C Programming Course – MASTERS Projects

Choose your project from the list below. The projects themselves must be handed in by noon on Friday week two of the spring term.

Your project write-up must be at most fifteen pages (smallest font 10 point) not including any code or graphs you wish to use. Your write up should include:

i) Discussion of the project and your planning to tackle it.

ii) Any mathematical theory used by your project.

iii) Documentation for your program for a programmer (internal documentation) which explains how the program works and how another programmer might make additions to it.

iv) Information about testing your program – what tests you performed to ensure that your program was correct and accurate.

v) Example output from your program showing examples of what it produces.

vi) A critical discussion of your program's output -- do you believe the program worked correctly. Did it get the "right" answers? Do you believe your program to be accurate? If not, why not?

Project Mark Scheme

30 Marks – Content of Code: Did the code achieve what it set out to do? Were the algorithms used suitable? The more complex the task your code achieves the better your mark in this section.

10 Marks – Style of Code: Was your code well-written and in a good style? Was it clearly laid out and indented consistently? (Look at example code in worked examples on the web-site for well-laid out code).

20 Marks – Write up: This is for the general content of your write up and includes your explanation of what your project was about and your presentation of its results. Did you clearly explain the problem solved by your project? Did you include any relevant mathematics?

15 Marks – Documentation: Was your code documented well? (This includes comments in the code but is mainly the documentation within your write up). Have you shown evidence of testing the code?

5 Marks – Presentation: Was your project clearly and neatly presented? Was it easy to understand and well laid out.

The remaining 20 marks (to make 100) will be taken from your coursework. Note also that, while graphical output is useful, no extra marks will be given for code which produces graphics – the coding marks are for algorithms and input/output. A project which uses maple/gnuplot/excel to plot graphs will score just as well as one where the programmer has spent a long time writing their own graphical output routines.

Project 1: Wheels within wheels

Many fractals can be constructed using iterated function systems (IFS), a finite set of affine transformations of the plane. Due to a powerful fixed point theorem in dynamics it can be shown that IFS which consist of contraction mappings lead to unique fractal attractors. This project will involve the coding of two common algorithms for drawing such fractals: the Random Iteration Algorithm (RIA) and the Deterministic Algorithm (DA).

Ideas:

1) Can you produce standard fractals such as the fern, the Sierpinski gasket, the Koch snowflake using your program?

2) Can you program in a flexible enough way to allow any number of equations read from a file?

3) Could the users input the equations themselves?

All the theory can be found on the internet, but you may want to consult Barnsley’s “Fractal’s Everywhere”. You should feel free to develop other ideas related to IFS here.

Project 2: Finding the way

Graph theory is an important mathematical tool for the study of networks. A graph G=(V,E) is a set of vertices (nodes) and a set of edges (links) which are (possibly ordered) pairs of nodes. That is if ei=(j,k) is in E then j and k are both in V. We can represent real life networks (for example a road network) in this way.

A weighted graph is one where there is a cost Wi associated with each edge ei in E. This weight might be thought to represent the cost of travel along that edge. Now, the aim of this project is to find the shortest path from an origin O to a destination D where O and D are vertices in V. The shortest path is the set of edges which lead between O and D for which the sum of the edge weights is minimal. Two well-known algorithms to achieve this are Dijkstra’s algorithm and the Bellman-Ford algorithm. You should be able to find these in any book about network theory.

Ideas:

1) You will need to find some way of representing a network within the computer (perhaps a structure for a graph, or even a structure for edges and vertices?

2) Implement one or both of these algorithms to find the way from an origin to destination if the graph is already defined by your program.

3) Come up with some way of representing a graph within a file --- you will need to think of a way of writing the vertices and edges within the file.

Project 3: The marvellous mechanical maths machine

The aim of this project is to solve simultaneous equations. Imagine we have a system of k equations

a11x1+a12x2+ … + a1k = b1
a21x1+a22x2+ … + a2k = b2
.

.

.

ak1x1+ak2x2+ … + akk= bk
where all a and b are constants. This can be written in matrix form and solved using Gaussian elimnation. You are going to write code which will automatically produce the solutions to these simultaneous equations using this technique.

Ideas:

1) You might want to use structures to represent matrices and do matrix operations.

2) Be sure your code deals with the fact that there may be no solution.

3) Be sure your code deals with the fact that there may be many solutions.

4) Can you allow the equations to be input by the user in a flexible way?

5) Can you allow the equations to be read from files on disk?

