_LEN= 14

};

void sortit (int [], int, int);

/* Performs the sort */

int partition (int [], int, int);

/* Find a pivot and partition the array */

int main()

{

 int array [ARRAY_LEN]= {9,5,11,1,3,13,45,14,7,22,100,5,7,102};

 int i;

 for (i= 0; i < ARRAY_LEN; i++) {

 printf ("%d ",array[i]);

 }

 printf ("\n");

 sortit(array, 0, ARRAY_LEN - 1);

 for (i= 0; i < ARRAY_LEN; i++) {

 printf ("%d ",array[i]);

 }

 printf ("\n");

 return 0;

}

void sortit (int sort [], int left, int right)

/* Sort an array of ints which has elements beginning at 'left' and

ending at 'right' */

{

 int pivot;

 if (left >= right) /* We need at least 2 elements to sort */

 return;

 pivot= partition (sort, left, right);

 sortit (sort, left, pivot - 1); /* Call the sort again with the

 left part of the array*/

 sortit (sort, pivot+1, right); /* And with the right part */

}

int partition (int sort [], int left, int right)

/* Take one number as the "pivot" and put all numbers less than the

pivot on the left and all numbers greater on the right - return the

position of the pivot */

{

 /* In this case, we're going to take the left most element in our

array as the pivot - we're going to leave it there until everything

else is sorted out and then swap it into it's correct place */

 int i;

 int pivot_pos; /* Position of our pivot */

 int temp; /* Used for swaps */

 /* Move across the partition moving things left or right */

 /* Sort [left] will contain our pivot element - we'll swap it

 into place at the end */

 pivot_pos= left;

 for (i= left+1; i <= right; i++) {

 /* If this element is to be left of the pivot then move the

pivot position on one and swap it into position with the

 element at the new pivot position - remember that the

 element at the final pivot postion is swapped with the pivot*/

 if (sort[i] < sort[left]) {

 pivot_pos++; /* Move the pivot position right */

 temp= sort[i]; /* And swap our element with the pivot

 position */

 sort[i]= sort[pivot_pos];

 sort[pivot_pos]= temp;

 }

 }

 /* Now swap our pivot into place */

 temp= sort[left];

 sort[left]= sort[pivot_pos];

 sort[pivot_pos]= temp;

 return pivot_pos;

}

Complete listing for our address book example
Note that for quickness, there is no save/load facility and all string comparisons are case and space sensitive. Annoying in an address book I admit – but this is only an example.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

enum {

 MAXLEN=255

};

typedef struct list {

 char name[MAXLEN];

 char address[MAXLEN];

 char phone[MAXLEN];

 struct list *next;

} ADDRESS;

void add_to_list (void); /* Add a name to our address book */

void delete_from_list (void);/* Delete a name from our book */

void print_name (void); /* Print an entry in the address book */

void list_names (void); /* List all the names in the book */

void free_list (void); /* Free all the linked list */

ADDRESS *hol= NULL; /* Head of our linked list of addresses -

 global variable*/

int main()

{

 char input[MAXLEN]; /* Input from the user */

 while (1) {

 printf ("(A)dd/(D)elete/(P)rint/(L)ist/(Q)uit\n");

 fgets (input, MAXLEN,stdin);

 switch (input[0]) {

 case ('a'):

 case ('A'):

 add_to_list();

 break;

 case ('d'):

 case ('D'):

 delete_from_list();

 break;

 case ('p'):

 case ('P'):

 print_name();

 break;

 case ('l'):

 case ('L'):

 list_names();

 break;

 case ('q'):

 case ('Q'):

 free_list();

 return (0);

 default:

 printf ("Unknown command\n");

 }

 }

 return 0;

}

void add_to_list (void)

/* Add a new name to our address book */

{

 ADDRESS *new_name;

 new_name= (ADDRESS *)malloc (sizeof (ADDRESS));

 if (new_name == NULL) {

 printf ("Out of memory!\n");

 exit (-1);

 }

 /* Get input for the new item */

 printf ("Name> ");

 fgets (new_name->name, MAXLEN, stdin);

 printf ("Address> ");

 fgets (new_name->address, MAXLEN, stdin);

 printf ("Tel> ");

 fgets (new_name->phone, MAXLEN, stdin);

 /* Chain the new item into the list */

 new_name->next= hol;

 hol= new_name;

}

void delete_from_list (void)

/* Remove a name from the address book */

{

 ADDRESS *del_ptr; /* Pointer to find name to delete */

 ADDRESS *prev_ptr; /* Pointer to name BEFORE this name */

 char del_name[MAXLEN]; /* Name to delete */

 printf ("Name> ");

 fgets (del_name, MAXLEN, stdin);

 /* The first item in the list being deleted is a special case */

 if (hol == NULL) {

 printf ("No list to delete from\n");

 return;

 }

 /* If the first name is the correct one then move the head of list on to the next head of list */

 if (strcmp(hol->name, del_name) == 0) {

 del_ptr= hol;

 hol= hol->next;

 free(del_ptr);

 return;

 }

 /* Otherwise loop round the list looking for the name */

 prev_ptr= hol;

 while (prev_ptr->next != NULL) {

 /* We've found the name so delete it */

 if (strcmp(prev_ptr->next->name,del_name) == 0) {

 del_ptr= prev_ptr->next;

 prev_ptr->next= del_ptr->next;

 free(del_ptr);

 return;

 }

 prev_ptr= prev_ptr->next;

 }

 printf ("Name not found!\n");

}

void print_name (void)

/* Print a name from the list */

{

 char name[MAXLEN]; /* Name to look for */

 ADDRESS *search_ptr; /* Pointer to search list for name */

 printf ("Name> ");

 fgets (name, MAXLEN, stdin);

 search_ptr= hol;

 while (search_ptr != NULL) {

 if (strcmp (search_ptr->name, name) == 0) {

 printf ("Address: %s", search_ptr->address);

 printf ("Tel: %s", search_ptr->phone);

 return;

 }

 search_ptr= search_ptr->next; /* Move to next item */

 }

 printf ("No such name\n");

}

void list_names (void)

/* List all names in the book */

{

 ADDRESS *tmp_ptr; /* Traverses list */

 printf ("All names in address book:\n");

 tmp_ptr= hol;

 while (tmp_ptr != NULL) {

 printf ("%s",tmp_ptr->name);

 tmp_ptr= tmp_ptr->next;

 }

}

void free_list (void)

/* Free memory for list */

{

 ADDRESS *del_ptr; /* Pointer to part to delete */

 while (hol != NULL) {

 del_ptr= hol; /* Store the head of list */

 hol= hol->next; /* Move on to the next bit */

 free(del_ptr); /* Free the memory for the bit we just left */

 }

}
_1036254387.unknown

_1036267950.unknown

_1036271645.unknown

_1036254314.unknown

